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Abstract

In linear regression models the estimator of variance components needs
a suitable choice of a starting point for an iterative procedure for a de-
termination of the estimate. The aim of this paper is to find a criterion
for a decision whether a linear regression model enables to determine the
estimate reasonably and whether it is possible to do so when using the
given data.

Key words: Linear regression model; variance components; insen-
sitivity region.
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1 Notation

Y ∼ Nn(Xβ,Σθ) the n-dimensional random vector Y possesses the nor-
mal distribution with the mean value Xβ and variance-
covariance matrix Σθ

{A}i,j the component of matrix A on its (i,j)-th position
r(A) the rank of the matrix A
Tr(A) the trace of the square matrix A, Tr(A) =

∑
i{A}i,i

A+ the Moore–Penrose generalized matrix inverse (see [4] for
more details)

MA the projection matrix on an orthogonal complement (in
Euclidean sense) of the column space of the matrix A

∂A
∂t

∣∣∣
t=t0

the value of the partial derivative of the matrix A accord-
ing to t for t = t0

7
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2 Introduction

The main aim of this paper is to describe how the variance components esti-
mates in a linear regression model depend on small input prior variance com-
ponents values changes. We need some input prior values of the variance com-
ponents when computing their minimum norm quadratic unbiased estimators
(MINQUE). The question is how to get these prior values and whether the
choice is suitable. We can figure out the variances of the estimates based on the
given prior values and then investigate how these variances change when using
different prior values. Having the estimates variances not too high seems to be
a comprehensible requirement. So the task now is to find a set of admissible
changes of the input variance components values (for the given variance com-
ponents prior values), it means a set of such changes of the input values which
cause ε-multiple increase of the estimates variances at the most.

3 General linear regression model

Let’s consider following regression model (according to [5], page 62):

Y ∼ Nn (Xβ,Σθ) . (1)

Suppose that n × k matrix X is known and of full column rank r(X) = k,
β = (β1, β2, . . . , βk)′ is a vector of unknown fixed effects parameters and the
variance-covariance matrix Σθ satisfies

Σθ =
r∑

i=1

θiVi. (2)

θ1, θ2, . . . , θr in (2) are unknown variance components (the object of our interest)
and V1,V2, . . . ,Vr are known symmetrical matrices. We suppose Σθ is positive
definite. No restrictions such as θi ≥ 0 or Vi positive semidefinite need hold.

4 Variance components insensitivity region

4.1 Variance components estimator

According to [4], page 101 the θ0-MINQUE (it means the minimum norm
quadratic unbiased estimator with prior variance components values θ0) of vari-
ance components θ = (θ1, . . . , θr)′ in model (1) is

θ̂(θ0) = S−1
(MXΣθ0MX)+

⎛⎜⎝Y′(MXΣθ0MX)+V1(MXΣθ0MX)+Y
...

Y′(MXΣθ0MX)+Vr(MXΣθ0MX)+Y

⎞⎟⎠ (3)

and the variance-covariance matrix of the variance components estimates θ̂(θ0)
is

Varθ0

(
θ̂(θ0)

)
= 2S−1

(MXΣθ0MX)+ (4)
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where (see [4], page 171)

(MXΣθ0MX)+ = Σθ0

−1 −Σθ0

−1X(X′Σθ0

−1X)−1X′Σθ0

−1 (5)

and S(MXΣθ0MX)+ is matrix with{
S(MXΣθ0MX)+

}
i,j

= Tr
[
Vi(MXΣθ0MX)+Vj(MXΣθ0MX)+

]
on its (i, j)-th position.

In practice in the first step the value θ0 in (3) can be chosen arbitrarily.
In the second step the value of θ̂(θ0) is chosen instead of θ0. In this way we
can procede and stop the iterative procedure after a suitable number of the
steps. The problem is to recognize whether the choice of the starting value θ0

is sufficient for deriving a reasonable estimate of θ and whether it is sufficient
for stopping the iterative procedure already after the first step. This problem
can be solved as follows.

It seems to be comprehensible to have the variances of the θi estimators not
too high. Let’s use some given linear combination of the components of vector
θ. Suppose that the coeficients of this linear combination are the components
of vector g. We will investigate the variance of the estimator of g′θ instead of
variances of all the variance components separately.

Remark 4.1 We achieve the equality g′θ = θi when using the i-th unit vector
for g. It means we still have the possiblity to take the variance of the estimator
of each of the variance components under control and moreover we can monitor
the variances of different linear combinations of the variance components.

As we know the θ estimator θ̂ depends on the prior input value θ0, it is
θ̂(θ0). Next we find out the difference between the variance of g′θ̂(θ0) and the
variance of g′θ̂(θ0 + δθ). A set Ng,θ0

can be found such that θ0 + δθ ∈ Ng,θ0
leads to the inequality√

Varθ0

[
g′θ̂(θ0 + δθ)

]
≤ (1 + ε)

√
Varθ0

[
g′θ̂(θ0)

]
, (6)

where ε > 0 is a sufficiently small real number.
We are looking after a set of δθ—small changes of input variance components

values—holding (6) for a given r-dimensional vector g and given θ0 in what
follows.

In order to find such a set we need to express θ̂(θ0+δθ). We can approximate
it like this

θ̂(θ0 + δθ) ≈ θ̂(θ0) +
r∑

i=1

∂θ̂(θ)
∂θi

∣∣∣∣
θ=θ0

· δθi. (7)

The appropriate linear combination g′θ̂(θ0 + δθ) of variance components esti-
mator fulfils

g′θ̂(θ0 + δθ) ≈ g′θ̂(θ0) +
r∑

i=1

∂g′θ̂(θ)
∂θi

∣∣∣∣
θ=θ0

· δθi. (8)
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Thus we need to know the partial derivative ∂
bθ(θ)

∂θ
.

At first let us find the first derivative of
{
S(MXΣθMX)+

}
i,j

according to θk:{
∂S(MXΣθMX)+

∂θk

∣∣∣∣
θ=θ0

}
i,j

=
∂

∂θk
Tr
[
Vi(MXΣθMX)+Vj(MXΣθMX)+

]∣∣∣∣
θ=θ0

= Tr

[
Vi(MXΣθ0MX)+MXVkMX(MXΣθ0MX)+Vj(MXΣθ0MX)+

+ Vi(MXΣθ0MX)+Vj(MXΣθ0MX)+MXVkMX(MXΣθ0MX)+
]

= 2 Tr

[
Vi(MXΣθ0MX)+MXVkMX(MXΣθ0MX)+Vj(MXΣθ0MX)+

]
.

If we denote matrix having
Tr (ViAVjB) , (9)

on its (i, j)-th position with CA,B (for arbitrary matrices A, B of n×n dimen-
sion), we can continue as follows

∂S(MXΣθMX)+

∂θk

∣∣∣∣
θ=θ0

= 2C(MXΣθ0MX)+MXVkMX(MXΣθ0MX)+,(MXΣθ0MX)+

= 2C(MXΣθ0MX)+Vk(MXΣθ0MX)+,(MXΣθ0MX)+ .

Let’s introduce following notation

γ =

⎛⎜⎝Y′(MXΣθ0MX)+V1(MXΣθ0MX)+Y
...

Y′(MXΣθ0MX)+Vr(MXΣθ0MX)+Y

⎞⎟⎠ .

Now we can write
∂θ̂(θ)
∂θk

∣∣∣∣
θ=θ0

= −2S−1
(MXΣθ0MX)+

×C(MXΣθ0MX)+Vk(MXΣθ0MX)+,(MXΣθ0MX)+S−1
(MXΣθ0MX)+γ

+ S−1
(MXΣθ0MX)+

×

⎛⎜⎝ 2Y′(MXΣθ0MX)+Vk(MXΣθ0MX)+V1(MXΣθ0MX)+Y
...

2Y′(MXΣθ0MX)+Vk(MXΣθ0MX)+Vr(MXΣθ0MX)+Y

⎞⎟⎠ . (10)

According to (10) we have

∂g′θ̂(θ)
∂θk

∣∣∣∣∣
θ=θ0

= −2g′S−1
(MXΣθ0MX)+
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×C(MXΣθ0MX)+Vk(MXΣθ0MX)+,(MXΣθ0MX)+S−1
(MXΣθ0MX)+γ

+ 2g′S−1
(MXΣθ0MX)+

×

⎛⎜⎝Y′(MXΣθ0MX)+Vk(MXΣθ0MX)+V1(MXΣθ0MX)+Y
...

Y′(MXΣθ0MX)+Vk(MXΣθ0MX)+Vr(MXΣθ0MX)+Y

⎞⎟⎠ . (11)

If we denote
a′

k = g′S−1
(MXΣθ0MX)+

×C(MXΣθ0MX)+Vk(MXΣθ0MX)+,(MXΣθ0MX)+S−1
(MXΣθ0MX)+ ,

b′
g = g′S−1

(MXΣθ0MX)+

and

ζk =

⎛⎜⎝Y′(MXΣθ0MX)+Vk(MXΣθ0MX)+V1(MXΣθ0MX)+Y
...

Y′(MXΣθ0MX)+Vk(MXΣθ0MX)+Vr(MXΣθ0MX)+Y

⎞⎟⎠ ,

we can write

∂g′θ̂(θ)
∂θ

∣∣∣∣
θ=θ0

= −2

⎛⎜⎝ a′
1
...
a′

r

⎞⎟⎠γ + 2

⎛⎜⎝ b′
gζ1
...

b′
gζr

⎞⎟⎠ . (12)

Using (8) together with (12) we get

g′θ̂(θ0 + δθ) ≈ g′θ̂(θ0) + (δθ)′

⎡⎢⎣−2

⎛⎜⎝ a′
1
...
a′

r

⎞⎟⎠γ + 2

⎛⎜⎝b′
gζ1
...

b′
gζr

⎞⎟⎠
⎤⎥⎦ . (13)

4.2 Varθ0

[
g′θ̂(θ0 + δθ)

]
derivation

In order to find a set of δθ which is described in (6) we have to derive

Varθ0

[
g′θ̂(θ0 + δθ)

]
.

According to (4)

Varθ0

[
g′θ̂(θ0)

]
= 2g′S−1

(MXΣθ0MX)+g. (14)
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What we need to know further is Varθ0

∂g′ bθ(θ)

∂θ
.

Varθ0

∂g′θ̂(θ)
∂θ

= Varθ0

⎡⎢⎣−2

⎛⎜⎝ a′
1
...
a′

r

⎞⎟⎠γ + 2

⎛⎜⎝ bg
′ζ1
...

bg
′ζr

⎞⎟⎠
⎤⎥⎦

= 4

⎛⎜⎝ a′
1
...
a′

r

⎞⎟⎠Varθ0
(γ) (a1, . . . ,ar)− 4

⎛⎜⎝ a′
1
...
a′

r

⎞⎟⎠ covθ0

⎡⎢⎣γ,

⎛⎜⎝ bg
′ζ1
...

bg
′ζr

⎞⎟⎠
⎤⎥⎦

− 4 covθ0

⎡⎢⎣
⎛⎜⎝ bg

′ζ1
...

bg
′ζr

⎞⎟⎠ ,γ

⎤⎥⎦ (a1, . . . ,ar) + 4 Varθ0

⎛⎜⎝ bg
′ζ1
...

bg
′ζr

⎞⎟⎠ . (15)

In view of (4) and of the definition of γ

Varθ0
(γ) = 2S(MXΣθ0MX)+ . (16)

Concerning Varθ0

0
BBBB@

a′
1
...
a′

r

1
CCCCA:

⎧⎪⎨⎪⎩Varθ0

⎛⎜⎝ bg
′ζ1
...

bg
′ζr

⎞⎟⎠
⎫⎪⎬⎪⎭

k,l

= covθ0

(
bg

′ζk,bg
′ζl

)
= bg

′ covθ0

(
ζk, ζl

)
bg

= bg
′ covθ0

⎡⎢⎣
⎛⎜⎝Y′(MXΣθ0MX)+Vk(MXΣθ0MX)+V1(MXΣθ0MX)+Y

...
Y′(MXΣθ0MX)+Vk(MXΣθ0MX)+Vr(MXΣθ0MX)+Y

⎞⎟⎠ ,

⎛⎜⎝Y′(MXΣθ0MX)+Vl(MXΣθ0MX)+V1(MXΣθ0MX)+Y
...

Y′(MXΣθ0MX)+Vl(MXΣθ0MX)+Vr(MXΣθ0MX)+Y

⎞⎟⎠
⎤⎥⎦bg

= bg
′Dζk,ζl

bg, (17)
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where{
Dζk,ζl

}
s,t

= covθ0

[
Y′(MXΣθ0MX)+Vk(MXΣθ0MX)+Vs(MXΣθ0MX)+Y,

Y′(MXΣθ0MX)+Vl(MXΣθ0MX)+Vt(MXΣθ0MX)+Y
]

= 2 Tr
[
(MXΣθ0MX)+Vk(MXΣθ0MX)+Vs(MXΣθ0MX)+Σθ0

× (MXΣθ0MX)+Vl(MXΣθ0MX)+Vt(MXΣθ0MX)+Σθ0

]
= 2 Tr

[
Vs(MXΣθ0MX)+Vl(MXΣθ0MX)+

×Vt(MXΣθ0MX)+Vk(MXΣθ0MX)+
]
.

Next

covθ0

⎡⎢⎣−2

⎛⎜⎝ a′
1
...
a′

r

⎞⎟⎠γ, 2

⎛⎜⎝bg
′ζ1
...

bg
′ζr

⎞⎟⎠
⎤⎥⎦ =

= −4

⎛⎜⎝ a′
1
...
a′

r

⎞⎟⎠ covθ0

⎡⎢⎣γ,

⎛⎜⎝ bg
′ζ1
...

bg
′ζr

⎞⎟⎠
⎤⎥⎦ = −4

⎛⎜⎝ a′
1
...
a′

r

⎞⎟⎠Dγ,ζ , (18)

where {
Dγ,ζ

}
i,j

= covθ0

(
γi,bg

′ζj

)
= covθ0

[
Y′(MXΣθ0MX)+Vi(MXΣθ0MX)+Y,

r∑
u=1

bguY
′(MXΣθ0MX)+Vj

× (MXΣθ0MX)+Vu(MXΣθ0MX)+Y
]

=
r∑

u=1

2 Tr
[
(MXΣθ0MX)+Vi

× (MXΣθ0MX)+Σθ0bgu(MXΣθ0MX)+Vj(MXΣθ0MX)+

×Vu(MXΣθ0MX)+Σθ0

]
= 2 Tr

[
Vi(MXΣθ0MX)+Vj(MXΣθ0MX)+

r∑
u=1

bguVu(MXΣθ0MX)+
]

= 2 Tr
[
Vi(MXΣθ0MX)+Vj(MXΣθ0MX)+Vg(MXΣθ0MX)+

]
.

In the previous text following important fact was used (together with equal-
ity (5)).

Lemma 4.1 (see [4], page 101) Let n× n matrices A, B be symmetrical. Let
Y ∼ Nn(Xβ,Σθ), where AX = BX = 0. Then

cov (Y′AY,Y′BY) = 2 Tr (AΣθBΣθ) .
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Following notation was used as well:

γi . . . i-th component of γ, bgu . . . u-th component of bg, Vg =
r∑

u=1

bguVu.

According to (15), (16), (17) and (18) we have

Wg = Varθ0

∂g′θ̂(θ)
∂θ

= 8

⎛⎜⎝ a′
1
...
a′

r

⎞⎟⎠S(MXΣθ0MX)+ (a1, . . . ,ar)

+ 4bg
′

⎛⎜⎜⎝
Dζ1,ζ1

. . . Dζ1,ζ
r

...
...

...
Dζ

r
,ζ1

. . . Dζ
r
,ζ

r

⎞⎟⎟⎠bg − 4

⎛⎜⎝ a′
1
...
a′

r

⎞⎟⎠Dγ,ζ − 4D′
γ,ζ (a1, . . . ,ar)

= 8

⎛⎜⎝ a′
1
...
a′

r

⎞⎟⎠S(MXΣθ0MX)+ (a1, . . . ,ar) + 8S(MXΣθ0MX)+Vg(MXΣθ0MX)+

− 8

⎛⎜⎝ a′
1
...
a′

r

⎞⎟⎠C(MXΣθ0MX)+,(MXΣθ0MX)+Vg(MXΣθ0MX)+

− 8C′
(MXΣθ0MX)+,(MXΣθ0MX)+Vg(MXΣθ0MX)+

(a1, . . . ,ar) . (19)

Notation defined in (9) and denoting of matrix having on its (i, j)-th position
Tr (AViAVj) with SA was used.

4.2.1 Insenstitivity region formulation

If we determine the insensitivity region for the variance components as a set of
all θ0 + δθ with δθ satisfying (6), we get

Ng,θ0
=
{
θ0 + δθ : δθ′Wgδθ ≤ 2εVarθ0

(
g′θ̂

)}
=
{

θ0 + δθ : δθ′Wgδθ ≤ 4εg′S−1

(MXΣθ0MX)+
g
}
. (20)

Remark 4.2 More precise form of Ng,θ0
is (see also [4] and [1])

Ng,θ0
=
{
θ0 + δθ : δθ′Wgδθ ≤ (2ε+ ε2) Var

(
g′θ̂

)}
.

Because ε is choiced to be a small positive number we usually can use 2ε instead
of (2ε+ ε2) as used in (20).
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5 Numerical study

Let the Michaelis–Menten regression function

f(x) =
γ1x

γ2 + x

be considered. We can measure values of this function for x1 = 0.5; x2 = 1.5
with dispersion of σ2

1 = 0.04 and for x3 = 7; x4 = 9 with dispersion of σ2
2 = 0.36.

Let’s suppose the true values of γ1 and γ2 are γ1 = 10 and γ2 = 5. The values
of σ2

1 , σ2
2 , γ1 and γ2 are apriori unknown for us. We have two measurements for

each point x1, x2, x3, x4. Let’s include the measured data into an observation
vector

Y =

⎛⎜⎝ Y1

...
Y8

⎞⎟⎠ .

The normal distribution of the random vector Y is assumed. We need to
describe such a nonlinear situation with a linear model. For f(xi) = γ1xi

γ2+xi
,

i = 1, 2, 3, 4 we have

∂f(xi)
∂γ1

=
xi

γ2 + xi
,

∂f(xi)
∂γ2

= − γ1xi

(γ2 + xi)2
.

Since

f(xi, γ1, γ2) ≈ f(xi, γ
0
1 , γ

0
2) +

∂f

∂γ1
(γ1 − γ0

1) +
∂f

∂γ2
(γ2 − γ0

2),

we can write:

Y − fγ0
1 ,γ0

2
∼ N8

[
X
(
δγ1

δγ2

)
,Σθ

]
. (21)

Here

fγ0
1 ,γ0

2
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0
1x1

γ0
2+x1
γ0
1x1

γ0
2+x1
γ0
1x2

γ0
2+x2
γ0
1x2

γ0
2+x2
γ0
1x3

γ0
2+x3
γ0
1x3

γ0
2+x3
γ0
1x4

γ0
2+x4
γ0
1x4

γ0
2+x4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
γ0
2+x1

− γ0
1x1

(γ0
2+x1)2

x1
γ0
2+x1

− γ0
1x1

(γ0
2+x1)2

x2
γ0
2+x2

− γ0
1x2

(γ0
2+x2)2

x2
γ0
2+x2

− γ0
1x2

(γ0
2+x2)2

x3
γ0
2+x3

− γ0
1x3

(γ0
2+x3)2

x3
γ0
2+x3

− γ0
1x3

(γ0
2+x3)2

x4
γ0
2+x4

− γ0
1x4

(γ0
2+x4)2

x4
γ0
2+x4

− γ0
1x4

(γ0
2+x4)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(
δγ1

δγ2

)
=
(
γ1 − γ0

1

γ2 − γ0
2

)

and
Σθ = θ1V1 + θ2V2
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with θ1 = σ2
1 , θ2 = σ2

2 ,

V1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, V2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We consider a special case of a general linear regression model described
in section 3—a mixed linear model, the variance components have to be non-
negative and matrices V1,V2 are evidently positive semidefinite. We have to
take this fact into account when determining the insensitivity regions.

We will work with following measured data

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.245
0.779
2.264
2.258
6.612
5.909
6.827
6.301

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Components of this observation vector are the result of the data simulation from
the normal distribution with mean equals to the real value of f for appropriate
xi and standard deviation σ1 = 0.2, σ2 = 0.6 respectively.

The next task is to decide whether we are able to get reasonable estimates of
the variance components θ1 and θ2 when having this one observation vector only.
We find some starting values θ01 and θ02 and establish the insensitivity region
according to (20). Next we compute the variance components estimates based
on these starting values and confidence region for the variance components. If
the confidence region is inbedded into the insensitivity region, then the choice
of starting θ01 and θ02 is good enough to determine the estimates based on them.

What we can do is to get a rough estimate θ01,1 of θ1 based on y1 and y2—the
first two components of observation vector:

θ01,1 = (y1 − y12)
2 + (y2 − y12)

2

and θ01,2 based on y3 and y4

θ01,2 = (y3 − y34)
2 + (y4 − y34)

2,

where y12 (y34) denotes arithmetic average of y1 and y2 (y3 and y4 respectively).
Since all the four values y1,. . . , y4 were simulated with dispersion θ1, the starting
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value θ01 can be counted as an arithmetic average of θ01,1 and θ01,2:

θ01 =
θ01,1 + θ01,2

2
= 0.0543.

Similarly

θ02,1 = (y5 − y56)
2 + (y6 − y56)

2, θ02,2 = (y7 − y78)
2 + (y8 − y78)

2

and

θ02 =
θ02,1 + θ02,2

2
= 0.1927.

Next we need some starting values γ0
1 and γ0

2 . Lineweaver–Burke transformation
(see [2] for more details) is frequently used to get the starting values of γ1 and
γ2. However following approach can be useful sometimes. Since

y =
γ1x

γ2 + x
,

γ1x− γ2y = xy. (22)

According to this we can put together four systems of two linear equations:

γ1x1 − γ2y1 = x1y1
γ1x2 − γ2y3 = x2y3

,
γ1x1 − γ2y2 = x1y2
γ1x2 − γ2y4 = x2y4

,

γ1x3 − γ2y5 = x3y5
γ1x4 − γ2y7 = x4y7

,
γ1x3 − γ2y6 = x3y6
γ1x4 − γ2y8 = x4y8

.

When we denote the solutions of these systems with (γ0
1,1, γ

0
2,1), . . . , (γ0

1,4, γ
0
2,4),

we can get the starting values γ0
1 , γ

0
2 as the arithmetic averages again:

γ0
1 =

γ0
1,1 + γ0

1,2 + γ0
1,3 + γ0

1,4

4
and γ0

2 =
γ0
2,1 + γ0

2,2 + γ0
2,3 + γ0

2,4

4
.

The results of this procedure are:

γ0
1 = 16.068, γ0

2 = 8.250.

Now we are ready to determine the variance components insensitivity region for

θ = θ0 =
(
θ01
θ02

)
.

Let’s consider g1 = (1, 0)′ at first. In this case we have g′
1θ = θ1.

Using (20), ε = 0.1 and taking into account fact that the negative input
variance components values does not make sense in our case we get:

Ng1,θ0
=
{

θ0 + δθ : θ0 + δθ ≥ 0

∧ δθ′
(

0.000806 −0.000227
−0.000227 0.000064

)
δθ ≤ 0.000393

}
. (23)
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For ε = 0.1 we get a set of all θ0+δθ which don’t increase the standard deviation
of θ̂(θ) more than by 10 %.

Now the same once more for g2 = (0, 1)′ and ε = 0.1

Ng2,θ0
= {θ0 + δθ : θ0 + δθ ≥ 0

δθ′
(

0.0107 −0.00300
−0.00300 0.000846

)
δθ ≤ 0.00508

}
. (24)

According to (3) we get (for θ = θ0) variance components estimate:

θ̂(θ0) =
(

0.0474
0.165

)
.

(Let’s denote the real values of the variance components with θ∗, we have θ∗ =(
0.04
0.36

)
. The difference (θ∗− θ̂(θ0)) is compatible with the variance of the data.)

Let’s determine another set—a rectangle with center θ̂(θ0) which covers the
real value of θ with probability of (1 − α)—θ confidence region. According to
Chebyshev (see [6]) we have

P

{
|θ̂1(θ0)− θ1| ≤ k

√
Varθ0

[
θ̂1(θ0)

]}
≥ 1− 1

k2

and

P

{
|θ̂2(θ0)− θ2| ≤ k

√
Varθ0

[
θ̂2(θ0)

]}
≥ 1− 1

k2
.

According to Bonferroni (see [3])

P

{
|θ̂1(θ0)− θ1| ≤ k

√
Varθ0

[
θ̂1(θ0)

]
∧ |θ̂2(θ0)− θ2| ≤ k

√
Varθ0

[
θ̂2(θ0)

]}
≥ 1− 2

k2
. (25)

In (25) we get a rectangle with center θ̂(θ0). We determine this rectangle to
include the variance components with probality of (1−α). This means we need

to have (1 − 2
k2 ) = (1 − α), so k =

√
2
α . As mentioned above the variance

components cannot be negative in this case as they are the variances in fact.
We have to involve this into our consideration. The θ confidence region Eθ is a
set of non-negative θ1, θ2 satisfying (25):

Eθ =

{
θ =

(
θ1
θ2

)
: |θ̂1(θ0)− θ1| ≤

√
2
α

Varθ0

[
θ̂1(θ0)

]

∧ |θ̂2(θ0)− θ2| ≤
√

2
α

Varθ0

[
θ̂2(θ0)

]
∧ θ1 ≥ 0 ∧ θ2 ≥ 0

}
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According to (4) the variance-covariance matrix of variance components esti-
mates θ̂ is

Varθ0

(
θ̂
)

= 2S−1

(MXΣθ0MX)+
=
(

0.00197 −0.0000894
−0.0000894 0.0254

)
.

For (1− α) = 0.95 level of confidence we have

Eθ = 〈0; 0.328〉 × 〈0; 1.173〉 (26)

This confidence region Eθ is a subset of both Ng1,θ0
and Ng2,θ0

as shown in
figures 2 and 4 given bellow.

It means the starting values θ01 , θ
0
2 are sufficient not only for deriving a

reasonable estimate of θ based on them—it is enough to stop the iterative
procedure after the first step already.

Since we know the real values of θ1, θ2 we can repeat the same routine with
these real values instead of the starting ones. Denote:

θ∗ =
(
θ∗1
θ∗2

)
=
(

0, 04
0, 36

)
.

The insensitivity region for g1 =
(
1
0

)
and ε = 0.1 is

Ng1,θ∗ = {θ∗ + δθ : θ0 + δθ ≥ 0

δθ′
(

0.000143 −0.0000159
−0.0000159 0.00000177

)
δθ ≤ 0.000214

}
. (27)

For g2 =
(
0
1

)
and ε = 0.1

Ng2,θ∗ = {θ∗ + δθ : θ0 + δθ ≥ 0

δθ′
(

0.0118 −0.00131
−0.00131 0.000145

)
δθ ≤ 0.0175

}
. (28)

θ̂(θ∗) is according to (3):

θ̂(θ∗) =
(

0.0476
0.164

)
.

The θ confidence region with center θ∗ for (1− α) = 0.95 level of confidence is

Eθ = 〈0; 0.254〉 × 〈0; 2.032〉 (29)

In figures number 2 and 4 given bellow we can see the situation for θ = θ∗ is
quite similar to that for θ = θ0. The confidence region is again a subset of both
the insensitivity regions. This is exactly what we could expect and it shows that
model (21) enables to determine reasonable variance components estimates.

The insensitivity regions (23) and (27) relating to g1 =
(
1
0

)
and confidence

regions (26) and (29) are visible in Fig. 1.
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The relative position of the insenstivity regions and confidence regions is not
obvious in Fig. 1. Fig. 2 gives a more detailed view.
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← insensitivity region based on θ
0

insensitivity region based on θ* →

θ
1

θ 2

Figure 1: Insensitivity regions Ng1,θ0
and Ng1,θ∗ for ε = 0.1 and appropriate

confidence regions for α = 0.05.
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Figure 2. Relative position of insensitivity regions Ng1,θ0
and Ng1,θ∗ and cor-

responding confidence regions—detail.
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Figure 3. Insensitivity regions Ng2,θ0
and Ng2,θ∗ for ε = 0.1 and appropriate

confidence regions for α = 0.05.
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Figure 4. Relative position of insensitivity regions Ng2,θ0
and Ng2,θ∗ and cor-

responding confidence regions—detail.
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The insensitivity regions (24) and (28) relating to g2 =
(
0
1

)
and confidence

regions (26) and (29) are visible in Fig. 3.
The relative position of the insenstivity regions and confidence regions is

again shown in Fig. 4 in detail.
The conclusion is that we can feel free to use the θ̂(θ0) as a θ estimate

without apprehension of the variance of the estimates being too large because
both the insensitivity regions for θ0 Ng1,θ0

and Ng2,θ0
unambiguously cover

the θ confidence region based on θ̂(θ0).
The comparison of Ng1,θ0

and Ng1,θ∗ is visible in Fig. 1. Fig. 3 contains
similar comparison of Ng2,θ0

and Ng2,θ∗ . When we compare the size of the in-
sensitivity regions Ng1,θ0

and Ng1,θ∗ (Ng2,θ0
and Ng2,θ∗ respectively) we can

see the insensitivity regions based on the real values θ∗ are much larger then
those based on the prior values θ0. This means the variance increase is slower
when we base the estimates on the real values of the variance components com-
pared to the estimates based on the prior values generated from the observation
vector.
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Abstract

We prove that an order algebra assigned to a bounded poset with
involution is a discriminator algebra.
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In accordance with [1], by an order algebra we mean an algebra defined on
an ordered set whose operations are derived by means of the order relation and,
conversely, the partial order is determined by these operations.

Let P = (P ;≤, 1) be an ordered set with the greatest element 1. The
following two operations are introduced in [1]:

x→ y =

⎧⎨⎩ 1 if x ≤ y

y otherwise
and x ◦ y =

⎧⎨⎩ y if x ≤ y

1 otherwise.

Let us mention that these operations are not independent:

Observation 1 For any ordered set P = (P ;≤, 1) we have x◦y = (x→ y)→ y.

Moreover, we have x → y ∈ {y, 1} and hence for any interval [y, 1] of P it
holds x→ y ∈ [y, 1]. Thus, having a ∈ [y, 1], we can define a unary operation on
the interval [y, 1] assigning to a the element ay = a→ y. Evidently, yy = 1 and
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1y = y thus this operation interchanges the endpoints of the interval [y, 1] and
hence it is called a section switching mapping. Hence, the operation → deter-
mines not only the the order ≤ but also the family (p)p∈P of section switching
mappings, i.e. the extended structure P = (P ;≤, 1, (p)p∈P ).

We can ask if also conversely the operation ◦ can determine the operation
→. Since also x ◦ y ∈ [y, 1], the operation (x ◦ y)y is defined correctly whenever
y denotes the section switching mapping on the interval [y, 1]. Hence, we can
state

Observation 2 Let P = (P ;≤, 1, (p)p∈P ) be an ordered set with 1 and with
section switching mappings. Then x → y = (x ◦ y)y for the above mention
operations → and ◦.

An ordered set P is bounded if it has a least element 0 and a greatest
element 1. This will be expressed by the notation P = (P ;≤, 0, 1).

By an involution on a set P is meant a mapping of P into itself denoted by
x �→ x′ satisfying x′′ = x. Every bounded poset P = (P ;≤, 0, 1) admits some
involutions. Let us pick up one of them which satisfies 0′ = 1. Hence, x′′ = x
gets immediately 1′ = 0 and thus this involution is a switching mapping. Then
we can enlarge the type of P and we will write P = (P ;≤, 0, 1,′ ) to express the
fact that this involution is considered as a basic operation of P . From now on,
P = (P ;≤, 0, 1,′ ) will be called a poset with involution.

Let P = (P ;≤, 0, 1) be a bounded poset. By a globalization (frequently
called also a Baaz operation named by M. Baaz) is meant a unary operation 
on P defined by

(1) = 1 and (x) = 0 for x �= 1.

Observation 3 In every poset with involution P = (P ;≤, 0, 1,′ ), we can define
a globalization  by means of →, ′ and 0 as follows

(x) = x′ → 0.

Another binary operation defined on an ordered set (P ;≤) is mentioned
in [1]:

x � y =

⎧⎨⎩ x if x ≤ y

y otherwise.

Now, let P = (P ;≤, 0, 1,′ ) be a poset with involution. Define the assigned
order algebra A(P ) = (P ;→,�,′ , 0) of type (2, 2, 1, 0) where → and � are the
above mentioned operations and ′ is the involution of P .

As stated by Observations 1 and 3, the globalization  and the operation ◦
(as well as the constant 1) are term operations of A(P ). We can state our main
result:

Theorem 1 Let P = (P ;≤, 0, 1,′ ) be a poset with involution and A(P ) =
(P ;→,�,′ , 0) the assigned algebra. Then A(P ) is a discriminator algebra whose
ternary discriminator is

t(x, y, z)= ((((x→ y)′ ◦ (y→ x)′)′)→ z)� ((((x→ y)′ ◦ (y→ x)′)′→ 0)→ x).
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Proof If cardP = 1, the proof is trivial. Suppose cardP > 1, i.e. 0 �= 1. It is
an easy observation that � satisfies

x � 1 = x = 1 � x. (1)

For the sake of brevity, denote by

e(x, y) = ((x→ y)′ ◦ (y → x)′)′.

Due to the previous Observations 1 and 3, e(x, y) is a term operation of A(P ).
Clearly e(x, x) = (1′ ◦ 1′)′ = (0 ◦ 0)′ = 0′ = 1. Suppose x �= y.
(a) If x < y then x �= 1 and x→ y = 1, y → x = x and hence

e(x, y) = (1′ ◦ x′)′ = (0 ◦ x′) = x′′ = x �= 1.

(b) If y < x then y �= 1, i.e. y′ �= 0 and x→ y = y, y → x = 1 thus

e(x, y) = (y′ ◦ 1′)′ = (y′ ◦ 0)′ = 1′ = 0 �= 1.

(c) If x ‖ y then x→ y = y, y → x = x and

e(x, y) = (y′ ◦ x′)′ =

⎧⎨⎩ 1′ = 0 for y′ ≤ x′

x′′ = x for y′ � x′.

Since x ‖ y we have x �= 1 thus e(x, y) �= 1 for x �= y in all the cases.
The term t(x, y, z) can be clearly rewritten as follows

t(x, y, z) = ((e(x, y)) → z) � ((e(x, y)→ 0)→ x).

Using of (1), we compute

t(x, x, z) = ((1)→ z) � ((1 → 0)→ x) = (1 → z) � (0 → x) = z � 1 = z

and for x �= y

t(x, y, z) = (0 → z) � ((0 → 0)→ x) = 1 � ((1)→ x) = 1 � x = x.

Hence, t(x, y, z) is a term function of A(P ) which is the ternary discriminator.
�
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Abstract

The concept of monadic MV-algebra was recently introduced by A. Di
Nola and R. Grigolia as an algebraic formalization of the many-valued
predicate calculus described formerly by J. D. Rutledge [9]. This was also
genaralized by J. Rachůnek and F. Švrček for commutative residuated
�-monoids since MV-algebras form a particular case of this structure. Ba-
sic algebras serve as a tool for the investigations of much more wide class
of non-classical logics (including MV-algebras, orthomodular lattices and
their generalizations). This motivates us to introduce the monadic basic
algebra as a common generalization of the mentioned structures.

Key words: Basic algebra; monadic basic algebra; existential quan-
tifier; universal quantifier; lattice with section antitone involution.

2000 Mathematics Subject Classification: 06D35, 03G25

Having an MV-algebra A = (A;⊕,¬, 0), one can derive the structure of
bounded distributive lattice L(A) = (A;∨,∧, 0, 1) where 1 = ¬0, x∨y = ¬(¬x⊕
y)⊕y and x∧y = ¬(¬x∨¬y). Moreover, to any element a ∈ A one can assign an
antitone involution x �→ xa on the interval [a, 1] in L(A) given by xa = ¬x⊕ a
(for x ∈ [a, 1]). Hence, L(A) is a lattice equipped by a set (a)a∈A of partial
unary operations defined on the so-called sections where for each x ∈ [a, 1] we
have xaa = x and for x, y ∈ [a, 1] with x ≤ y we have ya ≤ xa (see e.g. [3] for
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details). Such an enriched lattice (not necessarily distributive) is denoted by
L = (L;∨,∧, (a)a∈L, 0, 1) and is called a lattice with section antitone involutions.

Although this structure plays a crucial role in some formalizations of non-
classical logics, it can be difficult to deal with since it is not a total algebra
and, moreover, its similarity type depends on the cardinality of its elements.
To improve this discrepancy, the following concept was introduced. Let us only
note that the following axiom system (BA1)–(BA4) was recently involved in [6]
as a simplification of the previous one (see e.g. [1, 2, 5]).

Definition 1 By a basic algebra is meant an algebra A = (A;⊕,¬, 0) of type
(2, 1, 0) satisfying the following axioms

(BA1) x⊕ 0 = x;

(BA2) ¬¬x = x (double negation);

(BA3) ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x (�Lukasiewicz axiom);

(BA4) ¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = ¬0.

In what follows we will denote ¬0 by 1 (as it is usual for MV-algebras). It
is plain to show that every basic algebra satisfies also the identities ¬1 = 0,
0⊕ x = x and ¬x ⊕ x = 1, see e.g. [4, 6].

As promised above, we can get the mutual relationship between lattices with
section antitone involutions and basic algebras. For the proof, see e.g. [1] or [5].

Proposition 1 (a) Let L = (L;∨,∧, (a)a∈L, 0, 1) be a lattice with section anti-
tone involutions. Then the assigned algebra A(L) = (L;⊕,¬, 0), where

x⊕ y = (x0 ∨ y)y and ¬x = x0

is a basic algebra.
(b) Conversely, given a basic algebra A = (A;⊕,¬, 0), we can assign a

bounded lattice with section antitone involutions L(A) = (A;∨,∧, (a)a∈A, 0, 1),
where 1 = ¬0,

x ∨ y = ¬(¬x ⊕ y)⊕ y, x ∧ y = ¬(¬x ∨ ¬y)
and for each a ∈ A, the mapping x �→ xa = ¬x⊕ a is an antitone involution on
the principal filter [a, 1], where the order is given by

x ≤ y if and only if ¬x ⊕ y = 1.

(c) The assignments are in a one-to-one correspondence, i.e. A(L(A)) = A
and L(A(L)) = L.

Hence, when investigating basic algebras, we can switch to lattices with
section antitone involutions whenever it is useful.

The lattice L(A) = (A;∨,∧, (a)a∈A, 0, 1) will be referred as an assigned
lattice of a basic algebra A = (A;⊕,¬, 0) and the order ≤ of L(A) as the
induced order of A.
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Definition 2 By amonadic basic algebra is meant an algebraA = (A;⊕,¬, ∃, 0)
of type (2, 1, 1, 0) where (A;⊕,¬, 0) is a basic algebra and the unary operation
∃ satisfies the following identities

(E1) x ≤ ∃x;

(E2) ∃(x ∨ y) = ∃x ∨ ∃y;

(E3) ∃(¬∃x) = ¬∃x;

(E4) ∃(∃x⊕ ∃y) = ∃x⊕ ∃y.

The mapping ∃ : A → A is called an existential quantifier on A. By a strict
monadic basic algebra will be called a monadic basic algebra satisfying the
identity

(E5) ∃(x⊕ x) = ∃x⊕ ∃x.
Lemma 1 Let A = (A;⊕,¬, ∃, 0) be a monadic basic algebra. Then the follow-
ing conditions are satisfied:

(i) ∃1 = 1;

(ii) ∃0 = 0;

(iii) ∃∃x = ∃x;
(iv) x ≤ ∃y if and only if ∃x ≤ ∃y;
(v) if x ≤ y then ∃x ≤ ∃y;
(vi) ¬∃x ≤ ∃(¬x);

Proof Let x, y be arbitrary elements of A.
(i): By (E1), 1 ≤ ∃1, thus ∃1 = 1 as 1 is the greatest element of A.
(ii): By (i) and (E3), 0 = ¬1 = ¬∃1 = ∃(¬∃1) = ∃(¬1) = ∃0.
(iii): By (ii) and (E4), ∃∃x = ∃(∃x⊕ 0) = ∃(∃x⊕∃0) = ∃x⊕∃0 = ∃x⊕ 0 = ∃x.
(iv): If ∃x ≤ ∃y then by (E1) also x ≤ ∃y. On the other hand using (iii) and
(E2), if x ≤ ∃y then ∃y = ∃∃y = ∃(x ∨ ∃y) = ∃x ∨ ∃∃y = ∃x ∨ ∃y. Thus
∃y = ∃x ∨ ∃y, and therefore ∃x ≤ ∃y.
(v): Let x ≤ y. Then, by (E2), we obtain ∃y = ∃(x ∨ y) = ∃x ∨ ∃y, and hence
∃x ≤ ∃y.
(vi): Since x ≤ ∃x and hence ¬x ≥ ¬∃x, we conclude ∃(¬x) ≥ ¬x ≥ ¬∃x. �

In what follows let ∃ be a fixed existential quantifier defined on a basic
algebra A = (A;⊕,¬, 0). By means of ∃, a unary operation ∀ can be defined on
A by the rule

∀x := ¬(∃¬x). (1)

Lemma 2 Let A = (A;⊕,¬, ∃, 0) be a monadic basic algebra and ∀ is defined
by (R). Then the following conditions are satisfied

(A1) ∀x ≤ x;

(A2) ∀(x ∧ y) = ∀x ∧ ∀y;
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(A3) ∀(¬∀x) = ¬∀x;
(A4) ∀(∀x � ∀y) = ∀x� ∀y, where x� y = ¬(¬x ⊕ ¬y).

If, moreover, A is a strict monadic basic algebra, then it satisfies also
(A5) ∀(x� x) = ∀x� ∀x.

Proof By (E1), ¬x ≤ ∃¬x thus x = ¬¬x ≥ ¬(∃¬x) = ∀x proving (A1). To
prove (A2), we use (E2) and the De Morgan laws:

∀(x ∧ y) = ∀(¬(¬x ∨ ¬y)) = ¬∃(¬x ∨ ¬y)
= ¬((∃¬x) ∨ (∃¬y)) = ¬(∃¬x) ∧ ¬(∃¬y) = ∀x ∧ ∀y.

Prove (A3): ∀(¬∀x) = ¬∃(¬¬∀x) = ¬∃(¬(∃¬x)) = ¬¬(∃¬x) = ¬∀x by (E3).
For (A4) we compute by (E4)

∀(∀x� ∀y) = ¬(∃¬(¬(∃¬x) � ¬(∃¬y))) = ¬∃(∃¬x ⊕ ∃¬y)
= ¬(∃¬x ⊕ ∃¬y) = ¬(¬¬(∃¬x) ⊕ ¬¬(∃¬y)) = ∀x� ∀y.

Assume that ∃ satisfies also (E5). Then

∀(x � x) = ¬(∃¬(x � x)) = ¬(∃¬(¬¬x � ¬¬x))
¬(∃(¬x ⊕ ¬x)) = ¬(∃¬x ⊕ ∃¬x) = (¬(∃¬x)) � (¬(∃¬x)) = ∀x� ∀x.

�

A unary operation ∀ : A → A on a basic algebra A = (A;⊕,¬, 0) satisfying
(A1)–(A4) will be called a universal quantifier.

It is a routine way to prove also the converse:

Lemma 3 Let A = (A;⊕,¬, 0) be a basic algebra and ∀ be a universal quanti-
fier on A. Define

∃x := ¬(∀¬x).
Then A∃ = (A;⊕,¬, ∃, 0) is a monadic basic algebra. Moreover, if it satisfies
also (A5) then A∃ is a strict monadic basic algebra.

Remark 1 Let A = (A;⊕,¬, ∃, 0) be a monadic basic algebra. Then ∃ is a
closure operator and ∀ is an interior operator on the poset (A;≤), where the
relation ≤ is the induced order on A.

In what follows, we are going to prove a connection between monadic basic
algebras and enriched lattices with section antitone involutions similarly as it
was done for basic algebras in the Proposition. For this, let us recall some
concepts.

For an algebra A = (A;F ), by a retraction is meant an idempotent endo-
morphism h of A, i.e. an endomorphism satisfying h(h(x)) = h(x) for every
x ∈ A. It is well-known that if h is a retraction of A then its image A0 = h(A)
is a subalgebra of A, the so-called retract of A.

In particular, if S = (S;∨, 0) is a join-semilattice with 0, by a retraction is
meant a self-mapping e of S satisfying



Monadic basic algebras 31

(e1) e(x ∨ y) = e(x) ∨ e(y), e(0) = 0,

(e2) e(e(x)) = e(x).

This retraction is called extensive if it satisfies also

(e3) x ≤ e(x).

Example 1 Consider the bounded join-semilattice S = (A;∨, 0, 1), where A =
{0, a, b, 1}, depicted in Fig. 1.
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Define e : A→ A as follows

e(0) = 0, e(a) = 1, e(b) = b, e(1) = 1.

Then e is an extensive retraction of S and the retract S0 = e(S) is the chain
{0, b, 1}. Remark that the semilattice S can be considered also as a lattice but
this e is not a lattice retraction since

e(a ∧ b) = e(0) = 0 �= b = 1 ∧ b = e(a) ∧ e(b).
Now, let L = (L;∨,∧, (a)a∈L, 0, 1) be a lattice with section antitone involu-

tions. A mapping e : L → L will be called an e-retraction if it is an extensive
retraction of the join-semilattice reduct (L;∨, 0) satisfying one more condition

(e4) e(e(x)e(y)) = e(x)e(y) for every pair y ≤ x.

Let us note that y ≤ x implies e(y) ≤ e(x) just by (e1).
If e is an e-retraction on a lattice L = (L;∨,∧, (a)a∈L, 0, 1) with section

antitone involutions then the enriched structure Le = (L;∨,∧, (a)a∈L, e, 0, 1)
will be called a monadic lattice.

We are going to prove

Theorem 1 Let Le = (L;∨,∧, (a)a∈L, e, 0, 1) be a monadic lattice and Ae(L) =
(L;⊕,¬, e, 0) an algebra such that A(L) = (L;⊕,¬, 0) is a basic algebra assigned
to the reduct L = (L;∨,∧, (a)a∈L, 0, 1). Then Ae(L) is a monadic basic algebra.
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Proof We need only to show that Ae(L) satisfies the conditions (E3) and (E4)
from Definition 2. To prove (E3) we compute:

e(¬e(x)) = e(e(x)0)
(e1)
= e(e(x)e(0))

(e4)
= e(x)e(0) (e1)

= e(x)0 = ¬e(x)

Further, we check the following identity

e(¬e(x) ∨ e(y)) = ¬e(x) ∨ e(y). (2)

For this, we compute

e(¬e(x) ∨ e(y)) (E3)
= e(e(¬e(x)) ∨ e(y))

(e1),(e2)
= e(¬e(x)) ∨ e(y) (E3)

= ¬e(x) ∨ e(y).
Now, we are ready to prove (E4):

e(x)⊕ e(y) = (¬e(x) ∨ e(y))e(y) (A)
= (e(¬e(x) ∨ e(y)))e(y)

(e4)
= e((e(¬e(x) ∨ e(y)))e(y))

(A)
= e((¬e(x) ∨ e(y))e(y)) = e(e(x)⊕ e(y)).

�

We can prove also the converse.

Theorem 2 Let A = (A;⊕,¬, ∃, 0) be a monadic basic algebra, let L(A) =
(A;∨,∧, (a)a∈A, 0, 1) be the assigned lattice of the reduct (A;⊕,¬, 0). Then
L∃(A) = (A;∨,∧, (a)a∈A, ∃, 0, 1) is a monadic lattice.

Proof We prove that the mapping e : x → ∃x is an e-retraction of L∃(A).
Trivially, we have: e(x∨y) = ∃(x∨y) = ∃x∨∃y = e(x)∨e(y) and e(0) = ∃0 = 0.
Further, e(e(x)) = ∃∃x = ∃x = e(x) by (iii) of Lemma 1 and x ≤ e(x) = ∃x by
(E1). We prove (e4): Since xy = ¬x⊕ y (for x ∈ [y, 1]), we have

e(e(x)e(y)) = ∃((∃x)(∃y)) = ∃((¬∃x) ⊕ ∃y) (E3)
= ∃((∃(¬∃x)) ⊕ ∃y)

(E4)
= (∃(¬∃x)) ⊕ ∃y (E3)

= (¬∃x) ⊕ ∃y = (∃x)(∃y) = e(x)e(y).

�

Remark 2 If A = (A;⊕,¬, ∃, 0) is a strict monadic basic algebra then the
assigned monadic lattice L(A) satisfies the condition

(e5) e((x0 ∨ x)x) = (e(x)0 ∨ e(x))e(x)

(where e(x) stands for ∃x in A) and vice versa, if a monadic lattice L satisfies
(e5) then the assigned monadic basic algebra A(L) is strict.
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Let A = (A;⊕,¬, 0) be a basic algebra. It is plain to check that the identity
mapping id(x) = x is an existential quantifier onA. Moreover, define a mapping
j : A→ A as follows

j(0) = 0 and j(x) = 1 for x �= 0.

Then also j is an existential quantifier on A. Hence, by Theorem 2, id and j are
e-retractions on the assigned lattice L(A).

Example 2 For a basic algebra H = (H ;⊕,¬, 0) with H = {0, a, b, 1}, where
¬0 = 1, ¬a = a, ¬b = b, ¬1 = 0, the assigned lattice is depicted in Fig. 2 (the
antitone involutions in at most two-elements sections are determined uniquely).
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There are four of e-retractions, namely id, j and h1, h2 defined by

h1(0) = 0, h1(1) = 1, h1(a) = a, h1(b) = 1

and
h2(0) = 0, h2(1) = 1, h2(a) = 1, h2(b) = b.

In what follows, we can borrow the following concept of relatively complete
subalgebra, defined for MV-algebras in [7] and for residuated 
-monoids in [8]:

Definition 3 A subalgebra B of a basic algebra A = (A;⊕,¬, 0) is called rela-
tively complete if for every a ∈ A the set {b ∈ B; a ≤ b} has the least element.
Further, a relative complete subalgebra B is called m-relatively complete if

for all a ∈ A for all b ∈ B : b ≥ a⊕ a implies

that there exists v ∈ B : v ≥ a and b ≥ v ⊕ v. (3)

Theorem 3 Let A = (A;⊕,¬, ∃, 0) be a monadic basic algebra and A0 =
{∃x; x ∈ A}. Then A0 is a relatively complete subalgebra of A. If, more-
over, A is a strict monadic basic algebra then A0 is an m-relatively complete
subalgebra of A.
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Proof Due to (E3), (E4) and (ii), (iii) of Lemma 1, A0 is a subalgebra of A.
Let a ∈ A and Ba = {b ∈ A0; a ≤ b}. Then ∃a ∈ Ba and for any b ∈ Ba we have
b = ∃d for some d ∈ A. Hence, ∃a ≤ ∃∃d = ∃d = b, thus ∃a is the least element
of Ba. Hence, A0 is a relatively complete subalgebra of A. Assume that A is a
strict monadic basic algebra. Let a ∈ A, b ∈ A0 and b ≥ a⊕ a. Then for v = ∃a
we have v ≥ a due to (E1) and, due to (E5), b = ∃b ≥ ∃(a⊕a) = ∃a⊕∃a = v⊕v
proving (C). �

We have shown that any existential quantifier ∃ on a basic algebra A =
(A;⊕,¬, 0) induces a relatively complete subalgebra A0 = ∃A of A. Also con-
versely, every relatively complete subalgebra of A gives rise to an existential
quantifier.

We say that a basic algebra A is ⊕-monotonous if x ≥ y implies x ⊕ x ≥
y ⊕ y. Let us note that e.g. every MV-algebra or an effect algebra satisfies this
condition.

Theorem 4 Let A = (A;⊕,¬, 0) be a basic algebra and A0 its relatively com-
plete subalgebra. For any a ∈ A, define ∃a = inf{b ∈ A0; a ≤ b}. Then A∃ =
(A;⊕,¬, ∃, 0) is a monadic basic algebra. If, moreover, A is ⊕-monotonous and
A0 is an m-relatively complete subalgebra of A then A∃ = (A;⊕,¬, ∃, 0) is a
strict monadic basic algebra.

Proof It is evident that x ≤ inf{b ∈ A0; x ≤ b} = ∃x and that x ≤ y implies
∃x ≤ ∃y, i.e. also ∃(x ∨ y) ≥ ∃x ∨ ∃y. Since A0 is a subalgebra of A and
∃x, ∃y ∈ A0, also ∃x ∨ ∃y ∈ A0 and x ≤ ∃x, y ≤ ∃y thus also x ∨ y ≤ ∃x ∨ ∃y.
Hence, ∃x∨∃y ∈ {b ∈ A0; x∨y ≤ b} = Bx∨y, i.e. ∃(x∨y) = inf Bx∨y ≤ ∃x∨∃y.

Evidently, ∃x = x for any x ∈ A0. Since ∃x ∈ A0 for each x ∈ A and A0 is
a subalgebra of A, it yields also ¬∃x ∈ A0 and hence ∃(¬∃x) = ¬∃x. We obtain
∃(∃x⊕ ∃y) = ∃x⊕ ∃y in a similar way.

Altogether, A = (A;⊕,¬, ∃, 0) is a monadic basic algebra.
Assume now that A0 is an m-relatively complete subalgebra of A. Let x ∈ A

and denote by D = {b ∈ A0; x ≤ b}. Then ∃(x ⊕ x) ≥ x ⊕ x as shown above
and, by the condition (C), there exists a v ∈ D with ∃(x ⊕ x) ≥ v ⊕ v. Since
v ∈ D and ∃x = infD, thus ∃(x ⊕ x) ≥ v ⊕ v ≥ ∃x ⊕ ∃x by ⊕-monotonicity.
Conversely, ∃x ≥ x yields ∃x ⊕ ∃x ≥ x ⊕ x by ⊕-monotonicity of A and, by
(E4),

∃x⊕ ∃x = ∃(∃x ⊕ ∃x) ≥ ∃(x ⊕ x).
�

Let Li (i ∈ I) be bounded lattices (or semilattices). By a horizontal sum is
meant a lattice (semilattice) L which is a union of Li (i ∈ I) such that

Li ∩ Lj = {0, 1} for i �= j.

Let Ai (i ∈ I) be basic algebras. By a horizontal sum of Ai is meant a basic
algebra A assigned to the lattice L which is the horizontal sum of the assigned
lattices L(Ai), i ∈ I.
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Theorem 5 Let a basic algebra A = (A;⊕,¬, 0) be a horizontal sum of ba-
sic algebras Ai (i ∈ I). Let ∃i be an existential quantifier on Ai, i.e. every
(Ai;⊕,¬, ∃i, 0) is a monadic basic algebra. Let ∃ : A → A be a mapping whose
restriction on each Ai is equal to ∃i. Then A∃ = (A;⊕,¬, ∃, 0) is a monadic
basic algebra.

Proof We must check the axioms (e1) – (e4) for ∃ on the assigned lattice
L(A). Trivially, we have ∃0 = 0, ∃(∃x) = ∃x and x ≤ ∃x. For x, y ∈ Ai we have
∃(x ∨ y) = ∃x ∨ ∃y by the definition. If x ∈ Ai, y ∈ Aj for i �= j then x ∨ y = 1
but also ∃x∨ ∃y = 1 thus, by (i) of Lemma 1, 1 = ∃(x∨ y) = ∃x∨ ∃y. To check
the condition (e4) is almost trivial since x ≤ y only if x, y ∈ Ai and, inside Ai,
it holds by the definition. �

Example 3 Consider the basic algebraA = (A;⊕,¬, 0),whereA = {0, a, b, c, 1},
whose assigned lattice L(A) is in Fig. 3.

�
�

�
�

�
��

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�

��

1

0

a = a0 c = c0b = b0

Fig. 3

Clearly, A is a horizontal sum of H (see Example 2) and the three element
chain MV-algebra {0, c, 1}. Let us note that also H is a horizontal sum of two
three element chain MV-algebras. One can easily verify that the mapping h
defined by

h(a) = a, h(b) = b, h(c) = 1, h(0) = 0, h(1) = 1

is an e-retraction on L(A). In fact, h is composed by the e-retraction id on H
and j on {0, c, 1}. The subalgebra A0 = h(A) is clearly {0, a, b, 1} (which is
isomorphic to H). It is an m-relatively complete subalgebra of A.

Example 4 Consider again the basic algebra from Example 3. LetB = {0, c, 1}.
It is a routine way to check that B is a relatively complete subalgebra of A and,
by Theorem 4, it induces an existential quantifier. Of course, ∃0 = 0, ∃1 = 1
and we can easily compute

∃a = inf{x ∈ B; a ≤ x} = 1,

∃b = inf{x ∈ B; b ≤ x} = 1,

∃c = inf{x ∈ B; c ≤ x} = c.
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Abstract

In this paper we introduce the notion of the structure space of
Γ-semigroups formed by the class of uniformly strongly prime ideals. We
also study separation axioms and compactness property in this structure
space.
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1 Introduction

In [4], L. Gillman studied “Rings with Hausdorff structure space” and in [7],
C. W. Kohls studied “The space of prime ideals of a ring”. In [1], M. R. Adhikari
and M. K. Das studied ‘Structure spaces of semirings’.

In [9], M. K. Sen and N. K. Saha introduced the notion of Γ-Semigroup.
Some works on Γ-Semigroups may be found in [10], [8], [5], [6], [2] and [3].

In this paper we introduce and study the structure space of Γ-Semigroups.
For this we consider the collection A of all proper uniformly strongly prime
ideals of a Γ-Semigroup S and we give a topology τA on A by means of closure
operator defined in terms of intersection and inclusion relation among these ide-
als of the Γ-Semigroup S. We call the topological space (A, τA)—the structure
space of the Γ-Semigroup S. We study separation axioms, compactness and
connectedness in this structure space.

37
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2 Preliminaries

Definition 2.1 Let S = {a, b, c, . . .} and Γ = {α, β, γ, . . . } be two nonempty
sets. S is called a Γ-semigroup if

(i) aαb ∈ S, for all α ∈ Γ and a, b ∈ S and
(ii) (aαb)βc = aα(bβc), for all a, b, c ∈ S and for all α, β ∈ Γ.

S is said to be Γ-semigroup with zero if there exists an element 0 ∈ S such that
0αa = aα0 = 0 for all α ∈ Γ.

Example 2.2 Let S be a set of all negative rational numbers. Obviously S is
not a semigroup under usual product of rational numbers. Let

Γ = {− 1
p : p is prime}.

Let a, b, c ∈ S and α ∈ Γ. Now if aαb is equal to the usual product of ra-
tional numbers a, α, b, then aαb ∈ S and (aαb)βc = aα(bβc). Hence S is a
Γ-semigroup.

Definition 2.3 Let S be a Γ-semigroup and α ∈ Γ. Then e ∈ S is said to be
an α-idempotent if eαe = e. The set of all α-idempotents is denoted by Eα

and we denote
⋃

α∈ΓEα by E(S). The elements of E(S) are called idempotent
element of S.

Definition 2.4 A nonempty subset I of a Γ-semigroup S is called an ideal if
IΓS ⊆ I and SΓI ⊆ I where for subsets U, V of S and Δ of Γ, UΔV = {uαv :
u ∈ U, v ∈ V, α ∈ Δ}.

Definition 2.5 A nonempty subset I of a Γ-semigroup S is called an ideal if
IΓS ⊆ I and SΓI ⊆ I where for subsets U, V of S and Δ of Γ, UΔV = {uαv :
u ∈ U, v ∈ V, α ∈ Δ}. An ideal I of S is called a proper ideal if I �= S.

Definition 2.6 A proper ideal P of a Γ-Semigroup S is called a prime ideal of
S if AΓB ⊆ P implies A ⊆ P or B ⊆ P for any two ideals A,B of S.

Definition 2.7 An ideal I of a Γ-semigroup S is said to be full if E(S) ⊆ I.
An ideal I of a Γ-semigroup S is said to be a prime full ideal if it is both

prime and full.

Theorem 2.8 Let S be a Γ-semigroup. For an ideal P of S, the following are
equivalent.

(i) If A and B are ideals of S such that AΓB ⊆ P then either A ⊆ P or
B ⊆ P .

(ii) If aΓSΓb ⊆ P then either a ∈ P or b ∈ P (a, b ∈ S)
(iii) If I1 and I2 are two right ideals of S such that I1ΓI2 ⊆ P then either

I1 ⊆ P or I2 ⊆ P .
(iv) If J1 and J2 are two left ideals of S such that J1ΓJ2 ⊆ P then either

J1 ⊆ P or J2 ⊆ P .
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Proof (i) ⇒ (ii): Suppose aΓSΓb ⊆ P . Then <a>Γ<a>Γ<b>Γ<b> ⊆
P . Since <a>Γ<a>, <b>Γ<b> are ideals of S, so by (i) we have either
<a>Γ<a> ⊆ P or <b>Γ<b> ⊆ P . By repeated uses of (i) we get a ∈ <a> ⊆ P
or b ∈ <b> ⊆ P .

(ii)⇒ (iii): Let I1ΓI2 ⊆ P . Let I1 �⊆ P . Then there exists an element a1 ∈ I1
such that a1 /∈ P . Then for every a2 ∈ I2 we have a1ΓSΓa2 ⊆ I1ΓI2 ⊆ P . Hence
from (ii) a2 ∈ P . Thus I2 ⊆ P . Similarly (ii) implies (iv).

The proof is completed by observing that (i) is implied obviously either by
(iii) or by (iv). �

Definition 2.9 An ideal P of a Γ-Semigroup S is called a uniformly strongly
prime ideal(usp ideal) if S and Γ contain finite subsets F and Δ respectively
such that xΔFΔy ⊆ P implies that x ∈ P or y ∈ P for all x, y ∈ S.

Theorem 2.10 Let S be a Γ-semigroup. Then every uniformly strongly prime
ideal is a prime ideal.

Proof Let P be a uniformly strongly prime ideal of S. Then S and Γ contain
finite subsets F and Δ respectively such that xΔFΔy ⊆ P implies that x ∈ P or
y ∈ P for all x, y ∈ S. Now let aΓSΓb ⊆ P . Thus we have aΔFΔb ⊆ aΓSΓb ⊆ P
and hence we have a ∈ P or b ∈ P . Hence P is prime ideal by Theorem 2.8.

�

Throughout this paper S will always denote a Γ-Semigroup with zero and
unless otherwise stated a Γ-Semigroup means a Γ-Semigroup with zero.

3 Structure space of Γ-semigroups

SupposeA is the collection of all uniformly strongly prime ideals of a Γ-Semigroup
S. For any subset A of A, we define

A = {I ∈ A :
⋂

Iα∈A

Iα ⊆ I}.

It is easy to see that ∅ = ∅.
Theorem 3.1 Let A, B be any two subsets of A. Then

(i) A ⊆ A

(ii) A = A

(iii) A ⊆ B =⇒ A ⊆ B

(iv) A ∪B = A ∪B
Proof (i): Clearly,

⋂
Iα∈A Iα ⊆ Iα for each α and hence A ⊆ A.

(ii): By (i), we have A ⊆ A. For converse part, let Iβ ∈ A. Then
⋂

Iα∈A Iα ⊆
Iβ . Now Iα ∈ A implies that

⋂
Iγ∈A Iγ ⊆ Iα for all α ∈ Λ. Thus⋂

Iγ∈A

Iγ ⊆
⋂

Iα∈A

Iα ⊆ Iβ i.e.
⋂

Iγ∈A

Iγ ⊆ Iβ .
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So Iβ ∈ A and hence A ⊆ A. Consequently, A = A.

(iii): Suppose that A ⊆ B. Let Iα ∈ A. Then
⋂

Iβ∈A Iβ ⊆ Iα. Since A ⊆ B,
it follows that ⋂

Iβ∈B

Iβ ⊆
⋂

Iβ∈A

Iβ ⊆ Iα.

This implies that Iα ∈ B and hence A ⊆ B.

(iv): Clearly, A ∪B ⊆ A ∪B.

For the reverse part, let Iα ∈ A ∪B. Then
⋂

Iβ∈A∪B Iβ ⊆ Iα.
It is easy to see that⋂

Iβ∈A∪B

Iβ =
( ⋂

Iβ∈A

Iβ

)
∩
( ⋂

Iβ∈B

Iβ

)
.

Since
⋂

Iβ∈A Iβ and
⋂

Iβ∈B Iβ are ideals of S, we have( ⋂
Iβ∈A

Iβ

)
Γ
( ⋂

Iβ∈B

Iβ

)
⊆
( ⋂

Iβ∈A

Iβ

)
∩
( ⋂

Iβ∈B

Iβ

)
=

⋂
Iβ∈A∪B

Iβ ⊆ Iα

Since every uniformly strongly prime ideal is prime, Iα is a prime ideal of S and
hence either

⋂
Iβ∈A Iβ ⊆ Iα or

⋂
Iβ∈B Iβ ⊆ Iα i.e. either Iα ∈ A or Iα ∈ B i.e.

Iα ∈ A ∪B. Consequently, A ∪B ⊆ A ∪B and hence A ∪B = A ∪B. �

Definition 3.2 The closure operator A −→ A gives a topology τA on A. This
topology τA is called the hull-kernel topology and the topological space (A, τA)
is called the structure space of the Γ-Semigroup S.

Let I be a ideal of a Γ-Semigroup S. We define

Δ(I) = {I ′ ∈ A : I ⊆ I ′} and CΔ(I) = A \Δ(I) = {I ′ ∈ A : I �⊆ I ′}.

Now we have the following result:

Proposition 3.3 Any closed set in A is of the form Δ(I), where I is a ideal
of a Γ-Semigroup S.

Proof Let A be any closed set in A, where A ⊆ A. Let A = {Iα : α ∈ Λ} and
I =

⋂
Iα∈A Iα. Then I is a ideal of S. Let I ′ ∈ A. Then

⋂
Iα∈A Iα ⊆ I ′. This

implies that I ⊆ I ′. Consequently, I ′ ∈ Δ(I). So A ⊆ Δ(I).
Conversely, let I ′ ∈ Δ(I). Then I ⊆ I ′ i.e.

⋂
Iα∈A Iα ⊆ I ′. Consequently,

I ′ ∈ A and hence Δ(I) ⊆ A. Thus A = Δ(I). �

Corollary 3.4 Any open set in A is of the form CΔ(I), where I is an ideal
of S.
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Let S be a Γ-Semigroup and a ∈ S. We define

Δ(a) = {I ∈ A : a ∈ I} and CΔ(a) = A \Δ(a) = {I ∈ A : a /∈ I}.

Then we have the following result:

Proposition 3.5 {CΔ(a) : a ∈ S} forms an open base for the hull-kernel topol-
ogy τA on A.

Proof Let U ∈ τA. Then U = CΔ(I), where I is an ideal of S. Let J ∈ U =
CΔ(I). Then I �⊆ J . This implies that there exists a ∈ I such that a /∈ J . Thus
J ∈ CΔ(a). Now it remains to show that CΔ(a) ⊂ U . Let K ∈ CΔ(a). Then
a /∈ K. This implies that I �⊆ K. Consequently, K ∈ U and hence CΔ(a) ⊂ U .
So we find that J ∈ CΔ(a) ⊂ U . Thus {CΔ(a) : a ∈ S} is an open base for the
hull-kernel topology τA on A.

Theorem 3.6 The structure space (A, τA) is a T0-space.

Proof Let I1 and I2 be two distinct elements of A. Then there is an element
a either in I1 \ I2 or in I2 \ I1. Suppose that a ∈ I1 \ I2. Then CΔ(a) is a
neighbourhood of I2 not containing I1. Hence (A, τA) is a T0-space. �

Theorem 3.7 (A, τA) is a T1-space if and only if no element of A is contained
in any other element of A.

Proof Let (A, τA) be a T1-space. Suppose that I1 and I2 be any two distinct
elements of A. Then each of I1 and I2 has a neighbourhood not containing the
other. Since I1 and I2 are arbitrary elements of A, it follows that no element of
A is contained in any other element of A.

Conversely, suppose that no element of A is contained in any other element
of A. Let I1 and I2 be any two distinct elements of A. Then by hypothesis,
I1 �⊂ I2 and I2 �⊂ I1. This implies that there exist a, b ∈ S such that a ∈ I1 but
a /∈ I2 and b ∈ I2 but b /∈ I1. Consequently, we have I1 ∈ CΔ(b) but I1 /∈ CΔ(a)
and I2 ∈ CΔ(a) but I2 /∈ CΔ(b) i.e. each of I1 and I2 has a neighbourhood not
containing the other. Hence (A, τA) is a T1-space. �

Corollary 3.8 LetM be the set of all proper maximal ideals of a Γ-Semigroup
S with unities. Then (M, τM) is a T1-space, where τM is the induced topology
onM from (A, τA).

Theorem 3.9 (A, τA) is a Hausdorff space if and only if for any two distinct
pair of elements I, J of A, there exist a, b ∈ S such that a /∈ I, b /∈ J and there
does not exist any element K of A such that a /∈ K and b /∈ K.

Proof Let (A, τA) be a Hausdorff space. Then for any two distinct elements
I, J of A, there exist basic open sets CΔ(a) and CΔ(b) such that I ∈ CΔ(a),
J ∈ CΔ(b) and CΔ(a) ∩ CΔ(b) = ∅. Now I ∈ CΔ(a) and J ∈ CΔ(b) imply
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that a /∈ I and b /∈ J . If possible, let K be any element of A such that a /∈ K
and b /∈ K. Then K ∈ CΔ(a), K ∈ CΔ(b) and hence K ∈ CΔ(a) ∩ CΔ(b), a
contradiction, since CΔ(a)∩CΔ(b) = ∅. Thus there does not exist any element
K of A such that a /∈ K and b /∈ K.

Conversely, suppose that the given condition holds and I, J ∈ A such that
I �= J . Let a, b ∈ S be such that a /∈ I, b /∈ J and there does not exist any
K of A such that a /∈ K and b /∈ K. Then I ∈ CΔ(a), J ∈ CΔ(b) and
CΔ(a) ∩ CΔ(b) = ∅. This implies that (A, τA) is a Hausdorff space. �

Corollary 3.10 If (A, τA) is a Hausdorff space, then no proper uniformly
strongly prime ideal contains any other proper uniformly strongly prime ideal.
If (A, τA) contains more than one element, then there exist a, b ∈ S such that
A = CΔ(a) ∪ CΔ(b) ∪Δ(I), where I is the ideal generated by a, b.

Proof Suppose that (A, τA) is a Hausdorff space. Since every Hausdorff space
is a T1-space, (A, τA) is a T1-space. Hence by Theorem 3.7, it follows that
no proper uniformly strongly prime ideal contains any other proper uniformly
strongly prime ideal. Now let J,K ∈ A be such that J �= K. Since (A, τA)
is a Hausdorff space, there exist basic open sets CΔ(a) and CΔ(b) such that
J ∈ CΔ(a), K ∈ CΔ(b) and CΔ(a) ∩ CΔ(b) = ∅. Let I be the ideal generated
by a, b. Then I is the smallest ideal containing a and b. Let K ∈ A. Then
either a ∈ K, b /∈ K or a /∈ K, b ∈ K or a, b ∈ K. The case a /∈ K, b /∈ K
is not possible, since CΔ(a) ∩ CΔ(b) = ∅. Now in the first case, K ∈ CΔ(b)
and hence A ⊆ CΔ(a) ∪ CΔ(b) ∪ Δ(I). In the second case, K ∈ CΔ(a) and
hence A ⊆ CΔ(a) ∪ CΔ(b) ∪ Δ(I). In the third case, K ∈ Δ(I) and hence
A ⊆ CΔ(a) ∪ CΔ(b) ∪ Δ(I). So we find that A ⊆ CΔ(a) ∪ CΔ(b) ∪ Δ(I).
Again, clearly CΔ(a)∪CΔ(b)∪Δ(I) ⊆ A. Hence A = CΔ(a)∪CΔ(b)∪Δ(I).

�

Theorem 3.11 (A, τA) is a regular space if and only if for any I ∈ A and
a /∈ I, a ∈ S, there exist an ideal J of S and b ∈ S such that I ∈ CΔ(b) ⊆
Δ(J) ⊆ CΔ(a).

Proof Let (A, τA) be a regular space. Let I ∈ A and a /∈ I. Then I ∈ CΔ(a)
and A\CΔ(a) is a closed set not containing I. Since (A, τA) is a regular space,
there exist disjoints open sets U and V such that I ∈ U and A \ CΔ(a) ⊆ V .
This implies that A \ V ⊆ CΔ(a). Since V is open, A \ V is closed and hence
there exists an ideal J of S such that A \ V = Δ(J), by Proposition 3.3. So we
find that Δ(J) ⊆ CΔ(a). Again, since U ∩ V = ∅, we have V ⊆ A \ U . Since
U is open, A \ U is closed and hence there exists an ideal K of S such that
A \ U = Δ(K) i.e. V ⊆ Δ(K). Since I ∈ U , I /∈ A \ U = Δ(K). This implies
that K �⊆ I. Thus there exists b ∈ K(⊂ S) such that b /∈ I. So I ∈ CΔ(b). Now
we show that V ⊆ Δ(b). Let M ∈ V ⊆ Δ(K). Then K ⊆ M . Since b ∈ K,
it follows that b ∈ M and hence M ∈ Δ(b). Consequently, V ⊆ Δ(b). This
implies that A \Δ(b) ⊆ A \ V = Δ(J) =⇒ CΔ(b) ⊆ Δ(J). Thus we find that
I ∈ CΔ(b) ⊆ Δ(J) ⊆ CΔ(a).



On structure space of Γ-semigroups 43

Conversely, suppose that the given condition holds. Let I ∈ A and Δ(K) be
any closed set not containing I. Since I /∈ Δ(K), we have K �⊂ I. This implies
that there exists a ∈ K such that a /∈ I. Now by the given condition, there
exists an ideal J of S and b ∈ S such that I ∈ CΔ(b) ⊆ Δ(J) ⊆ CΔ(a). Since
a ∈ K, CΔ(a) ∩Δ(K) = ∅. This implies that Δ(K) ⊆ A \ CΔ(a) ⊆ A \Δ(J).
Since Δ(J) is a closed set, A \ Δ(J) is an open set containing the closed set
Δ(K). Clearly, CΔ(b) ∩ (A \Δ(J)) = ∅. So we find that CΔ(b) and A \Δ(J)
are two disjoints open sets containing I and Δ(K) respectively. Consequently,
(A, τA) is a regular space. �

Theorem 3.12 (A, τA) is a compact space if and only if for any collection
{aα}α∈Λ ⊂ S there exists a finite subcollection {ai : i = 1, 2, . . . , n} in S such
that for any I ∈ A, there exists ai such that ai /∈ I.
Proof Let (A, τA) be a compact space. Then the open cover {CΔ(aα) : aα ∈ S}
of (A, τA) has a finite subcover {CΔ(ai) : i = 1, 2, . . . , n}. Let I be any element
of A. Then I ∈ CΔ(ai) for some ai ∈ S. This implies that ai /∈ I. Hence
{ai : i = 1, 2, . . . , n} is the required finite subcollection of elements of S such
that for any I ∈ A, there exists ai such that ai /∈ I.

Conversely, suppose that the given condition holds. Let {CΔ(aα) : aα ∈ S}
be an open cover of A. Suppose to the contrary that no finite subcollection of
{CΔ(aα) : aα ∈ S} covers A. This means that for any finite set {a1, a2, . . . , an}
of elements of S,

CΔ(a1) ∪CΔ(a2) ∪ . . . ∪ CΔ(an) �= A
=⇒ Δ(a1) ∩Δ(a2) ∩ . . . ∩Δ(an) �= ∅
=⇒ there exists I ∈ A such that I ∈ Δ(a1) ∩Δ(a2) ∩ . . . ∩Δ(an)
=⇒ a1, a2, . . . , an ∈ I, which contradicts our hypothesis .
So the open cover {CΔ(aα) : aα ∈ S} has a finite subcover and hence (A, τA)

is compact.

Corollary 3.13 If S is finitely generated, then (A, τA) is a compact space.

Proof Let {ai : i = 1, 2, . . . , n} be a finite set of generators of S. Then for any
I ∈ A, there exists ai such that ai /∈ I, since I is a proper uniformly strongly
prime ideal of S. Hence by Theorem 3.12, (A, τA) is a compact space. �

Definition 3.14 A Γ-Semigroup S is called a Noetherian Γ-Semigroup if it
satisfies the ascending chain condition on ideals of S i.e. if I1 ⊆ I2 ⊆ . . . ⊆ In ⊆
. . . is an ascending chain of ideals of S, then there exists a positive integer m
such that In = Im for all n ≥ m.

Theorem 3.15 If S is a Noetherian Γ-Semigroup, then (A, τA) is countably
compact.

Proof Let {Δ(In)}∞n=1 be a countable collection of closed sets in A with finite
intersection property (FIP). Let us consider the following ascending chain of
prime ideals of S: <I1> ⊆ <I1 ∪ I2> ⊆ <I1 ∪ I2 ∪ I3> ⊆ . . .
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Since S is a Noetherian Γ-Semigroup, there exists a positive integer m such
that <I1 ∪ I2 ∪ . . . ∪ Im> = <I1 ∪ I2 ∪ . . . ∪ Im+1> = . . .

Thus it follows that <I1 ∪ I2 ∪ . . . ∪ Im> ∈ ⋂∞
n=1 Δ(In). Consequently,⋂∞

n=1 Δ(In) �= ∅ and hence (A, τA) is countably compact. �

Corollary 3.16 If S is a Noetherian Γ-Semigroup and (A, τA) is second count-
able, then (A, τA) is compact.

Proof Proof follows from Theorem 3.15 and the fact that a second countable
space is compact if it is countably compact. �

Remark 3.17 Let {Iα} be a collection of prime ideals of a Γ-semigroup S.
Then

⋂
Iα is an ideal of S but it may not be a prime ideal of S, in general.

However; in particular, we have the following result:

Proposition 3.18 Let {Iα} be a collection of prime ideals of a Γ-semigroup S
such that {Iα} forms a chain. Then

⋂
Iα is a prime ideal of S.

Proof Clearly,
⋂
Iα is an ideal of S. Let AΓB ⊆ ⋂

Iα for any two ideals
A,B of S. If possible, let A,B �⊆ ⋂

Iα. Then there exist α and β such that
A �⊆ Iα and B �⊆ Iβ . Since Iα is a chain, let Iα ⊆ Iβ . This implies that B �⊆ Iα.
Since AΓB ⊆ Iα and Iα is prime, we must have either A ⊆ Iα or B ⊆ Iα, a
contradiction. Therefore, either A ⊆ ⋂

Iα or B ⊆ ⋂
Iα. Consequently,

⋂
Iα is

a prime ideal of S. �

Definition 3.19 The structure space (A, τA) is called irreducible if for any
decomposition A = A1 ∪A2, where A1 and A2 are closed subsets of A, we have
either A = A1 or A = A2.

Theorem 3.20 Let A be a closed subset of A. Then A is irreducible if and
only if

⋂
Iα∈A Iα is a prime ideal of S.

Proof Let A be irreducible. Let P and Q be two ideals of S such that PΓQ ⊆⋂
Iα∈A Iα. Then PΓQ ⊆ Iα for all α. Since Iα is prime, either P ⊆ Iα or

Q ⊆ Iα which implies for Iα ∈ A either Iα ∈ {P} or Iα ∈ {Q}. Hence A =
(A ∩ P ) ∪ (A ∩ Q). Since A is irreducible and (A ∩ P ), (A ∩ Q) are closed, it
follows that A = A∩P or A = A∩Q and hence A ⊆ P or A ⊆ Q. This implies
that P ⊆ ⋂

Iα∈A Iα or Q ⊆ ⋂
Iα∈A Iα. Consequently,

⋂
Iα∈A Iα is a prime ideal

of S.
Conversely, suppose that

⋂
Iα∈A Iα is a prime ideal of S. Let A = A1 ∪A2,

where A1 and A2 are closed subsets of A. Then
⋂

Iα∈A Iα ⊆
⋂

Iα∈A1
Iα and⋂

Iα∈A Iα ⊆
⋂

Iα∈A2
Iα. Also⋂

Iα∈A

Iα =
⋂

Iα∈A1∪A2

Iα =
( ⋂

Iα∈A1

Iα

)
∩
( ⋂

Iα∈A2

Iα

)
.
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Now( ⋂
Iα∈A1

Iα

)
Γ
( ⋂

Iα∈A2

Iα

)
⊆
( ⋂

Iα∈A1

Iα

)
and

( ⋂
Iα∈A1

Iα

)
Γ
( ⋂

Iα∈A2

Iα

)
⊆
( ⋂

Iα∈A2

Iα

)
.

Thus we have( ⋂
Iα∈A1

Iα

)
Γ
( ⋂

Iα∈A2

Iα

)
⊆
( ⋂

Iα∈A1

Iα

)
∩
( ⋂

Iα∈A2

Iα

)
.

Since
⋂

Iα∈A Iα is prime, it follows that either⋂
Iα∈A1

Iα ⊆
⋂

Iα∈A

Iα or
⋂

Iα∈A2

Iα ⊆
⋂

Iα∈A

Iα.

So we find that ⋂
Iα∈A

Iα =
⋂

Iα∈A1

Iα or
⋂

Iα∈A

Iα =
⋂

Iα∈A2

Iα.

Let Iβ ∈ A. Then we have⋂
Iα∈A1

Iα ⊆ Iβ or
⋂

Iα∈A2

Iα ⊆ Iα.

Since A1, A2 ⊆ A, so either Iα ⊆ Iβ for all Iα ∈ A1 or Iα ⊆ Iβ for all Iα ∈ A2.
Thus Iβ ∈ A1 = A1 or Iβ ∈ A2 = A2, since A1 and A2 are closed. i.e. A = A1

or A = A2. �

Let C be the collection of all uniformly strongly prime full ideals of a Γ-semi-
group S. Then we see that C is a subset of A and hence (C, τC) is a topological
space, where τC is the subspace topology.

In general, (A, τA) is not compact and connected. But in particular, for the
topological space (C, τC), we have the following results:

Theorem 3.21 (C, τC) is a compact space.

Proof Let {Δ(Iα) : α ∈ Λ} be any collection of closed sets in C with finite
intersection property. Let I be the uniformly strongly prime full ideal generated
by E(S). Since any uniformly strongly prime full ideal J contains E(S), J
contains I. Hence I ∈ ⋂

α∈Λ Δ(Iα) �= ∅. Consequently, (C, τC) is a compact
space. �

Theorem 3.22 (C, τC) is a connected space.

Proof Let I be the uniformly strongly prime ideal generated by E(S). Since
any uniformly strongly prime full ideal J contains E(S), J contains I. Hence I
belongs to any closed set Δ(I ′) of C. Consequently, any two closed sets of C are
not disjoint. Hence (C, τC) is a connected space. �
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Abstract

A lattice L is said to satisfy (the lattice theoretic version of) Frankl’s
conjecture if there is a join-irreducible element f ∈ L such that at most
half of the elements x of L satisfy f ≤ x. Frankl’s conjecture, also called
as union-closed sets conjecture, is well-known in combinatorics, and it
is equivalent to the statement that every finite lattice satisfies Frankl’s
conjecture.
Let m denote the number of nonzero join-irreducible elements of L. It

is well-known that L consists of at most 2m elements. Let us say that L
is large if it has more than 5 · 2m−3 elements. It is shown that every large
semimodular lattice satisfies Frankl’s conjecture. The second result states
that every finite semimodular planar lattice L satisfies Frankl’s conjecture.
If, in addition, L has at least four elements and its largest element is join-
reducible then there are at least two choices for the above-mentioned f .
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modularity; planar lattice.

2000 Mathematics Subject Classification: 05A05, sec.: 06E99

*This research was partially supported by the NFSR of Hungary (OTKA), grant no.
T 049433 and K 60148.

47



48 Gábor CZÉDLI, E. Tamás SCHMIDT

Given an m-element finite set A = {a1, . . . , am}, m ≥ 3, a family (or, in
other words, a set) F of at least two subsets of A, i.e. F ⊆ P (A), is called
a union-closed family (over A) if X ∪ Y ∈ F whenever X,Y ∈ F . It was
Peter Frankl in 1979 (cf. Frankl [9]) who formulated the following conjecture,
now called as Frankl’s conjecture or the union-closed sets conjecture: if F is as
above then there exists an element of A which is contained in at least half of
the members of F . In spite of at least three dozen papers, cf. the bibliography
given in [8], this conjecture is still open.

Now let L be a finite lattice. As usual, the set of its nonzero join-irreducible
elements will be denoted by J(L). We say that L satisfies (the lattice theoretic
version of) Frankl’s conjecture if |L| = 1 or there is an f ∈ J(L) such that for
the principal filter ↑f = {x ∈ L : f ≤ x} we have |↑f | ≤ |L|/2. Stanley [17]
and Poonen [14] or Abe and Nakano [3] have shown that (the original) Frankl’s
conjecture is true if and only if all finite lattices satisfy (the lattice theoretic)
Frankl’s conjecture. (For details one can also see [6].) This fact has initiated
a series of lattice theoretical results given by Abe and Nakano [1], [2], [3], [4],
Herrmann and Langsdorf [13], and Reinhold [15], and two combinatorial results
achieved by means of lattices, cf. [6] and [8]. In particular, lower semimodular
lattices satisfy Frankl’s conjecture by [15], and the method of [15] makes it
clear that the situation for (upper) semimodular lattices is much harder. In
fact, it is (and it remains) unknown if semimodular lattices satisfy Frankl’s
conjecture. The goal of the present paper is to present two subclasses of the
class of finite semimodular lattices such that every lattice L in these subclasses
satisfies Frankl’s conjecture; in fact, L usually satisfies the conjecture in a bit
stronger form.

For elements x and y of a lattice L, let x � y denote the “covers or equals”
relation. That is, x � y iff x ≤ y and there is no z ∈ L with x < z < y.
Recall that L is called (upper) semimodular if, for any a, b, c ∈ L, a � b implies
a∨ c � b∨ c. Let J(L) denote the set of non-zero join-irreducible elements of L,
and let m = |J(L)|. Since each element of L is the join of a subset of J(L), L
has at most 2m elements. Strengthening a former result of Gao and Yu [10], it
is shown in [6] that L satisfies Frankl’s conjecture provided |L| ≥ 2m− 2m/2. In
the semimodular case we can prove more. For simplicity, finite lattices L with
more than 5·2m−3 = 2m− 3

8 ·2m elements will be called large. The height h(x) of
an element x ∈ L is the length (number of elements minus one) of any maximal
chain in the principal ideal ↓x. (This makes sense, for any two maximal chains
has the same length by semimodularity.)

Theorem 1 Let L be a finite semimodular lattice. If L is large in the sense
|L| > 5 · 2m−3, where m = |J(L)|, then L satisfies Frankl’s conjecture.

Proof Let A(L) denote the set of atoms of L.
First we show that |J(L) \A(L)| ≤ 1. By way of contradiction, assume that

a1 and a2 are distinct elements of J(L) \ A(L). Let a3, . . . , am be the rest of
nonzero join-irreducible elements, i.e., J(L) = {a1, a2, . . . , am}. Let Bm be the
boolean lattice with atoms x1, . . . , xm, and consider both Bm = (Bm;∨, 0) and
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L = (L;∨, 0) as join-semilattices with 0. Since Bm is the free join-semilattice
with 0, there is a surjective homomorphism ϕ : Bm → L, xi �→ ai. Let Θ denote
the kernel of ϕ. Then, for i = 1, 2, the Θ-class [xi] of xi is not a singleton, for
otherwise ai would be an atom. Since ai �= 0, we conclude that 0 /∈ [xi]. Since
Θ-classes are convex subsemilattices, there are elements y1 ∈ [x1] and y2 ∈ [x2]
such that y1 � x1 and y2 � x2. They are distinct, for a1 �= a2. Let z = y1 ∧ y2;
it is an atom or the zero of Bm.

J :

1y 2y

1x 2xz

I :

1y 2y

1x 2x

Fig. 1: Two ideals in Bm

First assume that z is an atom, and consider the ideal I = ↓(y1∨y2) inBm, cf.
Figure 1. Let K denote the subsemilattice generated by those atoms of Bm that
are not in I; K is not indicated in the figure. It follows from (x1, y1), (x2, y2) ∈ Θ
that the restriction Θ|I to I includes the semilattice congruence indicated in the
figure. Hence Θ collapses I to five or less elements. For u ∈ K, let u ∨ I =
{u∨ t : t ∈ I}. If (t1, t2) ∈ Θ|I then (u∨ t1, u∨ t2) ∈ Θ. Hence Θ collapses u∨ I
to five or less elements. Now Bm is the union of the pairwise disjoint subsets
u ∨ I, u ∈ Bm. Therefore L ∼= Bm/Θ consists of at most 5 · |K| = 5 · 2m−3

elements, which contradicts the assumption that L is large.
Secondly, assume that z = 0, and consider the ideal J = ↓(y1 ∨ y2), cf.

Figure 1. Then the same argument as above gives |L| ≤ 9 · 2m−4 < 5 · 2m−3, a
contradiction again. This proves that |J(L) \A(L)| ≤ 1.

Now, let us recall a well-known fact on semimodular lattices. An n-element
subset U = {c1, . . . , cn} of A(L) is called independent if the sublattice [U ]
generated by U is boolean with A([U ]) = U . It is well-known, cf. e.g., Theorem
IV.2.4 in Grätzer [11], that U is independent if and only if

(c1 ∨ · · · ∨ ci) ∧ ci+1 = 0 for i = 1, 2, . . . , n− 1. (1)

We need another, much easier version of independence: U ⊆ J(L) will be called
an irredundant set if u �≤ ∨(

U \ {u}) for every u ∈ U . In other words, U =
{c1, . . . , cn} is independent if no joinand can be omitted from c1 ∨ · · · ∨ cn.

Now, armed with |J(L) \A(L)| ≤ 1, let us introduce some new notations. If
|J(L) \A(L)| = 1, then let a1 be the only element of J(L) \A(L), let a2, . . . , ak

be the atoms in ↓a1, and let b1, . . . , bm−k be the rest of atoms. (Note that
k ≥ 2.) Otherwise, when J(L) = A(L), let k = 1, let a1 be an arbitrarily fixed
atom, and let b1, . . . , bm−1 be the rest of atoms.



50 Gábor CZÉDLI, E. Tamás SCHMIDT

We claim that |↑a1| ≤ |L|/2. It suffices to show that for each x ∈ ↑a1 there
exists an y = y(x) ∈ L \ ↑a1 such that a ∨ y = x. (If there are several elements
y with this property then we choose one of them.) Indeed, then the existence of
the injective mapping ↑a1 → L \ ↑a1, x �→ y(x) will complete the proof. So, let
x ∈ ↑a1 be an arbitrary element. Then, clearly, there is an irredundant subset
U of J(L) whose join is x.

First let us assume that ai is in U for some 1 ≤ i ≤ k. Now we define
y =

∨(
U \ {ai}

)
. Then x = ai ∨ y and ai ≤ a1 ≤ x gives x = a1 ∨ y while the

irredundance of U yields ai �≤ y, implying y /∈ ↑a1.
Secondly, we assume that no ai belongs to U . Then U is a set of atoms, say

U = {b1, . . . , bn}. Using condition (1) and the irredundance of U we conclude
that U is an independent set. Define di = b1 ∨ · · · ∨ bi−1 ∨ bi+1 ∨ · · · bn. Then
the di, 1 ≤ i ≤ n, are the coatoms of the boolean sublattice generated by U .
If a1 ≤ di for all i, then a1 ≤

∧n
i=1 di = 0, a contradiction. Hence we can

select an i ∈ {1, . . . , n} such that a1 �≤ di. Then y = di does the job, for
di = 0 ∨ di ≺ bi ∨ di = x by semimodularity, and di < a1 ∨ di ≤ x. �

Let us recall that finite, atomistic, semimodular lattices are geometric lattices
by definition. Using the ideas around Figure 1, it is easy to see that (x1, y1) ∈ Θ
implies that at leat 2m−2 elements of Bm are collapsed, i.e., L has at most
2m − 2m−2 = 6 · 2m−3 elements. This means that |L| > 6 · 2m−3 implies
J(L) = A(L) and |[xi]| = 1 (i = 1, . . . ,m), whence the above proof clearly
yields the following

Corollary 1 Let L be a finite semimodular lattice with |L| > 6 · 2m−3, where
m = |J(L)|. Then L is a geometric lattice, and for each atom f of L, |↑f | ≤
|L|/2.

If L has a Hasse diagram whose edges cross only at vertices then L is called
a planar lattice. Recently, Grätzer and Knapp [12] has given a useful struc-
ture theorem for finite planar semimodular lattices; this is what the present
paper relies on. Although this structure theorem is now generalized to all finite
semimodular lattices in [7], we have been able to treat the planar case only.

If a ‖ b, then S = {a, b, a ∧ b, a ∨ b} ⊆ L will be called a square of L. If,
in addition, a ∧ b ≺ a and a ∧ b ≺ b, then S is called a covering square. By
semimodularity, a ∨ b covers both a and b when S is a covering square. If each
covering square of L is an interval then L is said to be slim. A mapping is called
cover-preserving if it preserves the relation �. Let us recall

Lemma 1 (Grätzer and Knapp [12])

• Each finite planar slim semimodular lattice is a cover-preserving join-
homomorphic image of the direct product of two finite chains.

• Each finite planar semimodular lattice can be obtained from a slim pla-
nar semimodular lattice by inserting new, doubly irreducible elements into
some of its covering squares.
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Using the connection between Frankl’s original conjecture and its lattice
theoretic version, Roberts [16] yields that lattices with at most forty elements
satisfy Frankl’s conjecture. However, to explain why |L| ≥ 4 is assumed in our
main result below, we need only the obvious observation that lattices with less
than four elements satisfy Frankl’s conjecture.

Theorem 2 Let L be a finite planar semimodular lattice consisting of at least
four elements. Then L satisfies Frankl’s conjecture. Moreover, at least one of
the following two properties hold:

• either 1 ∈ J(L), and therefore |↑f | ≤ |L|/4 for f = 1,

• or there exist two distinct elements f1 and f2 in J(L) such that |↑fi| ≤
|L|/2 for i = 1, 2.

Proof Let L be a finite planar semimodular lattice with |L| ≥ 4. We will
assume that L is not a chain and 1 /∈ J(L), for otherwise the statement is
evident.

First we consider the case when L is slim. We will treat it as a join-semilattice
(L,∨). In virtue of Lemma 1, there are two chains, {0 < 1 < · · · < n} and
{0 < 1 < · · · < m}, and a join-congruence Θ of

D = {0 < 1 < · · · < n} × {0 < 1 < · · · < m}
such that, up to isomorphism, L = (L,∨) equals D/Θ. (We will not use the
cover-preserving property of the canonical L→ L/Θ homomorphism.) Since L
is not a chain, n ≥ 2 and m ≥ 2. We assume that n and m are chosen such
that m+n is minimal, and we prove the slim case via induction on m+n. The
smallest case, m = n = 2 is evident. So we assume that m+n > 4. For brevity,
let u = (n, 0), v = (0,m), 1 = (m,n), h = (n− 1,m), cf. Figure 2.

1=(n,m)=

0=(0,0)

u=(n,0) v=(0,m)

h=(n-1,m)

a b

c
c’

c’’

d’’
t=d’
d

w=(0,m-1)

Fig. 2

Now we claim that [u]Θ and [v]Θ belong to J(L) = J(D/Θ). Their role is
symmetric, so it suffices to deal with [u]Θ. Suppose, by way of contradiction,
that [u]Θ is not join-irreducible. Then there are a, b ∈ D such that [u]Θ =
[a]Θ∨ [b]Θ = [a∨ b]Θ but [a]Θ < [u]Θ and [b]Θ < [u]Θ, cf. Figure 2. (Although
Figure 2 does not reflect the full generality, Θ is at least as large as indicated
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by dotted lines.) Let c = a ∨ b. Since [a]Θ < [u]Θ and [b]Θ < [u]Θ, we
conclude that a, b, c ∈ ↓h. Let c ≺ c′ ≺ c′′ ≺ · · · denote the unique maximal
chain in the interval [c, c ∨ v] ⊆ ↓h, and let d = u ∨ c, d′ = u ∨ c′, d′′ =
u ∨ c′′, . . . be the corresponding chain in the interval [d, 1]. Now, computing
modulo Θ, for x ∈ [u, d] we have x = u ∨ x ≡ c ∨ x = d = u ∨ c ≡ c ∨ c = c.
Further, d′ = d ∨ c′ ≡ c ∨ c′ = c′, d′′ = d ∨ c′′ ≡ c ∨ c′′ = c′′, etc. This
means that each element of [u, 1] is congruent to some element in ↓h modulo Θ.
Therefore, by the Third Isomorphism Theorem (cf. e.g., Thm. 6.18 in Burris and
Sankappanavar [5]), (L,∨) is isomorphic to (↓h)/Ψ where Ψ is the restriction
of Θ to ↓h. However, this contradicts the minimality of m + n. We have seen
that [u]Θ and [v]Θ are join-irreducible. [u]Θ = [0]Θ is impossible, for otherwise
L would clearly be a chain Finally, [u]Θ and [v]Θ are distinct, for otherwise
[u]Θ = [u]Θ ∨ [v]Θ = [u ∨ v]Θ = [1]Θ, a contradiction.

Now, we claim that(
(0, i− 1), (0, i)

)
/∈ Θ for i = 1, . . .m. (2)

By way of contradiction, suppose the opposite for some fixed i. Let Φ be the
semilattice congruence of D whose two-element blocks are the {(j, i− 1), (j, i)},
j = 0, 1, . . . , n, and all other blocks are singletons. Since(

(j, i− 1), (j, i)
)

=
(
(j, 0) ∨ (0, i− 1), (j, 0) ∨ (0, i)

) ∈ Θ,

we have Φ ⊆ Θ. Hence the Second Isomorphism Theorem (cf. e.g., Thm. 6.15
in [5]) gives that (L,∨) is a homomorphic image of {0 < 1 < · · · < n} × {0 <
1 < · · · < m− 1}, which contradicts the minimality of m+ n.

Now, it follows from (2) that

|↓[v]Θ| ≥ m+ 1. (3)

If, for a ∈ D, [u]Θ ≤ [a]Θ then [a]Θ = [u ∨ a]Θ. This implies that

|↑[u]Θ| ≤ m+ 1. (4)

We claim that
↑[u]Θ is disjoint from ↓[v]Θ. (5)

This comes easily, for in the opposite case we would have

[1]Θ = [u ∨ v]Θ = [u]Θ ∨ [v]Θ = [v]Θ ∈ J(D/Θ) = J(L),

which has been excluded previously. Now (3), (4) and (5) settle the slim case.
Finally, according to Lemma 1, the general case is obtained from the slim

case via inserting new doubly irreducible elements into the interior (understood
in geometrical sense in the Hasse diagram) of covering squares. Since ↑[u]Θ and
↑[v]Θ are chains, they include no covering square. Hence no new element is
inserted into them. I.e., the size of ↑[u]Θ and that of ↑[v]Θ remain fixed while
the size of L increases. �
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[8] Czédli, G., Maróti, M, Schmidt, E. T.: On the scope of averaging for Frankl’s conjecture.
Order, submitted.

[9] Frankl, P.: Extremal set systems. Handbook of combinatorics. Vol. 1, 2, 1293–1329,
Elsevier, Amsterdam, 1995.

[10] Weidong, G.,Hongquan, Y.: Note on the union-closed sets conjecture. Ars Combin. 49
(1998), 280–288.

[11] Grätzer, G.: General Lattice Theory. Birkhäuser Verlag, Basel–Stuttgart, 1978, sec. edi.
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Abstract
In this work, we establish new Furi–Pera type fixed point theorems

for the sum and the product of abstract nonlinear operators in Banach
algebras; one of the operators is completely continuous and the other one
is D-Lipchitzian. The Kuratowski measure of noncompactness is used
together with recent fixed point principles. Applications to solving non-
linear functional integral equations are given. Our results complement
and improve recent ones in [10], [11], [17].
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1 Introduction

In many areas of natural sciences, mathematical physics, mechanics and popu-
lation dynamics, problems are modeled by mathematical equations which may
be reduced to perturbed nonlinear equations of the form:

Ay +By = y, y ∈M
where M is a closed, convex subset of a Banach space X , and A,B are two
nonlinear operators. A useful tool to deal with such problems is the celebrated
fixed point theorem due to Krasnozels’k̆ıi, 1958 (see [15, 16]):
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Theorem 1.1 Let M be a nonempty closed convex subset of a Banach space
X and A,B be two maps from M to X such that
(a) A is compact and continuous,
(b) B is a contraction,
(c) Ax +By ∈M , for all x, y ∈M .
Then A+B has at least one fixed point in M .

We recall the

Definition 1.1 Let E be a Banach space and f : E → E be a mapping. Then f
is said compact if f(E) is compact. It is called totally bounded whenever f(A)
is relatively compact for any bounded subset A of E. Finally, f is completely
continuous if is continuous and totally bounded.

The proof of Theorem 1.1 combines the metric Banach contraction mapping
principle both with the topological Schauder’s fixed point theorem [1, 7, 17, 19]
and uses the fact that if E is a linear vector space, F ⊂ E a nonempty subset
and g : F → E a contraction, then the mapping I − g : F → (I − g)(F ) is an
homeomorphism.

In 1998, Burton [6] noticed that the Krasnozels’k̆ıi fixed point theorem re-
mains valid if condition (c) is replaced by the following less restrictive one:

∀y ∈M, (x = Ay +Bx) =⇒ x ∈M. (1)

However, the study of some integral equations involving the product of op-
erators rather than the sum may be considered only in the framework of Banach
algebras for which Dhage proved in 1988 the following

Theorem 1.2 [9] Let S be a closed, convex and bounded subset of a Banach
algebra X and let A,B : S → S be two operators such that

(a) A is Lipschitzian with a Lipschitz constant α.

(b)
(

I
A

)−1
exists on B(S), where I is an identity operator and the operator

I

A
: X → X is defined by

(
I

A

)
(x) =

x

Ax
.

(c) B is completely continuous.

(d) AxBy ∈ S, for all x, y ∈ S.
Then the operator equation x = AxBx has a solution, whenever αM < 1, where
M := ‖B(S)‖ = sup{‖Bx‖ : x ∈ S}.

Remark 1.1 Note that
(

I
A

)−1
exists if the operator I

A is well defined and is
one-to-one. In [10], the author improved Theorem 1.2 by removing the restric-
tive condition (b). The proof of the improved theorem involves the measure of
noncompactness theory (see Section 2). Also, the assumption stating that A is
Lipschitzian is extended to D-Lipschitzian mappings according to the following
definition. Finally, Assumption (d) is weakened to Burton’s relaxed condition.



Furi–Pera theorems in Banach algebras 57

Definition 1.2 Let E be a Banach space and f : E → E a mapping.

(a) f is called D-Lipschitzian with D-function φf if there exists a continuous
nondecreasing function φf : R+ → R+ such that φf (0) = 0 and

‖f(x)− f(y)‖ ≤ φf (‖x− y‖), ∀(x, y) ∈ E2.

(b) Moreover if φf (r) < r, ∀r > 0, then f is called nonlinear contraction.

(c) In particular, if φf (r) = kr for some constant 0 < k < 1, then f is a
contraction.

(d) f is said non-expansive if φf (r) = r, that is

‖f(x)− f(y)‖ ≤ ‖x− y‖, ∀(x, y) ∈ E2.

Immediately, we have

Lemma 1.1 Every D-Lipschitzian mapping A is bounded, i.e. maps bounded
sets into bounded sets.

Proof Let S be a bounded subset in a Banach space E and d = diamS
where diamS stands for the diameter of S. Let s0 ∈ S be fixed. Since φA is
nondecreasing, for any s ∈ S, we have

‖As‖ ≤ ‖As0‖+ ‖As−As0‖ ≤ ‖As0‖+ φA(‖s− s0‖) ≤ ‖As0‖+ φA(d),

whence comes the result. �

Next, we state three basic existence results, important for the rest of the
paper:

Theorem 1.3 ([10, Thm 2.1, p. 275]) Let S be a closed, convex and bounded
subset of a Banach algebra E and let A,B : S −→ E be two operators such that
(a) A is D-Lipschitzian with D-function φA.
(b) B is completely continuous.
(c) (x = AxBy ⇒ x ∈ S), for all y ∈ S.
Then the operator equation x = AxBx has a solution, whenever φA(r) < r,
∀r > 0 where M := ‖B(S)‖.

The idea of extending contractions to nonlinear contractions comes from
Boyd and Wong fixed point theorem which we recall hereafter for completeness;
this theorem generalizes the Banach fixed point principle, dating 1922 (see e.g.,
[19]).

Theorem 1.4 ([5], 1969) Let E be a Banach space and f : E → E a nonlinear
contraction. Then f has a unique fixed point in E.

In practice, condition (c) in Theorem 1.3 is not so easy to come by as it is
the case in Schauder’s fixed point theorem where a compact mapping is asked
to map a ball into itself. In 1987, Furi and Pera introduced a new condition
instead and proved the following fixed point theorem in the general framework
of Fréchet spaces:
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Theorem 1.5 (see [14] or [1, Thm 8.5, p. 99]) Let E be a Fréchet space, Q a
closed convex subset of E, 0 ∈ Q and let T : Q → E be a continuous compact
mapping. Assume further that

(FP)

⎧⎨⎩ if {(xj , λj)}j≥1 is a sequence in ∂Q× [0, 1]
converging to (x, λ) with x = λF (x) and 0 ≤ λ < 1,
then λjF (xj) ∈ Q for j sufficiently large.

Then T has a fixed point in Q.

Our aim in this paper is to prove new existence theorems of Dhage type with
the condition (c) in Theorem 1.3 replaced by the Furi–Pera condition (FP).
More precisely, we will consider mappings of the form F = AB + C where B
is completely continuous and A,C are D-Lipchitzian while F satisfies the Furi–
Pera condition. This is the content of Theorems 3.1 and 3.2. In Theorem 3.3,
the Furi–Pera condition is verified by another mapping, denoted N . The latter
is proved to fulfill Boyd and Wong fixed point theorem (Theorem 1.4). As a
consequence, we derive some known fixed point theorems obtained recently in
[10, 11, 17]. The proofs are detailed in Sections 4 and 5. A further result where
we relax condition (c) in Theorem 1.3 is given in Section 6. Some applications
to functional nonlinear integral equations are provided in Section 7. We end
the paper with some concluding remarks in Section 8. The notation := means
throughout to be defined equal to. Br(x) will denote the open ball in a metric
space X, centered at x and of radius r and R+ will refer to the set of all positive
real numbers. Before we present the main results of this paper, some auxiliary
results are recalled hereafter.

2 Preliminaries

Definition 2.1 Let E be a Banach space and B ⊂ P(E) the set of bounded
subsets of E. For any subset A ∈ B, define α(A) = infD where

D = {ε > 0: A ⊂ ∪i=n
i=1Ai, diam(Ai) ≤ ε, ∀i = 1, . . . , n}.

α is called the Kuratowski measure of noncompactness, α −MNC for short.
Hereafter, we gather together its main properties. For more details, we refer to
[3, 4, 7].

Proposition 2.1 For any A,B ∈ B, we have
(a) 0 ≤ α(A) ≤ diam(A)
(b) A ⊆ B ⇒ α(A) ≤ α(B) (α is nondecreasing).
(c) α(A ∪B) = max(α(A), α(B)).
(d) α(A+B) ≤ α(A) + α(B) (α is lower-additive).
(f) α(ConvA)) = α(A) = α(A).
(h) α(A) = 0⇒ A is relatively compact.
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Definition 2.2 Let E1, E2 be two Banach spaces and f : E1 → E2 a continuous
application which maps bounded subsets of E1 into bounded subsets of E2

(a) f is called α-Lipschitz if there exists some k ≥ 0 such that

α(f(A)) ≤ kα(A),

for any bounded subset A ⊂ E1.
(b) f is a strict α-contraction when k < 1.
(c) f is said to be α-condensing whenever

α(f(A)) < α(A),

for any bounded subset A ⊂ E1 with α(A) �= 0.

Remark 2.1 Clearly, the case k = 0 corresponds to f totally bounded which
is of course α-condensing.

To develop further arguments, we need the following auxiliary results. They
extend Theorem 1.5 to α-condensing and α-Lipschitz maps in Banach spaces,
respectively (for the proofs, we refer to [17]).

Theorem 2.1 Let E be a Banach space and Q a closed convex bounded subset
of E with 0 ∈ Q. In addition, assume F : Q→ E is an α-condensing map which
satisfies the Furi–Pera condition. Then F has a fixed point x ∈ Q.
Theorem 2.2 Let E be a Banach space and Q a closed convex bounded subset
of E with 0 ∈ Q. In addition, assume that (I −F )(S) is a closed, F : Q→ E is
an α-Lipschitz map with k = 1 and satisfies the Furi–Pera condition. Then F
has a fixed point x ∈ Q.

3 Main results

We state the following main theorems of this paper.

Theorem 3.1 Let S be a closed, convex and bounded subset of a Banach algebra
X with 0 ∈ S and let A,C : X → X and B : S → X be three operators such that

(a) A and C are D-Lipschitzian with D-functions φA and φC respectively.

(b) B is completely continuous.

(c) The operator F : S → X defined by

F (x) = AxBx + Cx

satisfies the Furi–Pera condition.
Then the abstract equation x = AxBx + Cx has a solution x ∈ S whenever
(H0) MφA(r) + φC(r) < r, ∀r > 0

where M = ‖B(S)‖.
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Remark 3.1 More generally, one may consider n D-Lipschitzian operators Ai

(i = 1, · · · , n) with D-functions φi and completely continuous operators Bi

(i = 1, · · · , n) defined on a closed, bounded, convex subset S of a Banach
algebra containing 0 and satisfying

n∑
i=1

Miφi(r) < r

where, for each i, Mi = ‖Bi(S)‖. If the operator

F (x) =
n∑

i=1

(AiBi)(x)

satisfies the Furi–Pera condition, then the abstract nonlinear equation
n∑

i=1

(AiBi)(x) = x

has a solution x ∈ S.

Remark 3.2 Let S = BR(0). It is well known that F (∂S) ⊂ S implies the
Furi–Pera condition. Assume further that A0 = C0 = 0. Then also Assumption
(H0) implies the Furi–Pera condition. Indeed, let (xj , λj)j≥1 be a sequence in
∂S × [0, 1] converging to some limit (x, λ) with x = λF (x) and 0 ≤ λ < 1, then

‖λjFxj‖ ≤ ‖Axj‖‖Bxj‖+ ‖Cxj‖ ≤MφA(‖xj‖) + φC(‖xj‖) ≤ ‖xj‖ = R.

Hence λjF (xj) ∈ S, ∀j ∈ N∗.

Theorem 3.2 Let S be a closed, convex and bounded subset of a Banach algebra
X with 0 ∈ S and let A,C : X → X and B : S → X be three operators such that

(a) A and C are D-Lipschitzian with D-functions φA and φC respectively.

(b) B is completely continuous.

(c) The operator F : S → X defined by F (x) = AxBx + Cx satisfies the Furi–
Pera condition.

Then the abstract equation x = AxBx + Cx has a solution x ∈ S provided
(I−F )(S) is closed and the large inequality MφA(r)+φC(r) ≤ r, ∀r > 0 holds.

Theorem 3.3 Let S be a closed, convex and bounded subset of a Banach algebra
X with 0 ∈ S and let A : X → X and B : S → X be two operators such that

(a) A is D-Lipschitzian with D-function φA.

(b) B is completely continuous.

(c) The operator N : S → X defined by Nx = y, where y is the unique solution
of the operator equation y = AyBx, satisfies the Furi–Pera condition.

Then the operator equation x = AxBx has a solution x ∈ S provided

(H)
{
the mapping Φ: [0,+∞)→ [0,+∞)
r �→ Φ(r) = r −MφA(r) is increasing to infinity.
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Remark 3.3 (a) Obviously, Assumption (H) implies that for any r > 0
MφA(r) < r and amounts to the restriction 0 < k < 1

M in case φA is a
k-contraction.

(b) The condition (c) in Theorem 3.3 is different from the condition (c)
in Theorem 3.1 which means that N(S) ⊂ S. One can make analogy with
the condition (c) in Theorem 1.1 compared with Burton’s weak condition (1).
Regarding these conditions, a discussion is given in the concluding remarks (see
Section 7).

3.1 Some consequences

In this section, we derive four existence principles. In particular, we recover
some known results: the first one is Dhage’s Theorem 1.3 ([10, Thm 2.1]); the
second one is a nonlinear alternative in Banach algebras ([11, Thm 2.2]), the
third one is concerned with the case of the sum of a nonlinear contraction and a
compact mapping ([17, Thm 2.2]) while the last one is a useful classical result.

Corollary 3.1 Assume Assumptions (a)–(c) in Theorem 1.3 are satisfied, 0 ∈
S where S is either a ball or any subset homeomorphic to a bounded, closed
convex subset and AB(S) ⊂ S. Then, the same conclusion of this theorem
holds true provided (H) is fulfilled.

Proof We prove the corollary first in case S = BM (0) and then when AB
maps S into itself. In the latter case, S could be any subset homeomorphic to
a closed, bounded and convex subset of X .
Step 1: S = BM (0). We only have to check that condition (c) in Theorem
1.3 implies the Furi–Pera condition (c) in Theorem 3.3. For this, let (xj , λj)j≥1

be a sequence in ∂S × [0, 1] converging to some limit (x, λ) with x = λNx,
0 ≤ λ < 1 and show that λjN(xj) ∈ S for j large enough. For any j ∈ N∗,
‖λjN(xj)‖ ≤ ‖N(xj)‖ = ‖yj‖ where yj = AyjBxj . Since xj ∈ ∂S ⊂ S and
condition (c) of Theorem 1.3 is satisfied, yj ∈ S. Hence ‖yj‖ ≤M . This implies
that ‖λjN(xj)‖ ≤M . Our claim, that is λjN(xj) ∈ S, is then proved.
Step 2: AB(S) ⊂ S. By the Dugundji’s extension theorem (see [7, 19]), let
r : X → S be a retraction and let B be a ball containing S. Then consider the
diagram

B r−→ S
AB−→ S.

From Step 1, the map AB ◦ r has a fixed point x ∈ B, that is satisfying
Ar(x)Br(x) = x. Since ABr(x) ∈ S, it follows that x ∈ S and thus r(x) = x =
ABx.
Step 3: S is homeomorphic to S̃, where S̃ is a closed, bounded and convex
subset of X . Let the diagram

S̃
h−1

−→ S
AB−→ S

h−→ S̃,

where h is an homeomorphism. From Step 2, there exists some y ∈ S̃ such that
h ◦ AB ◦ h−1(y) = y. Then ABx = x, for x = h−1(y) ∈ S, ending the proof of
the corollary. �
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Corollary 3.2 ([11, Thm 2.2, p. 272]) Let X be a Banach algebra and let
A,B,C : X −→ X be three operators satisfying (H0) together with
(a) A and C are D-Lipschitzian with D-functions φA and φC respectively.
(b) B is completely continuous.
Then
(a) either F = AB + C has a fixed point in X,
(b) or the set {x ∈ X, λF (x) = x, 0 < λ < 1} is unbounded.
Proof Assume Alternative (b) does not hold true. Then, there exists some
positive constant R such that

∀λ ∈ (0, 1), (λF (x) = x⇒ ‖x‖ ≤ R). (2)

In order to show that F satisfies the Furi–Pera condition, consider a sequence
(xj , λj)j≥1 ∈ ∂S × [0, 1] converging to some limit (x, λ) with x = λF (x) and
0 < λ < 1, where S = BR+1(0). By continuity of F , we have that

‖λjF (xj)‖ ≤ ‖λF (x)‖ + 1, for sufficientlly large j. (3)

Since x = λF (x), (2) yields

‖λF (x)‖ = ‖x‖ ≤ R.

This with (3) imply that λjFj(x) ∈ S. Our claim, namely Alternative (a), then
follows from Theorem 3.1. �

The following two particular cases of Theorem 3.1 are useful in practice.

Corollary 3.3 ([17, Thm 2.2, p. 3]) Let S be a closed, convex and bounded
subset of a Banach space X with 0 ∈ S and let F1 : X → X and F2 : S → X be
two operators such that
(a) F1 is a nonlinear contraction.
(b) F2 is completely continuous.
(c) The sum F = F1 + F2 : S → X satisfies the Furi–Pera condition (FP).
Then F has a fixed point x ∈ S.
Proof Take B = F2, C = F1, A ≡ 1 and then ϕA ≡ 0. �

Corollary 3.4 Let S be a closed, convex and bounded subset of a Banach al-
gebra X with 0 ∈ S and let A,C : X → X and B : S → X be three operators
such that
(a) A and C are Lipschitzian with Lipschitz constants kA and kC respectively.
(b) B is completely continuous.
(c) The operator F : S → X defined by F (x) = AxBx+Cx, x ∈ X satisfies the
Furi–Pera condition (FP).
Then the equation x = AxBx+Cx has a solution x ∈ S whenever kA‖B(S)‖+
kC < 1.
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4 Proofs of Theorems 3.1 and 3.2

The proofs are direct consequences of the following lemma:

Lemma 4.1 Under Assumptions (a), (b) of Theorem 3.1 together with (H0),
the map F : S → X defined by F (x) = AxBx+ Cx is α-condensing.

Proof Let D ⊂ S be a bounded subset and δ > 0. There exists a covering
(Di)n

i=1 such that D ⊂ ⋃n
i=1Di and diam(Di) ≤ α(D)+δ, for each i = 1, . . . , n.

For every i ∈ {1, · · · , n}, let xi
1 = x1, xi

2 = x2 ∈ Di and Ei = F (Di). Clearly
F (D) ⊂ ⋃n

i=1 Ei. In addition, we have the estimates

‖F (x1)− F (x2)‖ = ‖Ax1Bx1 + Cx1 −Ax2Bx2 − Cx2‖
≤ ‖Ax1‖ ‖Bx1 −Bx2‖+ ‖Bx2‖ ‖Ax1 −Ax2‖+ ‖Cx1 − Cx2‖
≤ ‖Ax1‖ diam

(
B(Di)

)
+M ‖Ax1 −Ax2‖+ ‖Cx1 − Cx2‖

≤ ‖Ax1‖α
(
B(Di)

)
+M φA(‖x1 − x2‖) + φC(‖x1 − x2‖).

Since B is completely continuous, α
(
B(Di)

)
= 0, for each i ∈ {1, · · · , n} follows

from Proposition 2.1(e). We infer that

‖F (x1)− F (x2)‖ ≤M φA(‖x1 − x2‖) + φC(‖x1 − x2‖).

Since φA and φC are non decreasing, it follows that

diamEi ≤ M φA(‖x1 − x2‖) + φC(‖x1 − x2‖)
≤ MφA(diam(Di)) + φC(diam(Di))
≤ MφA(α(D) + δ) + φC(α(D) + δ).

Therefore
α(F (D)) ≤MφA(α(D) + δ) + φC(α(D) + δ).

Since δ > 0 is arbitrary, we deduce the estimate

α(F (D)) ≤MφA(α(D)) + φC(α(D)).

Taking into account Assumption (H0), we arrive at

α
(
F (D)

)
< α(D),

proving our claim. �

Remark 4.1 It is well known (see e.g. [17, proof of Thm 2.1]) that the sum
of a nonlinear contraction and a compact mapping is α-condensing. Lemma
4.1 extends this result to D-Lipschitz mappings as well as to the product of a
compact and a D-Lipschitz maps.
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Proof of Theorem 3.1. By Lemma 4.1, the map F : S → X defined by
F (x) = AxBx + Cx is α-condensing. Since F satisfies the Furi–Pera condi-
tion, it follows by Theorem 2.1 that F has at least one fixed point x ∈ S,
solution of the equation x = AxBx+Cx, ending the proof of the theorem. �

Proof of Theorem 3.2. Since the mapping F : S → X defined by F (x) =
AxBx + Cx is α-condensing by Lemma 4.1, then it is α-Lipschitz with k = 1.
Moreover (I−F )(S) is closed and F satisfies the Furi–Pera condition. Therefore,
Theorem 2.2 implies that F has at least one fixed point x ∈ S, solution of the
equation x = AxBx + Cx. �

5 Proof of Theorem 3.3

The proof follows from Theorem 2.1 once we have proved the following two
technical lemmas.

Lemma 5.1 Under the assumptions of Theorem 3.3, the operator N : X → X
introduced in condition (c) is well defined and is bounded (on bounded subsets
of X).

Proof For any x ∈ S, let the mapping Ax be defined in X by Axy = AyBx.
Then, for any y1, y2 ∈ X ,

‖Axy1−Axy2‖ = ‖Bx‖‖Ay1−Ay2‖ ≤ ‖Bx‖φA (‖y1 − y2‖) ≤MφA (‖y1 − y2‖)
with MφA(r) < r, ∀r > 0. By the Boyd and Wong fixed point theorem (see
Theorem 1.4), Ax has only one fixed point y ∈ X and so the mapping N is well
defined. In addition, let D ⊂ X be any bounded subset, x ∈ D and y = Nx
where y is the unique solution of the equation y = AyBx. Thus

‖y‖ = ‖Bx‖‖Ay‖ ≤M‖Ay‖.
Let y0 ∈ X . With Assumption (H), we have the following estimates

‖y‖ ≤M (‖Ay −Ay0‖+ ‖Ay0‖) ≤MφA (‖y − y0‖) +M‖Ay0‖.
Hence

‖y − y0‖ ≤ ‖y‖+ ‖y0‖ ≤MφA (‖y − y0‖) +M‖Ay0‖+ ‖y0‖.
It follows that

Φ(‖y − y0‖) = ‖y − y0‖ −MφA(‖y − y0‖) ≤M‖Ay0‖+ ‖y0‖.
This in turn implies successively

‖y − y0‖ ≤ Φ−1(M‖Ay0‖+ ‖y0‖)
‖y‖ ≤ ‖y − y0‖+ ‖y0‖ ≤ Φ−1(M‖Ay0‖+ ‖y0‖) + ‖y0‖,

proving our claim. �
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Remark 5.1 To prove Lemma 5.1, we only need lims→+∞ Φ(s) = +∞ without
the increasing character of Φ.

Lemma 5.2 Under the hypotheses of Theorem 3.3, the operator N introduced
in the condition (c) is compact.

Proof
Claim 1. N is continuous. Let (xn) be a sequence in S converging to some

limit x. Since S is closed, x ∈ S. Moreover

‖Nxn −Nx‖ = ‖ANxnBx−ANxBx‖
≤ ‖ANxnBxn −ANxBxn‖+ ‖ANxBxn −ANxBx‖
≤ ‖Bxn‖‖ANxn −ANx‖+ ‖ANx‖‖Bxn −Bx‖
≤ Mφ(‖xn − x‖) + ‖ANx‖‖Bxn − Bx‖.

Whence

lim sup
n→∞

‖Nxn −Nx‖ ≤Mφ(lim sup
n→∞

‖xn − x‖) + ‖ANx‖ lim sup
n→∞

‖Bxn −Bx‖.

From Assumption (b), B is continuous; hence

lim sup
n→∞

‖Nxn −Nx‖ = 0,

yielding the continuity of N .
Claim 2. N is compact. From Lemmas 1.1 and 5.1, there exists some

positive constant k1 such that ‖ANx‖ ≤ k1, ∀x ∈ S. Let ε > 0 be given. Since
S is bounded and B is completely continuous, B(S) is relatively compact. Then
there exists a set E = {x1, . . . , xn} ⊂ S such that

B(S) ⊂
n⋃

i=1

Bδ(wi)

where wi := B(xi) and δ := k2ε for some constant k2 to be selected later on.
Therefore, for any x ∈ S, there exists some xi ∈ E such that

0 ≤ ‖Bx−Bxi‖ ≤ k2ε.

We have

‖Nxi −Nx‖ = ‖ANxiBxi −ANxBx‖
≤ ‖ANxiBxi −ANxBxi‖+ ‖ANxBxi −ANxBx‖
≤ ‖Bxi‖‖ANxi −ANx‖ + ‖ANx‖‖Bxi −Bx‖
≤ MφA(‖Nxi −Nx‖) + k1k2ε. (4)

Hence

Φ(‖Nxi −Nx‖) = ‖Nxi −Nx‖ −MφA(‖Nxi −Nx‖) ≤ k1k2ε.
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From Assumption (H), it follows that

‖Nxi −Nx‖ ≤ Φ−1(k1k2ε).

Choosing 0 < k2 ≤ Φ(ε)
k1ε , we obtain

‖Nxi −Nx‖ ≤ ε.

We have proved that N(S) ⊂ ⋃n
i=1 Bε(Nxi), showing that N is totally bounded

and ending the proof of Lemma 5.2. �

Remark 5.2 In Claim 2, we correct the proof of Theorem 2.1, p. 275 of [10]
where φA was taken φA(r) ≤ αr, r > 0. To this end, Assumption (H) is
essential.

Remark 5.3 In Theorem 3.3, the condition that S is unbounded may be re-
laxed when B completely continuous is replaced by B compact, that is B(S)
relatively compact. Indeed, the proof of Lemma 5.2 remains unchanged and
then we rather apply Theorem 1.5.

6 A further result

In the following, we prove that the condition (c) in Theorem 1.3 may be relaxed.

Theorem 6.1 Let S be a closed, convex and bounded subset of a Banach algebra
E such that intS �= ∅ and let A,B : S → E be two operators such that
(a) A is D-Lipschitzian with D-function φA.
(b) B is completely continuous.
(c’) (x = AxBy ⇒ x ∈ S), for all y ∈ ∂S.
Then the operator equation x = AxBx has a solution, whenever MφA(r) < r,
∀r > 0.

Proof Let r : X → S be a retraction. Moreover using the Minkowski functional
(see [18, Lemma 4.2.5, p. 27]), r may be chosen so that{

r(x) = x, x ∈ S
r(x) ∈ ∂S, x �∈ S.

We claim that Nr : X → X has a fixed point (here we denote by fg = f ◦ g).
Since N is completely continuous by Lemma 5.2 and r is continuous, the com-
posite rN : S → S is completely continuous. Then Schauder’s fixed point theo-
rem implies that rN has a fixed point, i.e. there exists some x0 ∈ S such that
rNx0 = x0. As a consequence, Nr has a fixed point. Indeed, letting y0 = Nx0,
we get

ry0 = rNx0 = x0 =⇒ Nry0 = Nx0 = y0.

That is y0 = Ay0Bry0. Since ry0 ∈ ∂S, assumption (c’) implies that y0 ∈ S,
ending the proof of the theorem. �
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Remark 6.1 One may take the subset S unbounded and the operator B com-
pact and then apply Rothe’s Theorem to prove Theorem 6.1. This is the
main motivation of the study of the topological structure of the subsubset
FNr := {x ∈ X, x = Nrx} ⊂ S which is nonempty by Theorem 6.1.

(a) FNr is closed. Let (xn)n∈N ⊂ FNr be a sequence such that xn → x,
as n → +∞. We show that x ∈ FNr. First xn = Nr(xn) and, since N and r
are continuous, limn→+∞Nr(xn) = Nr(x). Then, the uniqueness of the limit
implies that x = Nr(x) yielding x ∈ FNr.

(b) FNr is compact. Indeed, r(FNr) ⊂ S implies N(r(FNr)) ⊂ N(S)
and then α(N(r(FNr))) ≤ α(N(S)) = 0 because N is compact by Lemma
5.2. Here α is the measure of noncompactness (see Section 2). In addition,
FNr ⊂ Nr(FNr) implies that α(FNr) ≤ α(Nr(FNr)) ≤ 0; then α(FNr) = 0
and our claim follows.

7 Applications

7.1 Example 1

Let X = C([0, 1],R) be the Banach Algebra of real continuous functions defined
on the interval [0, 1] endowed with the sup-norm

‖x‖ = max
t∈[0,1]

|x(t)|.

For some sufficiently large positive real number R, let S = BR(0) be the closed
ball centered at the origin and with radius R. Consider the nonlinear functional
integral equation, for t ∈ [0, 1] and the parameter α lies in the interval (0, 1)

x(t) =
(

1 +
αR

R + 1
|x(μ(t))|

)(
q(θ(t)) +

∫ σ(t)

0

g
(
s, x(η(s))) ds

)
(5)

where the functions μ, θ, σ, η : [0, 1]→ [0, 1] are continuous. Assume that q : [0, 1]→
R and g : [0, 1]× R → R are continuous functions and satisfy

|g(t, x)| ≤ 1− ‖q‖∞, ∀(t, x) ∈ [0, 1]× R, (6)

where ‖q‖∞ := maxt∈[0,1] |q(t)|. Let the mappings A and B be defined by

A : X → X, Ax(t) = 1 +
αR

R+ 1
|x(μ(t))|

and

B : S → X, Bx(t) = q(θ(t)) +
∫ σ(t)

0

g
(
s, x(η(s))) ds.

Then the integral equation (5) is equivalent to the operator equation

Ax(t)Bx(t) = x(t), t ∈ [0, 1].
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(a) Properties of the mappings A,B. Clearly, A is a Lipchitzian map with
constant k = R

R+1 · To prove B is completely continuous, let (xn)n∈N ⊂ X . Since

|B(xn)(t)| ≤ |q(θ(t))| +
∣∣∣∣∣
∫ σ(t)

0

g
(
s, x(η(s))) ds

∣∣∣∣∣ = ‖q‖+ (1 − ‖q‖) = 1,

the sequence (B(xn))n∈N is uniformly bounded. Moreover B is equi-continuous.
To see this, let t1, t2 ∈ [0, 1]; then

|B(xn)(t1)−B(xn)(t2)| ≤ |q(θ(t1))− q(θ(t2))|+
∣∣∣∣∣
∫ σ(t2)

σ(t1)

g
(
s, x(η(s))) ds

∣∣∣∣∣
≤ |q(θ(t1))− q(θ(t2))|+ (1− ‖q‖)|σ(t1)− σ(t2)|.

The continuity of θ, σ, q on the compact interval [0, 1] implies that (B(xn))n∈N is
equi-continuous and then B is completely continuous by Arzela–Ascoli Lemma.

(b) F = AB satisfies the Furi–Pera condition. For this purpose, consider a
sequence (xj , λj)j≥1 ∈ ∂S×[0, 1] converging to some limit (x, λ) with x = λF (x)
and 0 ≤ λ < 1. Then for j sufficiently large, we have

‖λjF (xj)‖ ≤ λ‖F (x)‖ + 1.

Since x = λF (x), we deduce the bounds:

‖x‖ ≤ λ

(
1 +

αR

R+ 1
‖x‖

)
,

and then

‖x‖ ≤ λ(R + 1)
R(1− αλ) + 1

·

Hence

‖λjF (xj)‖ ≤ R+ 1
R(1− α) + 1

, 0 ≤ λj < 1.

This implies that, for R large enough, namely R ≥ 1√
1−α

, it holds that

‖λjF (xj)‖ ≤ R

and so λjFj(x) ∈ S. Finally

0 < k =
R

R+ 1
<

1
‖B(S)‖ = 1.

Then all assumptions of Theorem 3.1 are met with C = 0 and Equation (5)
has a solution in X provided (6) holds true. Notice that for this first example,
Corollary 3.2 may be applied as well; this will not be the case with the next two
examples.
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7.2 Example 2

(a) Consider the Banach space

X = C0(R,R) = {x ∈ C(R,R), lim
|t|→+∞

x(t) = 0}

endowed with the sup-norm

‖x‖X = sup
t∈R

{|x(t)|}.

Let a continuous function a : R× R → R be such that

a is k-Lipschitz with respect to the second argument (7)

and then define the mapping A by

Ax(t) =
∫ |t|

−|t|
e−α|s|a(s, x(s)) ds, t ∈ R,

for some positive parameter α. Then A is 2k
α -Lipschitz. Indeed

|Ax1(t)−Ax2(t)| ≤
∣∣∣∣∣
∫ |t|

−|t|
e−α|s|

(
a(s, x1(s)) − a(s, x2(s))

)
ds

∣∣∣∣∣
≤ k

∫ |t|

−|t|
e−α|s| |x1(s)− x2(s)| ds ≤ k1‖x1 − x2‖

∫ |t|

−|t|
e−α|s| ds.

Hence

‖Ax1 −Ax2‖ ≤ 2k
α
‖x1 − x2‖.

Thus, we assume 2k
α < 1. In addition

‖Ax‖ ≤ 2k
α
‖x‖+

2
α
‖a(., 0)‖. (8)

(b) Let the mapping B be defined by

Bx(t) =
∫ +∞

−∞
G(t, s)h

(
s, x(s)

)
ds,

where the nonlinear function h : R2 → R is continuous and verifies the growth
condition:

|h(t, x)| ≤ q(t)Ψ(|x|), ∀ t, x ∈ R (9)

where q ∈ C0(R,R+) and Ψ: R+ → R+ is a continuous nondecreasing function.
The kernel G : R2 → R is continuous and satisfies

∃σ, � > 0, |G(t, s)| ≤ �e−σ|t−s|, ∀s, t ∈ R. (10)
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We can show that B is completely continuous (see the proof of Theorem 2.1 in
[8] for the details). Let the bounded closed and convex subset of X :

S = {x ∈ X : ‖x‖ ≤ R},

where the positive constant R is to be selected later on.
(c) Assume that for any compact subset K ⊂ R, there exists a positive

constant MK > 0 such that for any x ∈ X , λ ∈ [0, 1)

x = λAxBx =⇒ (|x(t)| ≤MK , ∀t ∈ K). (11)

(d) To verify the Furi–Pera condition, let (xj , λj) ∈ ∂S× [0, 1] be such that,
as j → +∞, λj → λ and xj → x with λF (x) and 0 ≤ λ < 1. We show that
λjF (xj) ∈ S where F (xj) = AxjBxj . Since Ψ is nondecreasing, we have

|Bx(t)| ≤ Ψ(R)
∫ +∞

−∞
G(t, s)q(s)ds := γ(t).

Moreover, for each j, we have

‖λiF (xj)‖ ≤ ‖Axj‖ · ‖Bxj‖

≤
(

2k
α
‖x1‖+

2
α
‖a(·, 0)‖

)
γ(t) ≤

(
2k
α
R+

2
α
‖a(·, 0)‖

)
γ(t)

Since limt→±∞ γ(t) = 0, there exist some t1, t2 and a sufficiently small positive
constant M1 such that

‖λiF (xj)(t)‖ ≤M1, ∀t ∈ (−∞, t1) ∪ (t2,+∞). (12)

In addition, for t ∈ [t1, t2] and xj ∈ ∂S, limj→+∞ xj = x = λF (x) uniformly.
Then for j large enough and t ∈ [t1, t2], we have, from conditions (11) and (12),
that

‖λiF (xj)(t) ≤ λ|F (x)(t)| + 1 ≤M0 + 1. (13)

Combining (12) and (13) and taking R = max(M1,M0 + 1), we get

‖λiF (xj)(t)‖ ≤ R, ∀t ∈ R, ∀j ∈ N.

Therefore the Furi–Pera condition is fulfilled.

As a consequence, we have proved that, under Assumptions (7), (9), (10)
and (11), the nonlinear problem(∫ |t|

−|t|
e−α|s|a(s, x(s)) ds

)(∫ +∞

−∞
G(t, s)h

(
s, x(s)

)
ds

)
= x(t), t ∈ R

admits, by Theorem 3.1, at least one solution x ∈ BR(0) ⊂ C(R,R).
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Remark 7.1 Notice that in the particular case a(., 0) ≡ 0, the last condition
in Theorem 3.1, namely ‖B(S)‖ 2k

α < 1, is equivalent to the Furi–Pera condition
(see Remark 3.2). In such a case, we have only to find a function Ψ such that
there exists some R > 0 such that

4k�
ασ

Ψ(R)‖q‖∞ < 1,

which is obviously satisfied whenever lims→+∞ Ψ(s) = +∞.

7.3 Example 3

We will make use of the nonlinear version of Gronwall’s Lemma (see [2])

Lemma 7.1 Let I = [a, b] and u, g : I → R be positive real continuous func-
tions. Assume there exist c > 0 and a continuous nondecreasing function
h : R → (0,+∞) such that

u(t) ≤ c+
∫ t

a

g(s)h(u(s)) ds, ∀t ∈ I.

Then, we have

u(t) ≤ Ψ−1

(∫ t

a

g(s) ds
)
, ∀t ∈ I

with

Ψ(u) =
∫ u

c

dy

h(y)

for u ≥ c and Ψ−1 referring to the inverse of the function Ψ, provided for any
t ≥ a,

∫ t

a g(s) ds ∈ Dom Ψ−1.

Let a > 1 and X = C0([a,+∞),R) be the set of real continuous functions
x defined on the interval [a,+∞) and such that limt→+∞ x(t) = 0. Equipped
with the sup-norm ‖x‖ = supt≥a |x(t)|, it is a Banach space.

(a) On the space X , define a mapping A by

Ax(t) = h(t) +
∫ t

a

f(s, x(s)) ds, t ≥ a

where f : [a,+∞) × R → R is continuous, f(t, 0) = 0, t ≥ a and there exists
p ∈ L1([a,+∞),R+) such that the nonlinear p-Lipschitz condition is satisfied:

|f(t, x(t)) − f(t, y(t))| ≤ p(t)|x(t) − y(t)|δ, ∀(x, y) ∈ X2, (14)

with some 0 < δ < 1. The function h : [a,+∞)→ R is continuous and noniden-
tically zero. If we let |p|1 =

∫ +∞
a

p(t)dt, then we can see that the operator A is
|p|1 D-Lipschitzian and satisfies

‖Ax‖ ≤ ‖h‖∞ + |p|1‖x‖δ, ∀x ∈ X. (15)
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(b) Define a second mapping B by

Bx(t) = σ(t)φ(x(t)) +
∫ t

a

G(t, s)g
(
s, x(s)

)
ds, t ≥ a

with continuous functions σ : [a,+∞) → R and g : [a,+∞)× R → R satisfying
respectively limt→+∞ σ(t) = 0 and the growth assumption

|g(s, ξ)| ≤ q(s)ψ(|ξ|), ∀(s, x) ∈ [a,+∞)× R,

where q ∈ L1([a,+∞),R+) and ψ : R+ → R+ is a continuous nondecreasing
map. The kernel function G : [a,+∞)2 → R satisfies

lim sup
t→+∞

∫ +∞

a

|G(t, s)|q(s) ds = 0. (16)

Finally, let
σ = sup

t≥a
|σ(t)| and α = sup

t≥a
α(t)

with

α(t) =
∫ +∞

a

|G(t, s)|q(s) ds.

With conditions (16), we can show, as in the proof of Theorem 2.1 in [8],
that B is completely continuous. Moreover it satisfies

‖Bx‖ ≤ σφ(‖x‖) + αψ(‖x‖), ∀x ∈ X. (17)

(c) Assume that for any compact subset K ⊂ R, there exists a positive
constant MK > 0 such that for any x, y ∈ X , and λ ∈ [0, 1),

y = λAyBx =⇒ (|y(t)| ≤MK , ∀ t ∈ K). (18)

Then, it remains to check the Furi–Pera condition (c) in Theorem 3.3 for the
mapping N defined by Nx = y = AyBx with respect to a closed ball S = BR(0)
for some positive constant R. Let (xj , λj) ∈ ∂S× [0, 1] be a sequence such that,
as j → +∞, λj → λ and xj → x with x = λN(x) and 0 ≤ λ < 1. We will show
that λjNxj ∈ S. Let yj = Nxj = AyjBxj . Then λjNxj = λjAyjBxj = λjyj .
To perform an estimate of |yj |, write

yj(t) = h(t)Bxj(t) +Bxj(t)
∫ t

a

f(s, yj(s)) ds

and notice that, as in (17)

|Bxj(t)| ≤ |σ(t)|φ(R) + α(t)ψ(R) := γR(t) ≤ γR, t ≥ a,

where γR = |σ|φ(R) + αψ(R) and

lim
t→+∞ γR(t) = 0. (19)
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Then

|yj(t)| ≤ γR(t)
(
‖h‖∞ +

∫ t

a

p(s)|yj(s)|δ ds
)

which yields
|yj(t)|
γR(t)

≤ ‖h‖∞ + (γR)δ

∫ t

a

p(s)
∣∣∣∣ yj(s)
γR(s)

∣∣∣∣δ ds.
By Lemma 7.1, we deduce the upper bound

|yj(t)| ≤ γR(t)Ψ−1

(
(γR)δ

∫ t

a

p(s)ds
)
,

where

Ψ(u) =
∫ u

‖h‖∞
s−δds.

With (19), it follows that there exist R > 0 and t1 > a such that

|yj(t)| ≤ R. (20)

This both with (18) enable us to distinguish between the cases t in a compact
subset of [a,+∞) and t large enough and prove, as in example 2, that there
exists some R > 0 such that ‖yj‖ ≤ R. Therefore λjNxj belong to S proving
our claim follows.

Finally, Assumption (H) in Theorem 3.3 is verified for

Φ(r) = r − ‖B(S)‖ϕA(r) ≥ r − [σφ(R) + αψ(R)] |p|1rδ

= r
(
1− [σφ(R) + αψ(R)] |p|1rδ−1

)
(21)

which increases to positive infinity as r → +∞ for 0 < δ < 1. To sum up, we
have proved that, under the hypotheses on f, g, and h the nonlinear integral
equation

x(t) =
(
h(t) +

∫ t

a

f(s, x(s)) ds
)(∫ t

a

g
(
s, x(s)

)
ds

)
, t ∈ [a,+∞)

has a solution x ∈ C0([a,+∞),R) by Theorem 3.3.

8 Concluding remarks

(a) The following functional integral equation

x(t) =
(

1
1 + |x(θ(t))|

)(
q(t) +

∫ σ(t)

0

g
(
s, x(η(s))) ds

)
(22)

is discussed in [10] and solutions are proven to exist in the unit ball S = B1(0)
under the assumptions of Theorem 1.3. Indeed, notice that all solutions of
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Equation (22) are in S. By contrast, solutions x of Equation (5) satisfy ‖x‖ ≤
R+ 1 and thus do not lie in S = BR(0). As a consequence, Theorem 1.3 could
not be used to solve Equation (5) though the Furi–Pera condition was satisfied
and Theorem 3.1 was successfully applied in Example 1.

(b) If, in Example 3, we have rather applied Theorem 3.1 instead, we should
be led to the following estimates regarding the verification of the Furi–Pera
condition for the mapping F = AB:

‖Fxj‖ ≤ ‖Axj‖‖Bxj‖| ≤
(|h‖∞ + |p|1‖xj‖δ

)
(σφ(‖xj‖) + αψ(‖xj‖))

≤ (|h‖∞ + |p|1R) (σφ(R) + αψ(R)) .

Therefore the Furi–Pera condition is satisfied whenever(|h‖∞ + |p|1Rδ
)
(σφ(R) + αψ(R)) ≤ R. (23)

This inequality is somewhat restrictive and shows that the Schauder’s fixed
point theorem could be applied as well.

(c) As illustrated by examples 1-3, Theorems 3.1 and 3.3 show that, in
practice, the Furi–Pera condition is easier to be used than the condition (c) in
Theorem 1.3. Indeed, we can notice that assumption (c) in Examples 2 and 3
is a weak condition in the sense that we were able to make use of the Furi–Pera
condition while neither Schauder’s fixed point theorem nor Dhage’s fixed point
theorem could be applied. Moreover, fixed point theorems in Banach algebras
are useful in applications when problems exhibit nonlinearities as the product
of two integral functions. Many boundary value problem for second-order and
higher-order nonlinear differential equations may be reduced to integral equa-
tions. Further to Examples 1-3, we refer for instance to the functional integral
equations treated in [12, 13].
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Abstract

The statistical analysis of compositional data, multivariate data when
all its components are strictly positive real numbers that carry only rel-
ative information and having a simplex as the sample space, is in the
state-of-the-art devoted to represent compositions in orthonormal bases
with respect to the geometry on the simplex and thus provide an isomet-
ric transformation of the data to an usual linear space, where standard
statistical methods can be used (e.g. [2], [4], [5], [9]). However, in some
applications from geosciences ([14]) or statistical aspects of multicriteria
evaluation theory ([13]) it seems to be convenient to use another types of
bases. This paper is devoted to describe its basic properties and illustrate
the results on an example.

Key words: Aitchison geometry on the simplex; bases on the sim-
plex; additive logratio transformations.
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1 Simplicial geometry

The concept of compositional data and its geometry on the simplex (called
Aitchison geometry) is the starting point for building up statistical models for

77
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such data. This short course follows earlier developements of compositional data
([1]) and cites the present results of the active research, as summarized in [8],
[11] and [12].

Definition 1 A row vector, x = (x1, . . . , xD), is called D-parts composition
when all its components are strictly positive real numbers and they carry only
relative information.

The assertion that D-parts composition (or only composition in short) carry
only relative information means that all the relevant information is contained in
the ratios among the parts, i.e. if c is a nonzero real number, (x1, . . . , xD) and
(cx1, . . . , cxD) convey essentially the same information. A way to simplify the
use of compositions is to represent them in closed form, i.e. as positive vectors
with constant sum κ (usually 1 or 100 in case of percentages) of the parts. As a
consequence, D-parts composition can be identified with the following vector:

Definition 2 For any composition x, the closure operation of x to the constant
κ is defined as

C(x) =

(
κx1∑D
i=1 xi

, . . . ,
κxD∑D
i=1 xi

)
.

Proposition 1 The sample space of compositional data is the simplex, defined
as

SD =

{
x = (x1, . . . , xD), xi > 0,

D∑
i=1

xi = κ

}
.

The basics of Aitchison geometry on the simplex are mentioned below:

Definition 3 Perturbation of a composition x = C(x1, . . . , xD) ∈ SD by a
composition y = C(y1, . . . , yD) ∈ SD is a composition

x⊕ y = C(x1y1, . . . , xDyD).

Definition 4 Power transformation of a composition x ∈ SD by a constant
α ∈ R is a composition

α� x = C(xα
1 , . . . , x

α
D).

Proposition 2 The simplex with the perturbation operation and the power
transformation, (SD,⊕,�), is a vector space.

The analogy between real vector space and the simplex leads to a definition
of compositional (straight) line, based on operations of perturbation and power
transformation, as the compositions x(t), t ∈ R, satisfying

x(t) = x0 ⊕ (t� u),

with starting point x0 and with direction given by the composition u.
Let us remark, that the neutral element is the composition n = C(1, . . . , 1) =

( 1
D , . . . ,

1
D ). The vector structure of SD allows us to use the concepts of linear

dependence and independence.
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Definition 5 A set of m compositions in SD, x1, . . .xm, is said to be linearly
perturbation-dependent if there exist scalars α1, . . . , αm not all zero, such that

(α1 � x1)⊕ · · · ⊕ (αm � xm) = n.

If no such scalars exist, the set is called linearly perturbation-independent.

In simplex SD, the maximum of perturbation-independent compositions is
D − 1. Thus, SD is a vector space of dimension D − 1.

Definition 6 If compositions e1, . . . , eD−1 are perturbation-independent, they
constitute a (simplicial) basis of SD, i.e. each composition x ∈ SD can be
expressed as

x = (α1 � e1)⊕ · · · ⊕ (αD−1 � eD−1)

for some coefficients αi, i = 1, . . . , D − 1, that are termed coordinates with
respect to the basis.

For deeper investigation of the bases on the simplex, we introduce further
the concepts of inner product and norm in Aitchison geometry that enable us
to use concepts of orthogonality and orthonormality of the bases.

Definition 7 Inner product of x,y ∈ SD,

〈x,y〉a =
1
D

D−1∑
i=1

D∑
j=i+1

ln
xi

xj
ln
yi

yj
=

D∑
i=1

ln
xi

g(x)
ln

yi

g(y)
,

and norm of x ∈ SD,

‖x‖a =
√
〈x,x〉a,

where g(x) = (x1 . . . xD)
1
D denotes the geometric mean of the parts of the

compositional vector in the argument.

It is easy to see, that using orthonormal bases on the simplex, all operations
and metric concepts like perturbation, power transformation, inner product and
norm are translated into coordinates as ordinary vector operations (sum of two
vectors and multiplication of a vector by a scalar). See [6], [7] for details.

As consequence of the mentioned concepts we obtain the following definition:

Definition 8 The cosine of the angle ∠(x,y)a between two compositions x, y ∈
SD, satisfying x �= n, x �= y, is expressible as

cos∠(x,y)a =
〈x,y〉a
‖x‖a‖y‖a

.
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2 Bases for additive logratio transformations

Let us have a generating system of compositions in the simplex, w1, . . . ,wD,
where wi = C(1, 1 . . . , e, . . . , 1) (the number e, base of natural logarithm, is
placed in the i-th column, i = 1, . . . , D). Then, taking any D − 1 vectors, we
obtain a basis, e.g. w1, . . . ,wD−1, and any vector x ∈ SD can be written as

x = ln
x1

xD
� (e, 1, . . . , 1, 1)⊕ ln

x2

xD
� (1, e, 1, . . . , 1)⊕ ln

xD−1

xD
� (1, 1 . . . , 1, e).

The mentioned basis has the following properties:

Theorem 1 Let w1, . . . ,wD−1 be the basis defined above. Then for 1 ≤ i, j ≤
D − 1, i �= j,

〈wi,wj〉a = − 1
D
, ‖wi‖2a =

D − 1
D

, cos∠(wi,wj)a = − 1
D − 1

.

Proof We use the inner product in the form

〈x,y〉a =
D∑

k=1

ln
xk

g(x)
ln

yk

g(y)

for any x, y ∈ SD. Thus, in our case,

〈wi,wj〉a =
D∑

k=1,k =i,j

ln
1

D
√

e
ln

1
D
√

e
+2 ln

e
D
√

e
ln

1
D
√

e
=
D − 2
D2

− 2(D − 1)
D2

= − 1
D
.

Analogously

‖wi‖2a =
D∑

k=1,k =i,j

(
ln

1
D
√

e

)2

+
(

ln
e

D
√

e

)2

=
D − 1
D2

+
(D − 1)2

D2
=
D − 1
D

.

The value for cos∠(wi,wj)a = − 1
D−1 is a simple consequence. �

Example 1 In case of D = 3 we obtain w1 = C(e, 1, 1), w2 = C(1, e, 1), so thus

‖w1‖a = ‖w2‖a =
√

6
3 and ∠(w1,w2)a = 120◦. Compositional straight lines

x1(t) = n⊕ (t�w1) = C(et, 1, 1), t ∈ R,

and
x2(s) = n⊕ (s�w2) = C(1, es, 1), s ∈ R,

with neutral element n = C(1, 1, 1) for starting points and directions given by
w1 and w2 are displayed on Figure 1. It is clear that their common composition
is just the neutral element n, obtained for t = s = 0.
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x y

z

n

x1 2x

Compositional lines x1(t) and x2(s) with neutral element n for starting points
and directions given by w1 and w2.

The coefficients ln x1
xD
, . . . , ln xD−1

xD
of the above mentioned basis correspond

to one member of the well known additive logratio (alr) transformations family,
introduced by [1]. To obtain all the alr transformations, it is sufficient to choose
by permutation another D − 1 vectors from the generating system ([10]). We
keep the basis chosen above, the considerations for the others are analogous.
Thus, we denote by alrD the transformation that gives the expression of a
composition in additive logratio coordinates with the part xD as ratioing part,

alrD(x) =
(

ln
x1

xD
, ln

x2

xD
, . . . , ln

xD−1

xD

)
= y.

The inverse of alrD transformation, which gives the coordinates in the canonical
basis of real space, is defined as

alr−1
D (y) = C(exp(y1), . . . , exp(yD−1), 1) = x.

Let us emphasize that the alrD (and also other transformations from the
alr transformations family) is not isometric (its basis on the simplex is not
orthonormal, see Theorem 1), i.e. metric concepts are not translated like as
ordinary vector operations. On the other side, by many statistical methods this
doesn’t play a role and the remaining properties are sufficient (e.g. [1], [3], [9],
for details). Moreover, the form of alr coordinates enables to use it by expert
processes in multicriteria evaluation theory ([13]).
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Abstract

In multivariate linear statistical models with normally distributed ob-
servation matrix a structure of a covariance matrix plays an important role
when confidence regions must be determined. In the paper it is assumed
that the covariance matrix is a linear combination of known symmet-
ric and positive semidefinite matrices and unknown parameters (variance
components) which are unbiasedly estimable. Then insensitivity regions
are found for them which enables us to decide whether plug-in approach
can be used for confidence regions.

Key words: Multivariate model; constraints; variance components;
plug-in estimator; insensitivity region.
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1 Introduction

Multivariate linear statistical models are analyzed in several monographs (cf.
[1], [3], [5], etc.). Relatively small attention is given to problems of a deter-
mination of confidence regions. An attempt to contribute to a solution of the
problem is the aim of the paper.
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An apriori information on a structure of the covariance matrix in multi-
variate linear statistical model can be of different forms. A determination of
a confidence region for the mean value parameters of the observation matrix
depends essentially on this structure.

In the paper it is assumed that the covariance matrix is a linear combina-
tion of known symmetric positive semidefinite matrices and unknown, however
unbiasedly estimable, coefficients (variance components). Then the plug-in ap-
proach is used for a confidence regions. For a decision whether this approach is
admisible, the insensitivity regions are determined.

In the following text the models

vec(Y) ∼ Nnm[(I⊗X)vec(B),Σ⊗ I], H1BH2 + H0 = 0 (1)

vec(Y) ∼ Nnm[(I⊗X)vec(B), I⊗Σ], H1BH2 + H0 = 0 (2)

vec(Y) ∼ Nnr[(Z′ ⊗X)vec(B),Σ⊗ I], H1BH2 + H0 = 0 (3)

vec(Y) ∼ Nnr[(Z′ ⊗X)vec(B), I⊗Σ], H1BH2 + H0 = 0. (4)

will be considered.
Here Y is an n×m and n×r, respectively, matrix (observation matrix) nor-

mally distributed, vec(Y) is the vector composed of the columns of the matrix
Y, Z,X,H1,H2,H0 are known matrices of proper dimensions, B is a matrix of
unknown parameters and Σ is a matrix of the structure Σ =

∑p
i=1 ϑiVi, p ≥ 2.

The notation vec(Y) ∼nm [(I ⊗X) vec(B),Σ ⊗ I] means that the matrix need
not be normally distributed. The matrices V1, . . . ,Vp, are given, symmetric
and positive semidefinite, ϑ = (ϑ1, . . . , ϑp)′ ∈ ϑ, is unknown vector parameter,
where ϑ is an open set in Rp (p-dimensional Euclidean space). The matrix H0

must satisfy the condition

vec(H0) ∈M(H′
2 ⊗H1).

For the sake of simplicity either the matrix H1, or the matrix H2 will be
considered to be the identity matrix I.

Further symbols are of the following meaning.
M(Am,n) = {Au : u ∈ Rn} is the column subspace of the matrix A,

PX = X(X′X)−X, A− is a generalized inverse (g-inverse) of the matrix A, i.e.
AA−A = A, MX = I−PX , A+ is the Moore–Penrose g-inverse of the matrix
A, i.e. AA+A = A, A+AA+ = A+, AA+ = (AA+)′, A+A = (A+A)′.
Frequently used notation (MXΣMX)+, means therefore

(MXΣMX)+ = Σ−1 −Σ−1X(X′Σ−1X)−X′Σ−1, Σ is p.d.,

= Σ+ −Σ+X(XΣ−X)−XΣ+, M(X) ⊂M(Σ),
= T+ −T+X(X′T−X)−X′T+, T = Σ + XX′, otherwise.

If the matrix B is unbiasedly estimable, then the symbol ̂̂B denotes the best
linear unbiased estimator (BLUE) of the matrix B. ( ̂̂ is used in order to
emphasize that the estimator respects the constraints; B̂ is the BLUE which
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does not respect the constraints). If the matrix B is not unbiasedly estimable,

however the BLUE exists for the matrix XB, then the symbol
̂̂XB is used. The

space of all m× n matrices is Mm,n.

2 Estimation of the variance components

In the following text the structure of the matrix Σ is assumed to be Σ =∑p
i=1 ϑiVi. In estimation of the variance components vector ϑ = (ϑ1, . . . , ϑp)′,

the following lemma will be used.

Lemma 2.1 Let the univariate universal linear statistical model with constraints,
i.e.

Y ∼n (Xβ,

p∑
i=1

ϑiVi), h + Hβ = 0,

be considered. Here the n× k matrix X, n × n symmetric and p.s.d. matrices
V1, . . . ,Vp and the q × k matrix H are given. Also the q-dimensional vector h
is given. Then the ϑ0-MINQUE (minimum norm quadratic unbiased estimator)
of the vector ϑ is

ϑ̂ = S−1

(MXM
H′ Σ0MXM

H′ )
+γ,

where

γ = (γ1, . . . , γp)′,

γi = [Y + XH′(HH′)+h]′
(
MXMH′Σ0MXMH′

)+
Vi

× (MXMH′Σ0MXMH′
)+ [Y + XH′(HH′)+h], i = 1, . . . , p,

Σ0 =
p∑

i=1

ϑ0,iVi,

{
S(MXM

H′ Σ0MXM
H′ )

+

}
i,j

=

= Tr
[
Vi

(
MXMH′Σ0MXMH′

)+
Vj

(
MXMH′Σ0MXMH′

)+ ]
,

i, j = 1, . . . , p,

and ϑ0 = (ϑ0,1, . . . , ϑ0,p)′ is an approximate value of the vector ϑ.
The ϑ0-MINQUE of the vector ϑ exists iff the matrix S(MXM

H′ Σ0MXM
H′ )

+

is regular.

Proof cf. in [2], [4]. �

The formulae for the multivariate models with constraints can be now rewrit-
ten directly from this lemma.
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Theorem 2.2 (i) Let in the model (1) with H2 = I, the matrix

S[
M(I⊗X)(I⊗M

H′
1
)(Σ0⊗I)M(I⊗X)(I⊗M

H′
1
)

]+
be regular. Then

S[
M(I⊗X)(I⊗M

H′
1
)(Σ0⊗I)M(I⊗X)(I⊗M

H′
1
)

]+ = Tr
(
MXMH′

1

)
SΣ+

0

and the ϑ0-MINQUE is

ϑ̂ =
[
Tr(MXMH′

1
)SΣ+

]−1

γ,{
SΣ+

0

}
i,j

= Tr(ViΣ+
0 VjΣ+

0 ), i, j = 1, . . . , p,

γ = (γ1, . . . , γp)′

γi = Tr
{
[Y + XH′

1(H1H′
1)

+H0]′MXMH′
1
[Y + XH′

1(H1H′
1)

+H0]

×Σ+
0 ViΣ+

0

}
, i = 1, . . . , p.

(ii) Let in the model (1) with H1 = I, the matrix

Sh
MMH2

⊗X(Σ0⊗I)MMH2
⊗X

i+

be regular. Then

Sh
MMH2

⊗X(Σ0⊗I)MMH2
⊗X

i+ = [n− r(X)]SΣ+
0

+ r(X)S(PH2 Σ0PH2 )+

and the ϑ0-MINQUE is

ϑ̂ =
{
[n− r(X)]SΣ+

0
+ r(X)S(PH2Σ0PH2 )+

}−1

γ,

γ = (γ1, . . . , γp)′,

γi = Tr(Y′MXYΣ+
0 ViΣ+

0 ) + Tr
{
[Y + XH0(H′

2H2)+H′
2]

′PX

× [Y + XH0(H′
2H2)+H′

2](PH2Σ0PH2)
+
}
, i = 1, . . . , p

and{
SPH2Σ0PH2 )+

}
i,j

= Tr
[
Vi(PH2Σ0PH2)

+Vj(PH2Σ0PH2 )
+
]
, i, j = 1, . . . , p.

Proof (i) It is implied by Lemma 2.1 and by the equality[
MI⊗(XMH′

1
)(Σ0 ⊗ I)MI⊗(XMH′

1
)

]+
= Σ+

0 ⊗MXMH′
1
.

In (ii) the equality[
MMH2⊗X(Σ0 ⊗ I)MMH2⊗X

]+ = Σ+
0 ⊗MX + (PH2Σ0PH2)

+ ⊗PX

must be used. �
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Theorem 2.3 (i) Let in the model (2) with H2 = I, the matrix

SM[I⊗(XM
H′

1
)](I⊗Σ0)M[I⊗(XM

H′
1
)]+

be regular. Then

SM[I⊗(XM
H′

1
)](I⊗Σ0)M[I⊗(XM

H′
1
)]+

= mS(MXM
H′

1
Σ0MXM

H′
1
)+

and the ϑ0-MINQUE is

ϑ̂ =
(
mS(MXM

H′
1
Σ0MXM

H′
1
)+

)−1

γ,

γ = (γ1, . . . , γp)′,

γi = Tr

{
[Y + XH′

1(H1H′
1)

+H0]′
(
MXMH′

1
Σ0MXMH′

1

)+

Vi

×
(
MXMH′

1
Σ0MXMH′

1

)+

[Y + XH′
1(H1H′

1)
+H0]

}
,

i = 1, . . . , p.

(ii) Let in the model (2) with H1 = I, the matrix

S[M(MH2
⊗X)(I⊗Σ0)M(MH2

⊗X)]+

be regular. Then

S[M(MH2
⊗X)(I⊗Σ0)M(MH2

⊗X)]+ = [m− r(H2)]S(MXΣ0MX )+ + r(H2)SΣ+

and the ϑ0-MINQUE is

ϑ̂ =
{
[m− r(H2)]S(MXΣ0MX )+ + r(H2)SΣ+

}−1
γ,

γ = (γ1, . . . , γp)′,

γi = Tr[Y′ (MXΣ0MX)+ Vi (MXΣ0MX)+ YMH2 ]

+ Tr
{
[Y + XH0(H′

2H2)+H′
2]

′Σ+
0 ViΣ+

0 [Y + XH0(H′
2H2)+H′

2]PH2

}
Proof (i) The obvious equality[

M[I⊗(XMH′
1
)(I ⊗ Σ0)M[I⊗(XMH′

1
)

]+
= I⊗

(
MXMH′

1
Σ0MXMH′

1

)+

must be taken into account.
(ii) The equality[

MMH2⊗X(I⊗Σ0)MMH2⊗X

]+ = MH2 ⊗ (MXΣ0MX)+ + PH2 ⊗Σ+
0

must be taken into account. �
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Theorem 2.4 (i) Let in the model (3) with H2 = I the matrix

S[M(Z′⊗X)(I⊗M
H′

1
)(Σ0⊗I)M(Z′⊗X)(I⊗M

H′
1
)]

+

be regular. Then

S[M(Z′⊗X)(I⊗M
H′

1
)(Σ0⊗I)M(Z′⊗X)(I⊗M

H′
1
)]

+ =

= Tr
(
MXMH′

1

)
SΣ+

0
+ Tr

(
PXMH′

1

)
S(MZ′Σ0MZ′ )+

and the ϑ0-MINQUE is

ϑ̂ =
[
Tr
(
MXMH′

1

)
SΣ+

0
+ Tr

(
PXMH′

1

)
S(MZ′Σ0MZ′)+

]−1

γ,

γ = γ1, . . . , γp)′,

γi = Tr
{

[Y + XH′
1(H1H′

1)
+H0Z]′MXMH′

1
[Y + XH′

1(H1H′
1)

+H0Z]

×Σ+
0 ViΣ+

0

}
+ Tr

{
[Y + XH′

1(H1H′
1)

+H0Z]′PXMH′
1

× [Y + XH′
1(H1H′

1)
+H0Z] (MZ′Σ0MZ′)+ Vi (MZ′Σ0MZ′)+

}
,

i = 1, . . . , p.

(ii) Let in the model (3) with H1 = I the matrix

S[M(Z′⊗X)(MH2
⊗I)(Σ0⊗I)M(Z′⊗X)(MH2

⊗I)]
+

be regular. Then

S[M(Z′⊗X)(MH2
⊗I)(Σ0⊗I)M(Z′⊗X)(MH2

⊗I)]
+ =

= [n− r(X)]SΣ+
0

+ r(X)S(MZ′MH2
Σ0MZ′MH2

)+

and the ϑ0-MINQUE is

ϑ̂ =
{

[n− r(X)]SΣ+
0

+ r(X)S(MZ′MH2
Σ0MZ′MH2

)+

}−1

γ,

γ = (γ1, . . . , γp)′,

γi = Tr(Y′MXYΣ+
0 ViΣ+

0 ) + Tr
{

[Y + XH0(H′
2H2)+H′

2Z]′PX

× [Y + XH0(H′
2H2)+H′

2Z]
(
MZ′MH2

Σ0MZ′MH2

)+
Vi

× (MZ′MH2
Σ0MZ′MH2

)+ }
, i = 1, . . . , p.

Proof (i) It is necessary to take into account the equality[
M(Z′⊗X)(I⊗MH′

1
)(Σ0 ⊗ I)M(Z′⊗X)(I⊗MH′

1
)

]+
=

= Σ+
0 ⊗MXMH′

1
+ (MZ′Σ0MZ′)+ ⊗PXMH′

1
.
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(ii) The equality[
M(Z′⊗X)(MH2⊗I)(Σ0 ⊗ I)M(Z′⊗X)(MH2⊗I)

]+
=

= Σ+
0 ⊗MX + (MZ′MH2

Σ0MZ′MH2
)+ ⊗PX

must be utilized. �

Theorem 2.5 (i) Let in the model (4) with H2 = I the matrix

S[M(Z′⊗X)(I⊗M
H′

1
)(I⊗Σ0)M(Z′⊗X)(I⊗M

H′
1
)]

+

be regular. Then

ϑ̂ = S−1
[M(Z′⊗X)(I⊗M

H′
1
)(I⊗Σ0)M(Z′⊗X)(I⊗M

H′
1
)]

+γ, γ = (γ1, . . . , γp)′,

γi = Tr

{[
Y + H′

1(H1H′
1)

+H0

]′
Σ+

0 ViΣ+
0

[
Y + H′

1(H1H′
1)

+H0

]
MZ′

}

+ Tr

{[
Y + H′

1(H1H′
1)

+H0

]′ (
MXMH′

1
Σ0MXMH′

1

)+

Vi

×
(
MXMH′

1
Σ0MXMH′

1

)+ [
Y + H′

1(H1H′
1)

+H0

]
PZ′

}
, i = 1, . . . , p

and

S[M(Z′⊗X)(I⊗M
H′

1
)(I⊗Σ0)M(Z′⊗X)(I⊗M

H′
1
)]

+ =

= Tr(MZ′)SΣ+
0

+ Tr(PZ′)S(MXM
H′

1
Σ0MXM

H′
1
)+ .

(ii) If in the model (4) H1 = I and the matrix

S[M(Z′MH2
)⊗X (I⊗Σ0)M(Z′MH2

)⊗X ]+

is regular, then

ϑ̂ = S−1
[M(Z′MH2

)⊗X (I⊗Σ0)M(Z′MH2
)⊗X ]+γ, γ = (γ1, . . . , γp)′,

γi = Tr
{[

Y + XH0(H′
2H2)+H′

2

]′
Σ+

0 ViΣ+
0

[
Y + XH0(H′

2H2)+H′
2

]
MZ′MH2

}
+Tr

{[
Y+XH0(H′

2H2)+H′
2

]′
(MXΣ0MX)+

[
Y+XH0(H′

2H2)+H′
2

]
PZ′MH2

}
and

S[M(Z′MH2
)⊗X (I⊗Σ0)M(Z′MH2

)⊗X ]+ = Tr(MZ′MH2
)SΣ+

0
+Tr(PZ′MH2

)S(MXΣ0MX)+ .
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Proof In (i) the equality[
M(Z′⊗X)(I⊗MH′

1
)(I⊗Σ0)M(Z′⊗X)(I⊗MH′

1
)

]+
=

= MZ′ ⊗Σ0 + PZ′ ⊗ (MXMH′
1
Σ0MXMH′

1
)+

must be used.
In (ii) the equality[

M[(Z′MH2 )⊗X](I⊗Σ0)M[(Z′MH2 )⊗X]

]+
=

= MZ′MH2
⊗Σ0 + PZ′MH2

⊗ (MXΣ0MX)+

must be used. �

3 Confidence regions

3.1 The matrix Σ is given

In this section the observation matrix is assumed to be normally distributed.
Since confidence regions for multivariate models can be directly rewritten from
the formulae for univariate models, the following lemmas are given without
proofs.

Lemma 3.1 (i) Let in the model (1) with H2 = I the s× k matrix G1 and the
m× t matrix G2 be given. Let G1BG2 be unbiasedly estimable, i.e.

M(G2 ⊗G′
1) ⊂M[I⊗ (X′,H′

1)].

Then the (1− α)-confidence region is

E =
{
U : U ∈ Ms,t,Tr

(
(U − ̂̂G1BG2)′[G1(MH′

1
X′XMH′

1
)+G′

1]
+

× (U− ̂̂G1BG2)(G′
2ΣG2)+

)
≤ χ2

f (0, 1− α)
}
,

f = r{Var[vec( ̂̂G1BG2)]} = r(G′
2ΣG2)r[G1(MH′

1
X′XMH′

1
)+G′

1].

Here
̂̂G1BG2 is the BLUE of the matrix G1BG2.

(ii) Let in the model (1) with H1 = I the matrix G1BG2 be unbiasedly
estimable, i.e.M(G2 ⊗G′

1) ⊂M(I⊗X′,H2⊗ I). Then the (1−α)-confidence
region is

E =
{
U : U ∈Ms,t,Tr

[
(U− ̂̂G1BG2)′[G1(X′X)+G′

1]
+(U − ̂̂G1BG2)

×
(
G′

2

{
[MH2(Σ + MH2)

+MH2 ]
+ −MH2

}
G2

)+]
≤ χ2

f (0; 1− α)
}
,

f = r
{

Var
[

vec( ̂̂G1BG2)
]}

= r
(
G′

2

{
[MH2(Σ + MH2)

+MH2 ]
+ −MH2

}
G2

)
r[G1(X′X)+G′

1].
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Lemma 3.2 (i) Let in the model (2) with H2 = I the s× k matrix G1 and the
m × t matrix G2 be given and let G1BG2 be unbiasedly estimable. Then the
(1− α)-confidence region is

E =
{
U : U ∈Ms,t Tr

[
(U− ̂̂G1BG2)′

(
G1

{
[MH′

1
X′(Σ + XMH′

1
X′)+

×XMH′
1
]+ −MH′

1

}
G′

1

)+

(U − ̂̂G1BG2)(G′
2G2)+

]
≤ χ2

f (0; 1− α)
}
,

f = r
{

Var
[

vec( ̂̂G1BG2)
]}

= r(G2)r
(
G1

{
[MH′

1
X′(Σ + XMH′

1
X′)+XMH′

1
]+ −MH′

1

}
G′

1

)
.

(ii) Let in the model (2) with H1 = I the s × k matrix G1 and the m × t
matrix G2 be given and let G1BG2 be unbiasedly estimable. Then the (1−α)-
confidence region is

E =

{
U : U ∈ Ms,t,Tr

(
(U− ̂̂G1BG2)′

{
G1[(X′T+X)+ − I]G′

1

}+

× (U− ̂̂G1BG2)(G′
2MH2G2)+

)
≤ χ2

f (0; 1− α)

}
,

f = r
{

Var
[

vec( ̂̂G1BG2)
]}

= r
{
G1[(X′T+X)+ − I]G′

1

}
r(G′

2MH2G2).

Lemma 3.3 (i) Let in the model (3) with H2 = I the s × k matrix G1 and
the m × t matrix G2 be given and let G1BG2 be unbiasedly estimable, i.e.
M(G2 ⊗G′

1) ⊂M(Z⊗X′, I⊗H′
1). Then the (1− α)-confidence region is

E =
{
U : U ∈Ms,t,Tr

(
(U− ̂̂G1BG2)′

[
G1(MH′

1
X′XMH′

1
)+G′

1

]+
× (U− ̂̂G1BG2)

{
G′

2

[
(ZU+Z′)+ − I

]
G2

})
≤ χ2

f (0; 1− α)
}
,

f = r
{

Var
[

vec( ̂̂G1BG2)
]}

= r
[
G1(MH′

1
X′XMH′

1
)+G′

1

]
r
{
G′

2

[
(ZU+Z′)+ − I

]
G2

}
.

(ii) Let in the model (3) with H1 = I the s × k matrix G1 and the m × t
materixG2 be given and letG1BG2 be unbiasedly estimable, i.e.M(G2⊗G′

1) ⊂
M(Z⊗X′,H2 ⊗ I). Then the (1− α)-confidence region is

E =
{
U : U ∈ Ms,t,Tr

[
(U− ̂̂G1BG2)′[G1(X′X)+G′

1]
+(U− ̂̂G1BG2)

×
(
G′

2

{[
MH2Z(Σ + Z′MH2Z)+Z′MH2

]+−MH2

}
G2

)+]
≤ χ2

f(0; 1− α)
}
,

f = r
{

Var
[

vec( ̂̂G1BG2)
]}

= r[G1(X′X)+G′
1] r

(
G′

2

{[
MH2Z(Σ + Z′MH2Z)+Z′MH2

]+ −MH2

}
G2

)
.
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Lemma 3.4 (i) Let in the model (4) with H2 = I the s × k matrix G1 and
m× t matrix G2 be given and let the matrix G1BG2 be unbiasedly estimable,
i.e.M(G2 ⊗G′

1) ⊂M(Z⊗X′, I⊗H′
1). Then the (1− α)-confidence region is

E =
{
U : U ∈ Ms,t,Tr

[
(U− ̂̂G1BG2)′

(
G1

{
[MH′

1
X′(Σ + XMH′

1
X)+

×XMH′
1
]+−MH′

1

}
G′

1

)+

(U− ̂̂G1BG2)[G′
2(Z

′Z)+G2]+
]
≤ χ2

f (0; 1− α)
}
,

f = r{Var[vec( ̂̂G1BG2)]}
= r

(
G1

{
[MH′

1
X′(Σ + XMH′

1
X)+XMH′

1
]+ −MH′

1

}
G′

1

)
r[G′

2(Z
′Z)+G2].

(ii) Let in the model (4) with H1 = I the s × k matrix G1 and the m × t
matrix G2 be given and let G1BG2 be unbiasedly estimable, i.e.M(G2⊗G′

1) ⊂
M(Z⊗X′,H2 ⊗ I). Then the (1− α)-confidence region is

E =
{
U : U ∈ Ms,t,Tr

(
(U − ̂̂G1BG2)′

{
G1

[
(X′T+X)+ − I

]
G′

1

}+

× (U− ̂̂G1BG2)
[
G′

2(MH2ZZ′MH2)
+G2

]+) ≤ χ2
f (0; 1− α)

}
,

f = r
{
G1

[
(X′T+X)+ − I

]
G′

1

}
r
[
G′

2(MH2ZZ′MH2)
+G2

]
.

3.2 The matrix Σ is of the form
∑p

i=1 ϑiVi

If the estimators of the variance components ϑ1, . . . , ϑp, are sufficiently accurate,
then confidence regions cover the functions of parameter matrix with probability
sufficiently near to prescribed confidence level 1 − α. How rigorous conditions
on the accuracy is, the nonsensitivity region can show.

In the first step let an univariate universal linear statistical model with
constraints be considered, i.e.

Y ∼ Nn

(
Xβ,

p∑
i=1

ϑiVi

)
, Hq,kβ + hq,1 = 0.

The (1 − α)-confidence region for the function Gr,kβ, Hβ + h = 0, is

CG =
{
u : u ∈ Rk, (u− ̂̂Gβ)′[Var(̂̂Gβ)]−(u− ̂̂Gβ) ≤ χ2

f (0; 1− α)
}
,

where ̂̂Gβ = G
([

(MH′X′)−m(Σ

]′
Y −

{
I− [(MH′X′)−m(Σ)

]′
X
}
H′(HH′)+h,

f = r[Var(̂̂Gβ)],

Var(̂̂Gβ)] = VG = G
([

(MH′X′)−m(Σ)
]′
Σ(MH′X′)−m(Σ)G′,

Σ =
p∑

i=1

ϑiVi.
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Lemma 3.5 Let

T (ϑ) = (̂̂Gβ −Gβ)′[Var(̂̂Gβ)]−(̂̂Gβ −Gβ).

Then

∂T (ϑ)
∂ϑi

= −2v′(Σ + XMH′X′)+ViT′
GV+

G(̂̂Gβ −Gβ)

−(̂̂Gβ −Gβ)′V+
GTGViT′

GV+
G(̂̂Gβ −Gβ),

VG = Var(̂̂Gβ) = G
{[

MH′X′(Σ + XMH′X′)+XMH′
]+−MH′

}
G′,

TG = G
[
MH′X′(Σ + XMH′X′)+XMH′

]+
X′(Σ + XMH′X′)+,

v = Y − ̂̂Xβ,

E

(
∂T (ϑ)
∂ϑi

)
= −Tr(ViT′

GV+
GTG) = −ai.

Further

cov

(
∂T (ϑ)
∂ϑi

,
∂T (ϑ)
∂ϑj

)
= 4 Tr

[
ViT′

GV+
GTGVj

(
MXMH′ΣMXMH′

)+]
+ 2 Tr(ViT′

GV+
GTGVjT′

GV+
GTG) = {A}i,j.

Theorem 3.6 Let a = (a1, . . . , ap)′ be the vector given by the preceding lemma
and A be the matrix with the (i, j) entry equal to {A}i,j given also by the
preceding lemma. Then the nonsensitivity region for the confidence region CG

is

NG =

{
δϑ :

[
δϑ− δmax(t2A− aa′)+a

]′
(t2A− aa′)

[
δϑ− δmax(t2A− aa′)+a

] ≤ δ2max

a′A+a
t2 − a′A+a

}
,

δmax = χ2
f (0; 1− α) − χ2

f (0; 1− α− ε)

and t > 0 is sufficiently large real number. It is valid that

δϑ ∈ NG ⇒ P{Gβ ∈ CB} ≥ 1− α− ε.

Proof Let t be sufficiently large, such that

p∑
i=1

∂T (ϑ)
∂ϑi

δϑi < E

(
p∑

i=1

∂T (ϑ)
∂ϑi

δϑi

)
+ t

√√√√V ar

(
p∑

i=1

∂T (ϑ)
∂ϑi

δϑi

)

= −a′δϑ + t
√
δϑ′Aδϑ.
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If
−a′δϑ + t

√
δϑ′Aδϑ ≤ δmax,

where δmax = χ2
f (0; 1− α)− χ2

f (0; 1− α− ε), then

P{T (ϑ + δϑ) ≤ χ2
f (0; 1− α)} ≥ 1− α− ε.

Thus

t2δϑ′Aδϑ ≤ (δmax + a′δϑ)2 ⇔ t2δϑ′Aδϑ− δϑ′aa′δϑ− 2δmaxa′δϑ ≤ δ2max.

If a ∈ M(t2A− aa′), then the last inequality can be rearranged as[
δϑ− δmax(t2A− aa′)+a

]′
(t2A− aa′)

[
δϑ− δmax(t2A− aa′)+a

]
≤ δ2max

a′A+a
t2 − a′A+a

.

Here the equality

a′(t2A− aa′)+a =
a′A+a

t2 − a′A+a
is used. It is valid that A = A1 + A2, where

{A1}i,j = 4 Tr
[
ViT′

GV+
GTGVj

(
MXMH′ΣMXMH′

)+]
,

{A2}i,j = 2 Tr(ViT′
GV+

GTGVjT′
GV+

GTG) = {A}i,j.

Both matrices are p.s.d., i.e. M(A1 + A2) = M(A1,A2). Since a ∈ M(A2)
because of the relationship⎛⎜⎜⎜⎝

Tr(UV1)
Tr(UV2)

...
Tr(UVp)

⎞⎟⎟⎟⎠ ∈M

⎛⎜⎜⎝
Tr(UV1UV1), Tr(UV1UV2, . . . , Tr(UV1UVp)
Tr(UV2UV1), Tr(UV2UV2), . . . , Tr(UV2UVp)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tr(UVpUV1), Tr(UVpUV2), . . . , Tr(UVpUVp)

⎞⎟⎟⎠ ,

where U = T′
GV+

GTG, what can be easily proved, and the number t can be
suitably chosen, the assumption a ∈ M(t2A− aa′) can be ensured. �

A construction of the nonsensitivity region for different multivariate linear
statistical models with constraints can be derived from the last theorem. It is
sufficient to find the vector a and the matrix A for different situations.

Theorem 3.7 Let in the model (1) with H2 = I the matrix G1BG2 be unbi-
asedly estimable, i.e. M(G2 ⊗G′

1) ⊂M[I⊗ (X′,H′
1)]. Then

a = (a1, . . . , ap)′,
ai = r[G1(MH′

1
X′X)+G′

1] Tr[ViG2(G′
2ΣG2)+G′

2], i = 1, . . . , p,

A = r[G1(MH′
1
X′X)+G′

1]SG2(G′
2ΣG2)+G′

2
,

where{
SG2(G′

2ΣG2)+G′
2

}
i,j

= Tr[ViG2(G′
2ΣG2)+G′

2VjG2(G′
2ΣG2)+G′

2].
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Proof With respect to Lemma 3.5 the following scheme

Vi → Vi ⊗ I, TG → TG′
2⊗G1 , VG → VG′

2⊗G1 ,

will be used. Here

TG′
2⊗G1 = T′

G2
⊗TG1 = G′

2 ⊗G1[(MH′
1
X′)−m(I)]

′,

TG2 = G2, TG1 = G1[(MH′
1
X′)−m(I)]

′,

VG′
2⊗G1 = VG2 ⊗VG1 ,

VG1 = G1(MH′
1
X′XMH′

1
)+G′

1,

VG2 = G′
2ΣG2.

Now we use the formulae from Lemma 3.5 and thus we obtain

ai = Tr[(V1 ⊗ I)(TG2 ⊗T′
G1

)(V+
G2
⊗V+

G1
)(T′

G2
⊗TG1)]

= r[G1(MH′
1
X′X)+MH′

1
)+G′

1] Tr[ViG2(G′
2ΣG2)+G2],

since

Tr(T′
G1

V+
G1

TG1) =

= Tr
{
(MH′

1
X′)−m(I)G

′
1[G1(MH′

1
X′X)+G′

1]
+G1[(MH′

1
X′)−m(I)]

′
}

= Tr
{
G1[(MH′

1
X′)−m(I)]

′(MH′
1
X′)−m(I)G

′
1[G1(MH′

1
X′X)+G′

1]
+
}

= Tr
{
[G1(MH′

1
X′X)+G′

1][G1(MH′
1
X′X)+G′

1]
+
}

= r[G1(MH′
1
X′X)+G′

1].

As far as the matrix A be concerned, it is valid that

{A}i,j = 4 Tr
{

(Vi ⊗ I)(TG2 ⊗T′
G1

)(V+
G2
⊗V+

G1
)(T′

G2
⊗TG1)(Vj ⊗ I)

× [MI⊗(XMH′
1
)(Σ⊗ I)MI⊗(XMH′

1
)]+
}

+ 2 Tr
{
(Vi ⊗ I)(TG2 ⊗T′

G1
)(V+

G2
⊗V+

G1
)(T′

G2
⊗TG1)(Vj ⊗ I)

× (TG2 ⊗T′
G1

)(V+
G2
⊗V+

G1
)(T′

G2
⊗TG1)(Vj ⊗ I)

}
= r[G1(MH′

1
X′X)+G′

1]

× Tr
{
ViG2(G′

2ΣG2)+G′
2VjG2(G′

2ΣG2)+G′
2

}
,

since

[MI⊗(XMH′
1
)(Σ⊗ I)MI⊗(XMH′

1
)]+ = [(I⊗MXMH′

1
)(Σ⊗ I)(I ⊗MXMH′

1
)]+

= Σ+ ⊗MXMH′
1
.

Now it is easy to finish the proof. �
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Theorem 3.8 Let in the model (1) with H1 = I the matrix G1BG2 be unbi-
asedly estimable, i.e. M(G2 ⊗G′

1) ⊂M(I⊗X′,H2 ⊗ I). Then

a = (a1, . . . , ap)′,
ai = r[G1(X′X)+G′

1] Tr(ViTG2V
+
G2

T′
G2

),

A = 4r[G1(X′X)+G′
1]CTG2V +

G2
T ′

G2
,(PH2ΣPH2 )+ + 2r[G1(X′X)+G′

1]STG2 V +
G2

T ′
G2
,

where

TG′
2⊗G1 = T′

G2
⊗TG1 , TG1 = G1(X′X)+X′, TG2 = (MH2)

−
m(Σ)G2,

VG′
2⊗G1 = VG2 ⊗VG1 ,

VG1 = G1(X′X)+G′
1, VG2 = G′

2

{
[MH2(Σ + MH2)

+MH2 ]
+ −MH2

}
and {

CTG2V +
G2

T ′
G2

,(PH2ΣPH2 )+

}
i,j

= Tr[ViTG2V
+
G2

T′
G2

Vj(PH2ΣPH2)
+],{

STG2V +
G2

T ′
G2

}
i,j

= Tr[ViTG2V
+
G2

T′
G2

VjTG2V
+
G2

T′
G2

].

Proof It is analogous as in preceding theorem. The formulae from Lemma 3.5
must be used. The equality[

MMH2⊗X(Σ⊗ I)MMH2⊗X

]
= Σ+ ⊗MX + (PH2ΣPH2 )

+ ⊗PX

must be taken into account. �

Theorem 3.9 Let in the model (2) with H2 = I the matrix G1BG2 be unbi-
asedly estimable, i.e. M(G′

2 ⊗G1) ⊂M[I⊗ (X′,H′
1)]. Then

a = (a1, . . . , ap)′,
ai = r(G2) Tr(ViT′

G1
V+

G1
TG1), i = 1, . . . , p,

A = 4r(G2)CT ′
G1

V +
G1

TG1 ,(MXM
H′

1
ΣMXM

H′
1
)+ + 2r(G2)ST ′

G1
V +

G1
TG1

,

where

TG′
2⊗G1 = T′

G2
⊗TG1 ,

TG1 = G1[MH′
1
X′)−m(Σ)]

′

= G1[MH′
1
X′(Σ + XMH′

1
X′)+XMH′

1
]+MH′

1
X′(Σ + XMH′

1
X′)+,

TG2 = G2,

VG1 = G1

{
[MH′

1
X′(Σ + XMH′

1
X′)+XMH′

1
]+ −MH′

1

}
G′

1,

VG2 = G′
2G2
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and {
CT ′

G1
V +

G1
TG1 ,(MXM

H′
1
ΣMXM

H′
1
)+

}
i,j

=

= Tr[ViT′
G1

V+
G1

TG1Vj(MXMH′
1
ΣMXMH′

1
)+],{

ST ′
G1

V +
G1

TG1

}
i,j

= Tr(ViT′
G1

V+
G1

TG1VjT′
G1

V+
G1

TG1).

Proof The obvious equality[
MI⊗(XMH′

1
)(I⊗Σ)MI⊗(XMH′

1
)

]
= I⊗

(
MXMH′

1
ΣMXMH′

1

)+

and Lemma 3.5 must be used. �

Theorem 3.10 Let in the model (2) with H1 = I the matrix G1BG2 be unbi-
asedly estimable, i.e. M(G2 ⊗G′

1) ⊂M(I⊗X′,H2 ⊗ I). Then

a = (a1, . . . , ap)′,
ai = r(MH2G2) Tr(ViT′

G1
V+

G1
TG1), i = 1, . . . , p,

A = 4r(MH2G2)CT ′
G1

V +
G1

TG1 ,(MXΣMX )+ + 2r(MH2G2)ST ′
G1

V +
G1

TG1
,

where

TG′
2⊗G1 = T′

G2
⊗TG1 , TG1 = G1

[
(X′)−M(Σ)

]′
= G1X′T+X)+X′T+,

T = Σ + XX, TG2 = MH2G2,

VG1 = G1[X′T+X)+ − I]G′
1, VG2 = G′

2MH2G2

and {
CT ′

G1
V +

G1
TG1 ,(MXΣMX )+

}
i,j

= Tr[ViT′
G1

V+
G1

TG1Vj(MXΣMX)+],{
ST ′

G1
V +

G1
TG1

}
i,j

= Tr(ViT′
G1

V+
G1

TG1).

Proof The equalities[
MMH2⊗X(I⊗Σ)MMH2⊗X

]
= MH2 ⊗ (MXΣMX)+ + PH2 ⊗Σ+,

T′
G2

PH2 = 0

and Lemma 3.5 must be taken into account. �

Theorem 3.11 Let in the model (3) with H2 = I the matrix G1BG2 be unbi-
asedly estimable, i.e. M(G2 ⊗G′

1) ⊂M(Z⊗X′, I⊗H′
1). Then

a = (a1, . . . , ap)′,
ai = r[V+

G1
G1(MH′

1
X′XMH′

1
)+G′

1] Tr(ViTG2V
+
G2

T′
G2

), i = 1, . . . , p,

A = 4r[V+
G1

G1(MH′
1
X′XMH′

1
)+G′

1]CTG2V +
G2

T ′
G2

,(MZ′ΣMZ′ )+

+ 2r[V+
G1

G1(MH′
1
X′XMH′

1
)+G′

1]STG2V +
G2

T ′
G2
,
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where

TG′
2⊗G1 = T′

G2
⊗TG1 , TG1 = G1

(
MH′

1
X′XMH′

1

)+
MH′

1
X′,

TG2 = = Z−
m(Σ)G2 = U+Z′(ZU+Z′)+, U = Σ + Z′Z,

VG1 = G1(MH′
1
X′XMH′

1
)+MH′

1
X′ΣXMH′

1
(MH′

1
X′XMH′

1
)+G′

1,

VG2 = G′
2[(ZU+Z′)+ − I]G2

and {
CTG2V +

G2
T ′

G2
,(MZ′ΣMZ′ )+

}
i,j

= Tr[ViTG2V
+
G2

T′
G2

Vj(MZ′ΣMZ′)+],{
STG2V +

G2
T ′

G2

}
i,j

= Tr(ViTG2V
+
G2

T′
G2

VjTG2V
+
G2

T′
G2

).

Proof Lemma 3.5 and the equalities[
MZ′⊗(XMH′

1
)(Σ⊗ I)MZ′⊗(XMH′

1
)

]
= Σ+⊗MXMH′

1
+(MZ′ΣMZ′)+⊗PXMH′

1
,

TG1MXMH′
1

= 0

must be used. �

Theorem 3.12 Let in the model (3) with H1 = I the matrix G1BG2 be unbi-
asedly estimable, i.e. M(G2 ⊗G′

1) ⊂M(Z⊗X′,H2 ⊗ I). Then

a = (a1, . . . , ap)′,
ai = r[G1(X′X)+G′

1] Tr(ViTG2V
+
G2

T′
G2

), i = 1, . . . , p,

A = 4r[G1(X′X)+G′
1]CTG2V +

G2
T ′

G2
,(MZ′MH2

ΣMZ′MH2
)+

+ 2r[G1(X′X)+G′
1]STG2V +

G2
T ′

G2
,

where

TG′
2⊗G1 = T′

G2
⊗TG1 , TG1 = G1(X′X)+X′,

TG2 = (MH2Z)−m(Σ)G2

= (Σ + Z′MH2Z
′)+Z′MH2 [MH2Z(Σ + Z′MH2Z)+Z′MH2 ]

+G2,

VG1 = G1(X′X)+G′
1,

VG2 = G′
2

{
[MH2Z

′(Σ + Z′MH2Z)+Z′MH2 ]
+ −MH2

}
G2

and {
CTG2V +

G2
T ′

G2
,(MZ′MH2

ΣMZ′MH2
)+

}
i,j

=

= Tr[ViTG2V
+
G2

T′
G2

Vj(MZ′MH2
ΣMZ′MH2

)+],{
STG2V +

G2
T ′

G2

}
= Tr(ViTG2V

+
G2

T′
G2

VjTG2V
+
G2

T′
G2

).
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Proof The equalities[
M(Z′MH2 )⊗X(Σ⊗ I)M(Z′MH2 )⊗X

]
= Σ+⊗MX+

(
MZ′MH2

ΣMZ′MH2

)+⊗PX ,

TG1MX = 0

and Lemma 3.5 must be taken into account. �

Theorem 3.13 Let in the model (4) with H2 = I the matrix G1BG2 be unbi-
asedly estimable, i.e. M(G2 ⊗G′

1) ⊂M(Z⊗X′, I⊗H′
1). Then

a = (a1, . . . , ap)′,
ai = r[G′

2(ZZ′)+G2] Tr(ViT′
G1

V+
G1

TG1), i = 1, . . . , p,

A = 4r[G′
2(ZZ′)+G2]CT ′

G1
V +

G1
T ′

G1
,(MXM

H′
1
ΣMXM

H′
1
)+

+ 2r[G′
2(ZZ′)+G2]ST ′

G1
V +

G1
T ′

G1
,

where

TG′
2⊗G1 = T′

G2
⊗TG1 ,

TG1 = G1

[
(MH′

1
X′)−m(Σ)

]′
= G1[MH′

1
X′(Σ + XMH′

1
X′)+XM+

H′
1
MH′

1
X′(Σ + XMH′

1
X′)+,

TG2 = Z′(ZZ)+G2,

VG1 = G1{[MH′
1
X′(Σ + XMH′

1
X′)+XMH′

1
]+ −MH′

1
}G′

1,

VG2 = G′
2(ZZ′)+G2

and {
CT ′

G1
V +

G1
T ′

G1
,(MXM

H′
1
ΣMXM

H′
1
)+

}
i,j

=

= Tr[ViT′
G1

V+
G1

TG12Vj(MXMH′
1
ΣMXMH′

1
)+],{

ST ′
G1

V +
G1

TG1

}
= Tr(ViT′

G1
V+

G1
TG1VjT′

G1
V+

G1
TG1).

Proof The equalities[
MZ′⊗(XMH′

1
(I⊗Σ)MZ′⊗(XMH′

1

]+
= MZ′⊗Σ++PZ′⊗(MXMH′

1
ΣMXMH′

1
)+,

T′
G2

MZ′ = 0

and Lemma 3.5 must be utilized. �
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Theorem 3.14 Let in the model (4) with H1 = I the matrix G1BG2 be unbi-
asedly estimable, i.e. M(G2 ⊗G′

1) ⊂M(Z⊗X′,H2 ⊗ I). Then

a = (a1, . . . , ap)′,
ai = r[G′

2(MH2ZZ′MH2)
+G2] Tr(ViT′

G1
V+

G1
T′

G1
), i = 1, . . . , p,

A = 4r[G′
2(MH2ZZ′MH2)

+G2]CT ′
G1

V +
G1

TG1 ,(MXΣMX )+

+ 2r[G′
2(MH2ZZ′MH2)

+G2]ST ′
G1

V +
G1

TG1
,

where

TG′
2⊗G1 = T′

G2
⊗TG1 ,

TG1 = G1[(X′)−m(Σ)]
′ = G1(X′T+X)+X′T+, T = Σ + XX′,

TG2 = Z′MH2(MH2ZZ′MH2)
+G2,

VG1 = G1[(X′T+X)+ − I]G′
1,

VG2 = G′
2(MH2ZZZ′MH2)

+G2

and {
CT ′

G1
V +

G1
TG1 ,(MXΣMX )+

}
i,j

= Tr[ViT′
G1

V+
G1

TG1Vj(MXΣMX)+],{
ST ′

G1
V +

G1
TG1

}
i,j

= Tr(ViT′
G1

V+
G1

TG1VjT′
G1

V+
G1

TG1 .

Proof The equalities[
M(Z′MH2 )⊗X(I⊗Σ)M(Z′MH2 )⊗X

]+
= MZ′MH2

⊗Σ++PZ′MH2
⊗(MXΣMX)+,

T′
G2

MZ′MH2
= 0

and Lemma 3.5 must be used. �
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Abstract

If an observation vector in a nonlinear regression model is normally
distributed, then an algorithm for a determination of the exact (1 − α)-
confidence region for the parameter of the mean value of the observation
vector is well known. However its numerical realization is tedious and
therefore it is of some interest to find some condition which enables us to
construct this region in a simpler way.

Key words: Confidence ellipsoid; nonlinear regression model;
linearization region.

2000 Mathematics Subject Classification: 62F10, 62J05

1 Introduction

In a linear statistical model with normally distributed observation vector the
construction of the confidence regions is a simple problem. If the statistical
model is nonlinear, i.e. the mean value of the observation vector is a nonlinear
vector function of the parameters, then the problem can be also solved, however

*Supported by the Council of the Czech Government MSM 6 198 959 214.
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it is much more complicated. Therefore it is reasonable to find another, much
more simpler procedure, which can be used at least under some conditions.

The aim of the paper is to find such conditions which enables us to use the
procedure from the theory of linear statistical models.

More on the problem of linearization of regression models cf. [3], [4], [5], [6],
[10], [11].

2 Notation and auxiliary statement

Let Y be an n-dimensional random vector (observation vector) which is nor-
mally distributed. Its mean value is equal to f(β), where β ∈ Rk (k-dimensional
real linear space) is an unknown vector parameter and f(·) : Rk → Rn is a vector
function. It is assumed that it can be expressed with sufficiently high accuracy
as

f(u) = f0 + F(u− β0) +
1
2
κ(u− β0), u ∈ Rk,

where

f0 = f(β0), F =
∂f(u)
∂u′

∣∣∣
u=β0

,

κ(δβ) = [κ1(δβ), . . . , κn(δβ)]′, δβ = β − β0

κi(δβ) = δβ′ ∂2fi(u)
∂u∂u′

∣∣∣
u=β0

δβ, i = 1, . . . , n.

The covariance matrix of the vector Y is σ2V, where σ2 ∈ (0,∞) is either
known or unknown parameter and the n× n matrix V is given.

The notation
Y ∼ Nn[f(β), σ2V], β ∈ Rk, (1)

will be used in the following text.
The quadratized version of the model (1) is

Y − f0 ∼ Nn

[
Fδβ +

1
2
κ(δβ), σ2V

]
, β ∈ Rk, (2)

and the linearized version is

Y − f0 ∼ Nn

(
Fδβ, σ2V

)
, β ∈ Rk. (3)

Assumption The regularity of the model (3) is assumed in the following text,
i.e. the rank of the matrix F is r(F) = k < n and the matrix V is positive
definite.

Lemma 2.1 The (1−α)-confidence region for the vector β in the model (3) is

E =
{
u : (u− β0 − δ̂β)′F′V−1F(u− β0 − δ̂β) ≤ σ2χ2

k(0; 1− α)
}
, (4)
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if the parameter σ2 is known.
If it is estimated, then

E =
{
u : (u− β0 − δ̂β)′F′V−1F(u− β0 − δ̂β) ≤ σ̂2Fk,n−k(0; 1− α)

}
. (5)

Here

δ̂β = (F′V−1F)−1F′V−1(Y − f0),

σ̂2 = (Y − f0 − Fδ̂β)′ V−1(Y − f0 − Fδ̂β)/(n− k),

χ2
k(0; 1 − α) is (1 − α)-quantile of the central chi-squared distribution with k
degrees of freedom and Fk,n−k(0; 1−α) is (1−α)-quantile of the central Fisher–
Snedecor distribution with k and n− k degrees of freedom.

Proof Proof is well known (cf. e.g. [2]) and therefore it is omitted. �

Lemma 2.1 is not valid in the model (2). However if δβ = β∗ − β0 is
sufficiently small, where β∗ is the actual value of the vector parameter β, it can
be expected that the region E from (4) and (5), respectively, covers the actual
value β∗ with a probability larger than 1 − α− ε, where ε > 0 is a sufficiently
small real number.

3 Linearization region

Consider the quadratized model (2) with the given covariance matrix Σ = σ2V
(i.e. σ2 is known).

Definition 3.1 The Bates and Watts [1] parametric curvature K(par) and the
intrinsic curvature K(int) of the model (1) at the point β0 are given as

K(par) = σ sup

⎧⎨⎩
√

κ′(δβ)V−1PV −1

F κ(δβ)

δβF′V−1Fδβ
: δβ ∈ Rk

⎫⎬⎭ = σK
(par)
0

and

K(int) = σ sup

⎧⎨⎩
√

κ′(δβ)V−1MV −1

F κ(δβ)

δβF′V−1Fδβ
: δβ ∈ Rk

⎫⎬⎭ = σK
(int)
0 .

Here PV −1

F = F(F′V−1F)−1F′V−1 and MV −1

F = I−PV −1

F .

Let an r-dimensional vector function d : Rk → Rr

d(β) = d(β0) + Dδβ, β ∈ Rk,

where r(Dr,k) = r ≤ k, be under consideration.
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Theorem 3.1 Let α and ε be sufficiently small positive real numbers and let
δmax be solution of the equation

P{χ2
r(δmax) ≤ χ2

r(0; 1− α)} = 1− α− ε.

If

δβ ∈ LE =

{
δβ : δβ′Cδβ ≤ 2

√
δmax

K(par)(β0)

}
, where C =

F′V−1F
σ2

,

then

E∗ =
{
u : (u−Dδ̂β)′(DC−1D′)−1(u−Dδ̂β) ≤

(√
χ2

r(0; 1− α) +
√
δmax

)2
}

covers Dδβ with probability at least (1− α− ε).

Proof Let

δβ′Cδβ ≤ 2
√
δmax

K(par)(β0)
.

Then
∀{u ∈ Rr}|u′D[E(δ̂β)− δβ]| ≤

√
δmax

√
u′DC−1D′u,

what is equivalent, with respect to the Scheffé theorem [9], to

[E(δ̂β)− δβ]′D′(DC−1D′)−1D[E(δ̂β)− δβ] ≤ δmax.

Let {
δβ : [E(δ̂β)− δβ]′D(DC−1D′)−1D[E(δ̂β)− δβ] ≤ δmax

}
. (6)

Let (DC−1D′)−1 =
∑r

i=1 λifif ′i be the spectral decomposition.
The (1− α)-confidence ellipsoid in the linearized model is{

u : (u−Dδ̂β)′(DC−1D′)−1(u−Dδ̂β) ≤ χ2
r(0; 1− α)

}
and its semiaxes are ai =

√
χ2

r(0; 1− α)/
√
λi, i = 1, . . . , r. The semiaxes of the

ellipsoid (6) are πi =
√
δmax/

√
λi, i = 1, . . . , r.

The semiaxes of the ellipsoid E∗ are ai + πi, i = 1, . . . , r and it covers all
(1− α)-ellipsoids in the linearized model with centers

Dδ̂β + D[E(δ̂β)− δβ], E(δ̂β)− δβ ∈ E∗.

The random variable

(Dδβ −Dδ̂β)′(DC−1D′)−1(Dδβ −Dδ̂β)
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is chi-squared with r degrees of freedom and with the parameter of noncentrality
equal to

δ =
{
D[E(δ̂β)− δβ]

}′
(DC−1D′)−1D[E(δ̂β)− δβ] < δmax.

If δmax satisfies the equality

P{χ2
r(δmax) ≤ χ2

r(0; 1− α)} = 1− α− ε,

then the ellipsoid E∗ covers the vector Dδβ with probability larger or equal to
1− α− ε. �

Corollary 3.1 Let d(β) = β. If

δβ ∈ LE =

{
δβ : δβ′Cδβ ≤ 2

√
δmax

K(par)(β0)

}
,

then

E∗ =

{
u : (u− δ̂β)′C(u− δ̂β) ≤

(√
χ2

r(0; 1− α) +
√
δmax

)2
}

covers δβ with probability at least (1− α− ε).

Let the function d(β) be of the quadratic form, i.e.

d(β) = d(β0) + Dδβ +
1
2
δ(δβ),

where δ(δβ) = [δ1(δβ), . . . , δr(δβ)]′, δi(δβ) = δβ′Aiδβ, Ai = A′
i, i = 1, . . . , r.

Definition 3.2 The measure of nonlinearity for the confidence ellipsoid is

Cd(·),conf =

= sup

⎧⎨⎩
√

(δ −DC−1F′Σ−1κ)′(DC−1D′)−1(δ −DC−1F′Σ−1κ)

δβ′Cδβ
: δβ ∈ Rk

⎫⎬⎭ .

Theorem 3.2 Let δmax satisfies the equality

P{χ2
r(δmax) ≤ χ2

r(0; 1− α)} = 1− α− ε,

where α and ε are positive sufficiently small real numbers. Let

δβ ∈ Ld(·),conf =

{
δβ : δβ′Cδβ ≤ 2

√
δmax

Cd(·),conf

}
.
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Then the ellipsoid

Ed(·) =

{
u ∈ Rr : (u−Dδ̂β)′(DC−1D′)−1(u−Dδ̂β)′

≤
(√

χ2
r(0; 1− α) +

√
δmax

)2
}

+ Dδ̂β

covers the vector

Dδβ +
1
2
δ(δβ)

with probability larger or equal at least to (1− α− ε).
Proof The random variable

[d(β)− d(β0)−Dδ̂β]′(DC−1D′)−1[d(β)− d(β0)−Dδ̂β]

is chi-squared distributed with the parameter of noncentrrality

δ =
1
4
(δ −DC−1F′Σ−1κ)′(DC−1D′)−1(δ −DC−1F′Σ−1κ).

From Definition 3.2 we have

4δ ≤ (Cd(·),conf)2(δβ
′Cδβ)2.

If δβ′Cδβ ≤ 2
√
δmax/Cd(·),conf , then δ ≤ δmax and then the vector

E[δ(β0) + Dδ̂β]− [d(β0) + Dδβ +
1
2
δ(δβ)]

is an element of the ellipsoid{
u : u ∈ Rr,u′(DC−1D′)−1u ≤ δmax

}
with probability at least 1 − α − ε. Now it is obvious how to finish the proof.

�

Corollary 3.2 If the function d(·) is linear, i.e. d(β) = d(β0) + Dδβ, then

δβ′Cδβ ≤ 2
√
δmax

CDβ
⇒ P{d(β) ∈ E} ≥ 1− α− ε,

where

CDβ = sup

⎧⎨⎩
√

κ′Σ−1FC−1D′(DC−1D′)−1DC−1F′Σ−1κ

δβ′Cδβ
: δβ ∈ Rk

⎫⎬⎭ ,

E =
{
u + d(β0) : (u−Dδ̂β)′(DC−1D′)−1(u−Dδ̂β)

≤
(√

χ2
r(0; 1− α) +

√
δmax

)2}
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and
P{χ2

r(δmax) ≤ χ2
r(0; 1− α)} = 1− α− ε

(cf. Theorem 3.2).

Corollary 3.3 If the function d(·) is scalar, i.e. d(β) = d(β0)+d′δβ+ 1
2δ(δβ),

then

δβ′Cδβ ≤ 2
√
δmax

Cd(β)
⇒ P{d(β) ∈ E} ≥ 1− α− ε,

where

Cd(β) = sup

{√
a ′(d′C−1d)−1 a

δβ′Cδβ
: δβ ∈ Rk

}
,

E =
{
u+ d(β0) : (u − d′δ̂β)2/(d′C−1d) ≤

(√
χ2

1(0; 1− α) +
√
δmax

)2}
,

and
a = [δ(δβ)− d′C−1F′Σ−1κ(δβ)].

Until now the parameter σ2 is assumed to be known. Let

T (δβ) = U
n− k
k

, U =
(δβ − δ̂β)′F′V−1F(δβ − δ̂β)

(Y − f0 − Fδ̂β)′V−1(Y − f0 − Fδ̂β)
.

Then T (δβ∗) has the Fisher–Snedecor distribution Fk,n−k(·) in case of the lin-
earized version (3) of the regression model.

Lemma 3.1 In the the quadratized model (2) we have

(i) (δβ∗ − δ̂β)′F′V−1F(δβ∗ − δ̂β) ∼ σ2χ2
k(δ1),

where δ1 = κ′(δβ)V−1PV −1

F κ(δβ)/(4σ2) and

(ii) (Y − f0 − Fδ̂β)′V−1(Y − f0 − Fδ̂β) ∼ σ2χ2
n−k(δ2),

where δ2 = κ′(δβ)V−1MV −1

F κ(δβ)/(4σ2).

Proof (i) The parameter of noncentrality δ1 is

δ1 = E(δβ∗ − δ̂β)′F′V−1FE(δβ∗ − δ̂β)/σ2.

Since in the quadratized model (2)

E(δβ∗ − δ̂β) = δβ∗ − (F′V−1F)−1F′V−1

[
Fδβ∗ +

1
2
κ(δβ∗)

]
= −1

2
(F′V−1F)−1F′V−1κ(δβ∗),

the statement (i) is valid.



108 Lubomír KUBÁČEK, Eva TESAŘÍKOVÁ

(ii) Analogously

E(Y − f0 − Fδ̂β) = Fδβ∗ +
1
2
κ(δβ∗)− F(F′V−1F)−1F′V−1

×
[
Fδβ∗ +

1
2
κ(δβ∗)

]
=

1
2
MV −1

F κ(δβ∗)

and therefore also the statement (ii) is valid. �

The probability density of the random variable χ2
f (δ) is [7]

gf,δ(y) =

⎧⎪⎨⎪⎩ exp[−(y + δ)/2]
∞∑

r=0

1
r!

(
δ

2

)r
yr+(f/2)−1

2r+f/2Γ(r + f/2)
, y > 0,

0, y ≤ 0.

Thus the density of the random variable U is

g(u; δ1, δ2) =
∫ ∞

0

gk,δ1(uv)gn−k,δ2(v)vdv.

Let the set Cδ∗
1 ,δ∗

2
be defined as follows.

Cδ∗
1 ,δ∗

2
=

{
(δ∗1 , δ

∗
2) :

∫ [(n−k)/k]Fk,n−k(0;1−α)

0

g(u; δ∗1 , δ
∗
2)du = 1− α− ε

}
.

Theorem 3.3 The linearization region for the confidence ellipsoid in the case
of the estimated σ2 is

Lδ1,δ2 =

{
δβ : δβ′F′V−1Fδβ < σ

2
√
δ∗1

K
(par)
0

& δβ′F′V−1Fδβ < σ
2
√
δ∗2

K
(int)
0

}

i.e.
δβ ∈ Lδ1,δ2 ⇒ P{δβ ∈ E} ≥ 1− α− ε,

where E is given by (5).

Proof With respect to Definition 3.3 it is valid that

1
4σ2

κ′(δβ)V−1PV −1

F κ(δβ) ≤ 1
4σ4

(δβ′F′V−1Fδβ)2
(
σK

(par)
0

)2

.

Thus the inequality

δβ′F′V−1Fδβ ≤ σ
2
√
δ∗1

K
(par)
0

implies
1

4σ2
κ′(δβ)V−1PV −1

F κ(δβ) = δ1 ≤ δ∗1 .
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Analogously

1
4σ2

κ′(δβ)V−1MV −1

F κ(δβ) ≤ 1
4σ4

(δβ′F′V−1Fδβ)2
(
σK

(int)
0

)2

.

Thus the inequality

δβ′F′V−1Fδβ ≤ σ
2
√
δ∗2

K
(int)
0

implies
1

4σ2
κ′(δβ)V−1MV −1

F κ(δβ) = δ2 ≤ δ∗2 .

�

In order not to prefer one of the parameter noncentrality for the other one,
the condition

δ∗1/δ
∗
2 = (K(par)

0 )2/(K(int)
0 )2

can be used. Thus
2
√
δ∗1

K
(par)
0

=
2
√
δ∗2

K
(int)
0

.

In some cases the Bates and Watts intrinsic curvature is zero and thus the
random variable T = [(n − k)/k]U has the the noncentral Fisher–Snedecor
distribution

Fk,n−k(δ1) = [χ2
k(δ1)/k]/[χ2

n−k(0)/(n− k)],
since δ2 = 0. Let δ1,max be solution of the equation

P{Fk,n−k(δ1,max) ≥ Fk,n−k(0; 1− α)} = α+ ε.

If
C(ell,Dδβ) = σC

(ell,Dδβ)
0 ,

where

C
(ell,Dδβ)
0 =

= sup

⎧⎨⎩
√

κ′V−1FC−1
0 D′(DC−1

0 D′)−1DC−1
0 F′V−1κ

δβ′C0δβ
: δβ ∈ Rk

⎫⎬⎭ ,

where C0 = F′V−1F, then the following implication is valid.

δβ′C0δβ ≤ σ
2
√
δ1,max

C
(ell,Dδβ)
0

⇒ P
{
(δβ − δ̂β)′D′(DC0D′)−1D(δβ − δ̂β)

≤ kσ̂2Fk,n−k(0; 1− α)
}
≥ 1− α− ε.
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It is to be remarked that in the case D = I, i.e. the confidence ellipsoid for
the parameter δβ must be determined, then the equality C(ell,δβ) = K(par) can
be used.

In the case that σ2 must be estimated, the decision whether linearization of
the model with respect to the confidence ellipsoid can be used, is made with
some uncertainty. Therefore a comparison of the given procedure with the exact
determination, which is in this case known (cf. [8]), is interesting.

Lemma 3.2 Let in the model Y ∼ Nn[f(β),Σ], β ∈ Rk, the matrix Σ be
known.
(i) Then the set

Cβ =
{

β : [f(β)−Y]′
(
PΣ−1

F (β)

)′
Σ−1PΣ−1

F (β)[f(β)−Y] ≤ χ2
k(0; 1− α)

}
is the exact (1− α)-confidence region for the parameter β.
(ii) If the matrix Σ is of the form Σ = σ2V, where V is a given n× n p.d.

matrix and σ2 is unknown parameter, then the exact (1− α)-confidence set for
the parameter β is

Dβ =

{
β : [f(β)−Y]′

(
PV −1

F (β)

)′
V−1PV −1

F (β)[f(β)−Y]

≤ k

n− k [Y − f(β)]′
(
MV −1

F (β)

)′
V−1MV −1

F (β)[Y − f(β)]Fk,n−k(0; 1− α)

}
.

Numerical determination of the exact confidence regions is tedious and time
consuming unlike procedure given by a linearization.

4 Numerical example

Consider the Michaelis–Menten model, i.e.

fi(β1, β2) =
xiβ1

xi + β2
, xi = 1, 2, 3, 4, 6

and Σ = σ2I, σ = 0.1.
If β1 = 4 and β2 = 1, then (cf. [12])

{F}i,· =
(

xi

1 + xi
,− 4xi

(1 + xi)2

)
, i = 1, 2, 3, 4, 5,

Fi =

(
0, − xi

(1+xi)2

− xi

(1+xi)2
, 8xi

(1+xi)3

)
, i = 1, 2, 3, 4, 5,

K
(int)
0 = sup

{√
κ′(δβ)MF κ(δβ)
δβ′F′Fδβ

: δβ ∈ Rk

}
= 0.3326,

K
(par)
0 = sup

{√
κ′(δβ)PF κ(δβ)
δβ′F′Fδβ

: δβ ∈ Rk

}
= 1.3212.
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Let σ(= 0.1) be known and let ε = 0.05, i.e. δmax = 0.6398. Then the
linearization region for the confidence ellipsoid is

LE =

{
δβ : δβ′F′Fδβ ≤ σ

2
√
δmax

K
(par)
0 (β0)

}

and the 0.95-confidence ellipsoid for δβ is

E =
{
u : (u− δ̂β)′F′F(u− β0 − δ̂β) ≤ 0.0599

}
cf. Fig. 1.

Fig. 1: 0.95-confidence ellipse for δβ and the region LE

Let set of measured data y are simulated for σ = 0.1, i.e.

y = (1.90, 2.57, 3.08, 3.13, 3.58)′.

If δ1/δ2 = (K(par)/K(int))2 = 15.779 478 = t, then the set Cδ∗
1 ,δ∗

2
consists of

a single point which is a solution of the equations∫ 3
29.552

0

[∫ ∞

0

g2,δ∗
1
(uv)g3,δ∗

2
(v)vdv

]
du = 0.95− 0.05, δ∗1 = tδ∗2 ,

where

gf,δ(y) =

⎧⎪⎨⎪⎩ exp[−(y + δ)/2]
∞∑

r=0

1
r!

(
δ

2

)r
yr+(f/2)−1

2r+f/2Γ(r + f/2)
, y > 0,

0, y ≤ 0.

In this case the linearization region from Theorem 3.3 is given in Fig. 2.
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Fig. 2: The region Lδ1,δ2 and 0.95-confidence ellipse (5)

The set Dβ from Lemma 3.2 is given for 1− α = 0.90 at Fig. 3.

β1

β2

Fig. 3: The set Dβ from Lemma 3.2
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Abstract

In this paper, following the concepts in [5, 7], we shall establish a
convergence result in a uniformly convex Banach space using the Jungck–
Mann iteration process introduced by Singh et al [13] and a certain general
contractive condition. The authors of [13] established various stability
results for a pair of nonself-mappings for both Jungck and Jungck–Mann
iteration processes. Our result is a generalization and extension of that
of [7] and its corollaries. It is also an improvement on the result of [7].

Key words: Jungck–Mann iteration process; uniformly convex
Banach space.
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1 Introduction

Suppose that A = (ank) is an infinite, lower triangular, regular row-stochastic
matrix, E a closed convex subset of a Banach space and T a continuous map-
ping of E into itself and x1 ∈ E. Then, the general Mann iteration process
M(x1, A, T ) which was introduced in Mann [9] is defined by

vn =
n∑

k=1

ankxk, xn+1 = Tvn, n = 1, 2, . . . , (1)
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If A is the identity matrix, then each sequence of M(x1, A, T ) becomes the
sequence of Picard iterates of T at x1. It was established in [9] that if either of
the sequences {xn} a nd {vn} converges, then the other also converges to the
same point, and their common limit is a fixed point of T .

In [5, 7], it is said that the matrix A is segmenting for the Mann process if
an+1,k = (1 − an+1,n+1)ank for k ≤ n. In this case, vn+1 lies on the segment
joining vn and Tvn:

vn+1 = (1− dn)vn + dnTvn, n = 1, 2, . . . , (2)

where dn = an+1,n+1. A segmenting matrix is determined by its sequence of
diagonal elements. Some authors including [3, 11, 12] have investigated the
case dn = λ, 0 < λ < 1, while Mann [9] approximated the fixed points of
continuous functions on a closed interval of the real line using the segmenting
matrix determined by dn = 1

n ∀ n. Dotson [6] considered the case when dn is
bounded away from 0 and 1. Groetsch [7] generalized the results of [3, 6, 9, 11,
12] in a uniformly convex Banach space by employing (2) and assuming that A
is a segmenting matrix for which

∑∞
n=1 dn(1− dn) =∞.

We shall give another definition of a segmenting matrix in the next section
with a view to generalizing and extending Groetsch [7] and others mentioned
earlier in this paper.

2 Preliminaries

Singh et al [13] introduced the following iteration process: Let (E, ‖.‖) be a
normed linear space, S, T : Y → E and T (Y ) ⊆ S(Y ). Then, for x0 ∈ Y ,
consider the iteration process

Sxn+1 = (1− αn)Sxn + αnTxn, n = 0, 1, 2, . . . , (3)

where {αn}∞n=0 satisfies

(i) α0 = 1,

(ii) 0 ≤ αn ≤ 1 for n > 0,

(iii)
∑
αn = ∞, and

(iv)
∑n

j=0 αjΠn
i=j+1(1− αi + aαi) converges.

The iteration process (3) is called the Jungck–Mann iteration.
For Y = E, S = I (identity operator) in (3) with {αn}∞n=0 satisfying

(i)–(iv), then we have the Mann iteration process introduced by Mann [9]. Also,
if in (3), Y = E, S = I (identity operator) and αn = 1, then we obtain the
Jungck iteration introduced by Jungck [8].

Following (3), we shall generalize and extend Groetsch [7] and others men-
tioned earlier in this paper by assuming that A is a segmenting matrix for which

Svn+1 = (1− dn)Svn + dnTvn, n = 1, 2, . . . , (�)
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such that
∑∞

n=1 dn(1 − dn) = ∞ and S, T : C → C are selfmappings on a
nonempty convex subset C of a uniformly convex Banach space E. The opera-
tors S and T are assumed to have a common fixed point and satisfy in addition
the contractive condition

‖Tx− Ty‖ ≤ ‖Sx− Sy‖, ∀x, y ∈ C. (��)

If S = I (identity operator) in (�), then we obtain (2) and if S = I in (��) then
we have ‖Tx− Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C (that is, T becomes a nonexpansive
mapping).

We shall establish our main result in the next section. However, the following
lemma is required in the sequel.

Lemma 2.1 (Groetsch [7]) Let X be a uniformly convex Banach space and let
x, y ∈ X. If ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε > 0, then

‖λx+ (1− λ)y‖ ≤ 1− 2λ(1 − λ)δ(ε)

for 0 ≤ λ < 1 and δ(ε) > 0.

The proof of this Lemma is contained in [4, 7].

3 The Main Result

Theorem 3.1 Let C be a convex subset of a uniformly convex Banach space
E and S, T : C → C selfmappings satisfying condition (��) and T (C) ⊆ S(C).
Suppose that S and T have at least a common fixed point. Let {Svn}∞n=1 be the
sequence defined by (�). Then, the sequence {(S − T )vn}∞n=1 converges strongly
to 0 for each x1 ∈ C such that

∑∞
n=1 dn(1− dn) =∞.

Proof If p is a common fixed point of S and T (i.e. Sp = Tp = p), then

‖Svn+1 − p‖ = ‖(1− dn)Svn + dnTvn − (1− dn + dn)p‖
= ‖(1− dn)(Svn − p) + dn(Tvn − p)‖
≤ (1 − dn)‖Svn − p‖+ dn‖Tvn − p‖
= (1 − dn)‖Svn − p‖+ dn‖Tvn − Tp‖
≤ (1 − dn)‖Svn − p‖+ dn‖Svn − Sp‖
= (1 − dn)‖Svn − p‖+ dn‖Svn − p‖
= ‖Svn − p‖ ≤ ‖Svn−1 − p‖ ≤ · · · ≤ ‖Sv1 − p‖, (4)

from which we have that the sequence {Svn − p}∞n=1 is decreasing.
Now,

‖(S − T )vn‖ = ‖Svn − Tvn‖ ≤ ‖Svn − p‖+ ‖p− Tvn‖
= ‖Svn − p‖+ ‖Tp− Tvn‖ ≤ ‖Svn − p‖+ ‖Sp− Svn‖ = 2‖Svn − p‖.
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Suppose on the contrary that {(S − T )vn}∞n=1 does not converge to 0. Since
‖Svn − Tvn‖ ≤ 2‖Svn − p‖, we may assume that there is an a > 0, a ∈ (0, 1)
such that ‖Svn − p‖ ≥ a for any n. If {(S − T )vn}∞n=1 does not converge to 0,
then there is an ε > 0 such that ‖Svn − Tvn‖ ≥ ε for any n.

Let

b = 2δ
(

ε

‖Sv1 − p‖
)
, xn =

Svn − p
‖Svn − p‖ and yn =

Tvn − p
‖Svn − p‖ .

Then, we have

‖xn‖ =
∥∥∥∥( Svn − p
‖Svn − p‖

)∥∥∥∥ ≤ ‖Svn − p‖
‖Svn − p‖ = 1

and

‖yn‖ =
∥∥∥∥( Tvn − p)
‖Svn − p‖

)∥∥∥∥ ≤ ‖Tvn − Tp)‖
‖Svn − p‖ ≤ ‖Svn − Sp‖

‖Svn − p‖ =
‖Svn − p‖
‖Svn − p‖ = 1.

Hence, we have by (�) that

‖Svn+1 − p‖ = ‖(1− dn)Svn + dnTvn − (1 − dn + dn)p‖
= ‖(1− dn)(Svn − p) + dn(Tvn − p)‖
=
∥∥∥∥(‖Svn − p‖)

[
(1− dn)

(Svn − p)
‖Svn − p‖ + dn

(Tvn − p)
‖Svn − p‖

]∥∥∥∥
= ‖(‖Svn − p‖)[(1− dn)xn + dnyn]‖
≤ ‖Svn − p‖ ‖(1− dn)xn + dnyn‖. (5)

Using (4) and Lemma 2.1 in (5) yield

‖Svn+1 − p‖ ≤
≤ [1− dn(1− dn)b]‖Svn − p‖
= ‖Svn − p‖ − bdn(1− dn)‖Svn − p‖
≤ ‖Svn−1 − p‖ − bdn−1(1− dn−1)‖Svn−1 − p‖ − bdn(1 − dn)‖Svn − p‖
≤ ‖Svn−1 − p‖ − bdn−1(1− dn−1)‖Svn − p‖ − bdn(1 − dn)‖Svn − p‖
= ‖Svn−1 − p‖ − b[dn−1(1− dn−1) + dn(1 − dn)]‖Svn − p‖.

Repeating this process inductively leads to

a ≤ ‖Svn+1 − p‖ ≤ ‖Sv1 − p‖
− b

[
d1(1 − d1)‖Svn − p‖+ d2(1− d2)‖Svn − p‖+ · · ·+ dn(1 − dn)‖Svn − p‖

]
= ‖Sv1 − p‖ − b

n∑
j=1

dj(1 − dj)‖Svn − p‖ ≤ ‖Sv1 − p‖ − ab
n∑

j=1

dj(1 − dj).
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Therefore, we obtain

a

⎡⎣1 + b

n∑
j=1

dj(1 − dj)

⎤⎦ ≤ ‖Sv1 − p‖,
from which it follows that

a ≤ ‖Sv1 − p‖
1 + b

∑n
j=1 dj(1 − dj)

→ 0 as n→∞,

leading to a contradiction. Therefore, we have a = 0. Hence,

lim
n→∞ ‖Svn − Tvn‖ = 0.

Remark 3.1 Theorem 3.1 is also a generalization of the results of [3, 6, 7, 9,
11, 12].
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Abstract

Sufficient conditions are established for the global stability of solutions
of certain third-order nonlinear differential equations. Our result improves
on Tunc’s [10].
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1 Introduction

We consider the third-order nonlinear ordinary differential equation

. . .
x + ψ(x, ẋ, ẍ)ẍ + f(x, ẋ) = 0 (1.1)

or its equivalent system

ẋ = y, ẏ = z, ż = −ψ(x, y, z)z − f(x, y), (1.2)

where

ψ, ψx, ψz ∈ C(R× R× R,R) and f, fx, fy ∈ C(R× R,R). (1.3)

It is assumed that solutions of (1.1) exist and are unique.
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Stability is a very important problem in the theory and application of differ-
ential equations, and an effective method for studying the stability of nonlinear
differential equations is the second method of Lyapunov (see [1–14]).

In a recently paper, Tunc [10] obtained the global stability of (1.1) and the
following result was proved.

Theorem A (Tunc [10]). Further to the basic assumptions on the functions ψ
and f suppose the following:

(i) xf(x, 0) > 0 for x �= 0;

(ii)
∫ y

0

f(0, v) dv ≥ 0;

(iii) lim
|x|→∞

sup
∫ x

0

f(u, 0) du =∞;

(iv) there is a positive constant B such that ψ(x, y, z) ≥ B for all x, y, z;

(v)

B

[
f(x, y)− f(x, 0)−

∫ y

0

ψx(x, v, 0)v dv
]
y ≥ y

∫ y

0

fx(x, v) dv

for all x, y;

(vi)

B

[
f(x, y)− f(x, 0)−

∫ y

0

ψx(x, v, 0)v dv
]
y + ψ(x, y, z)

≥ y

∫ y

0

fx(x, v) dv +B

for all x, y �= 0, z;

(vii)

4B
∫ x

0

f(u, 0) du
{∫ y

0

[f(x, v)− f(x, 0)] dv +B

∫ y

0

[ψ(x, v, 0)−B] v dv
}

≥ y2f2(x, 0)

for all x, y �= 0;

(viii) yψz(x, y, z) ≥ 0 for all x, y, z

Then the trivial solution of equation (1.1) is globally asymptotically stable.

Interestingly, (1.1) is a rather general third-order nonlinear differential equa-
tion. In particular, many third-order differential equations which have been dis-
cussed in [12] are special cases of (1.1), and some known results can be obtained
using this theorem. However, it is not easy to apply Theorem A to these special
cases to obtain new or better results since Theorem A has some hypotheses
which are not necessary for the stability of many nonlinear equations.
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Our aim in this paper is to further study the global stability of (1.1). In the
next section, we establish a criterion for the stability of (1.1), which extends
and improve Theorem A. Finally, in Section 3, we apply our result to some
examples.

In the following discussion, we always assume (1.3) holds without further
mention.

2 Main result

Our main result in this section is the following theorem.

Theorem Let δ0, a, b, c be positive constants such that ab > c.
Assume that

(1) f(x,0)
x ≥ δ0, x �= 0, f(0, 0) = 0,

(2) f ′(x, 0) ≤ c,

(3) fy(x, θy) ≥ b for 0 ≤ θ ≤ 1,

(4) ψ(x, y, z) > a,

(5) yψz(x, y, θz) ≥ 0, for 0 ≤ θ ≤ 1,

(6) a
[
f(x, y)− f(x, 0)− ∫ y

0
ψx(x, v, 0)v dv

]
y ≥ y

∫ y

0
fx(x, v) dv.

Then, the trivial solution of (1.1) is globally asymptotically stable.

Remark 1 The theorem just stated above improves the theorem established in
[1] and includes the result established in [9]. The results of Ezeilo [2], Ogurtsov
[5] and Goldwyn and Narendra [3] are also direct consequences of our result.

Proof Clearly, (1.1) is equivalent to the system (1.2) and (0, 0, 0) is a solution.
Now, consider the Lyapunov function

V (x, y, z) =
∫ x

0

f(u, 0) du+
∫ y

0

ψ(x, v, 0)v dv + a−1

∫ y

0

f(x, v) dv

+
1
2
a−1z2 + yz (2.1)

This is rewritten as

V (x, y, z) =
1
2a

(ay + z)2 +
1

2ab
(f(x, 0) + by)2 +

∫ y

0

[ψ(x, v, 0)− a]v dv

+
1
a

∫ y

0

[fv(x, θv) − b]v dv +
∫ x

0

[1− 1
ab
f ′(u, 0)]f(u, 0) du

where fv(x, θv) = v−1{f(x, v)− f(x, 0)}, v �= 0.
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On using hypotheses (1)–(4) of the theorem,

V (x, y, z) ≥ 1
2a

(ay + z)2 +
1

2ab
(f(x, 0) + by)2 +

1
2
δ1x

2,

where δ1 = 1
ab (ab− c)δ0 > 0. It follows that there exists a constant K > 0 small

enough that
V (x, y, z) ≥ K(x2 + y2 + z2).

Hence V (x, y, z) is a positive definite function.
Next, we show that the derivative of V (x, y, z) with respect to t along the

solution path of (1.2) is negative semi definite.

V̇(1.2) = Vxẋ+ Vy ẏ + Vz ż, (2.2)

where Vx, Vy , Vz are partial derivatives of V with respect to x, y and z respec-
tively, and ẋ, ẏ and ż are as in (1.2).
Thus,

Vx = f(x, 0) +
∫ y

0

ψx(x, v, 0)v dv +
1
a

∫ y

0

fx(x, v) dv,

Vy = ψ(x, y, 0)y +
1
a
f(x, y) + z, Vz =

1
a
z + y.

Then, substituting Vx, Vy, Vz in (2.2) and using (1.2) yield

V̇(1.2)(x, y, z) = −
{
f(x, y)− f(x, 0)−

∫ y

0

ψx(x, v, 0)v dv
}
y

+
1
a
y

∫ y

0

fx(x, v) dv − ψz(x, y, θz)yz2 −
[
1
a
ψ(x, y, z)− 1

]
z2,

where ψz(x, y, θz) = z−1 {ψ(x, y, z)− ψ(x, y, 0)}, z �= 0. From hypotheses (4),
(5) and (6) of theorem, we see that

V̇(1.2)(x, y, z) ≤ 0, (2.3)

and the rest of the proof may now follow as in [2, 9].
Let Ω denote a trajectory x(t), y(t), z(t) of (1.2) satisfying the initial condi-

tions x(0) = x0, y(0) = y0, z(0) = z0, where (x0, y0, z0) is an arbitrary point of
the (x, y, z)-space. Then, by (2.3),

V (t) ≡ V (x(t), y(t), z(t)) ≤ V (x0, y0, z0) (t ≥ 0). (2.4)

Further, V (t), being non-increasing and non-negative, tends to a non-negative
limit, V (∞) say, as t→∞. To prove the theorem, it is sufficient to show that

V (∞) ≯ 0; (2.5)

for, in that event, we should have V (∞) = 0, and this would imply x(∞) = 0,
y(∞) = 0, z(∞) = 0, which is the required result.
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Suppose on the contrary that (2.5) is not true: that is, assume that V (∞) > 0.
Since the set points (x, y, z) for which

V (x, y, z) ≤ V (x0, y0, z0)

is bounded, it is clear from (2.4) that the trajectory Ω has limit points; and
the set of all its limit points consists of whole trajectories of (1.2) lying on the
surface V (x, y, z) = V (∞). Thus, in particular, if Q is a limit point of Ω, there
is a half-trajectory, ΩQ say, of (1.2) issuing from Q and lying on the surface
V (x, y, z) = V (∞). Evidently, we must have

V̇(1.2) ≡ 0 (2.6)

on ΩQ; for otherwise there would exist points (x, y, z) of ΩQ at which

V (x, y, z) < V (∞).

From (2.4) and (2.6) it follows readily that z = 0 and hence also that y ≡ γ,
x = γt+ ξ (γ, ξ constants), ż = 0 for any (x, y, z) on ΩQ.

Also, since from (1.2),

ż = −ψ(x, y, z)z − f(x, y),

it follows that f(x, y) = 0, that is

f(γt+ ξ, γ) = 0. (2.7)

Since f(0, 0) = 0, (2.7) clearly holds if and only if ξ = γ = 0 (see, for example,
[12, p. 370]). Hence x = 0, y = 0. We have therefore that x = y = z = 0;
this implies that the origin is a point of the surface V (x, y, z) = V (∞), which
contradicts our assumption that V (∞) > 0. This proves (2.5) and hence the
theorem. �

Remark 2 Clearly our theorem is an improvement and extension of Theorem
A. In particular, from our theorem we see that (ii), (vi) and (viii) assumed in
Theorem A are not necessary, and (i) can be replaced by (1) for the global
stability of the trivial solution of (1.1).

3 Examples

In this section, we consider certain examples which are particular cases of (1.1).

Example 1 Consider the equation

. . .
x + [(sinx)ẋ + (ẋ)2 + eẋẍ + 2]ẍ+ (ẋ)3 + ẋ+

x

1 + x2
= 0. (3.1)

(3.1) is in the form of (1.1) with

ψ(x, y, z) = (sinx)y + y2 + eyz + 2, f(x, y) = y3 + y +
x

1 + x2
.
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With a = 2, b = 1, c = 1, we observe that[
f(x, y)− f(x, 0)−

∫ y

0

ψx(x, v, 0)vdv
]
y =

[
y3 + y − 1

3
(cos x)y3

]
y

> y2 1− x2

(1 + x2)2
= y2f ′(x, 0), for y �= 0.

Then it is easy to check all the hypotheses in Theorem are satisfied and so the
trivial solution of (3.1) is globally asymptotically stable.

Example 2 Consider the equation

. . .
x + [ln(1 + x2) + eẋẍ + 2] +

x

1 + x2
(1 + (ẋ)2) + ẋ+

1
3
(ẋ)3 = 0. (3.2)

(3.2) is in the form (1.1) with

ψ(x, y, z) = ln(1 + x2) + eyz + 2, f(x, y) =
x

1 + x2
(1 + y2) + y +

1
3
y3.

With a = 2, b = 1, c = 1, we observe that[
f(x, y)− f(x, 0)−

∫ y

0

ψx(x, v, 0)v dv
]
y =

[
y +

1
3
y3

]
y

> y2 (1 − x2)
(1 + x2)2

= y2f ′(x, 0), for y �= 0.

Then it is easy to check all the hypotheses in Theorem are satisfied and so the
trivial solution of (3.2) is globally asymptotically stable.
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In this paper, we examine the properties of hypersurfaces of weakly
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1 Introduction

Firstly, Tamassy and Binh introduced weakly symmetric manifolds, [1].
A non-flat Riemannian manifold (Mn, g), (n > 2) whose the curvature tensor

satisfies the following relation is called weakly symmetric

∇lRhijk = AlRhijk +BhRlijk +DiRhljk + EjRhilk + FkRhijl (1.1)

where A,B,D,E, F are non-zero 1-forms and ∇ denotes the covariant differ-
entiation with respect to the metric tensor of the manifold. These 1-forms are
called the associated 1-forms of the manifold and an n-dimensional manifold of
this kind is denoted by (WS)n. It may be mentioned in this connection that

129
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although the definition of a (WS)n is similar to that of a generalized pseudo-
symmetric space studied by Chaki and Mondal, [2], the defining condition of
a (WS)n is weaker than that of a generalized pseudo-symmetric manifold. De
and Bandyopadhyay, [3], proved that 1-forms of (WS)n can not be all different.
Then the equation (1.1) reduces to the form

∇lRhijk = AlRhijk +BhRlijk +BiRhljk +DjRhilk +DkRhijl (1.2)

Let us consider a subspace Vm immersed in a Riemannian manifold Vn whose
parametric representation is uλ = uλ(u1, u2, . . . , um) where (uλ) and (ui)
(i, j, k, . . . = 1, 2, . . . ,m) denote the coordinate systems of Vn and Vm, respec-
tively. A conformal transformation ḡij = ρ2gij of the fundamental tensor of Vn,
being a concircular one with the function ρ satisfying the equations

ρij = ∇jρi − ρiρj +
1
2
gαβραρβgij = φgij , ρj =

∂

∂uj
ln ρ (1.3)

this transformation is called concircular transformation where φ is a function
of ui.

The present paper deals with non-concircular flat Riemannian manifold
(Mn, g) whose concircular curvature tensor Zhijk satisfies the condition (n > 2)

∇lZhijk = AlZhijk +BhZlijk +DiZhljk + EjZhilk + FkZhijl

where

Zhijk = Rhijk − R

n(n− 1)
(ghkgij − ghjgik)

Rhijk is the curvature tensor and R is the scalar curvature. Such a manifold will
be called a weakly concircular symmetric manifold and denoted by (WZS)n, [4].
It was shown that, in [5], Zh

ijk is invariant under a concircular transformation.
Desa and Amur studied the concircular recurrent Riemannian manifold, [6].

The authors proved that the defining condition of a (WZS)n can always be
expressed in the following form, [4]

∇lZhijk = AlZhijk +BhZlijk +BiZhljk +DjZhilk +DkZhijl (1.4)

where A,B,D 1-forms (non-zero simultaneously).
From the first Bianchi identity, we get

Rhijk +Rhjki +Rhkij = 0 (1.5)

The second Bianchi identity for a Riemannian manifold is

∇sRhijk +∇jRhiks +∇kRhisj = 0 (1.6)

Let (M̄, ḡ) be an (n + 1)-dimensional Riemannian manifold covered by a
system of coordinate neighborhoods {U, yα}. Let (M, g) be a hypersurface of
(M̄, ḡ) defined via a system of parametric equation yα = yα(xi), where Greek
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indices take the values 1, 2, . . . , n+1 and Latin indices take the values 1, 2, . . . , n
a locally coordinate system. Then, we have

gij = ḡαβy
α
i y

β
j (1.7)

Let nα be a local unit normal to (M, g). Thus, we obtain ḡαβn
αyβ

i = 0,
gαβn

αnβ = 1 and it is easily seen that there are the following conditions between
the contrary metric tensors of the hypersurface (M, g) and (M̄, ḡ)

gαβ = gijyα
i y

β
j + nαnβ, yα

i =
∂yα

∂xi
, (i, j = 1, 2, . . . , n; α = β = 1, 2, . . . , n+ 1)

(1.8)
A point of a hypersurface, at which the principal directions of the curvature

are indeterminate, is called an umbilical point. In order that the lines of cur-
vature may be indeterminate at every point of the hypersurface, it is necessary
and sufficient that Ωij = ωgij, where ω is an invariant. According to [7],

M = Ωijg
ij = nω (1.9)

where the scalar M is called the mean curvature of such a hypersurface, so that
the conditions for indeterminate lines of curvature are expressible as

Ωij =
M

n
gij (1.10)

If all the geodesics of a hypersurface (M, g) are also geodesics of (M̄, ḡ), the
former is called a totally geodesic hypersurface of the latter. Such hypersurfaces
are generalizations of planes in ordinary space. A necessary and sufficient condi-
tion that (M, g) be a totally geodesic hypersurface is that the normal curvature
should vanish for all directions in (M, g), and at every point. This requires

Ωij = 0 (1.11)

Consequently,
M = 0 (1.12)

and (1.10) is satisfied.
The structure equations of Gauss and Mainardi–Codazzi, [8]

Rijkl = R̄αβγθB
αβγθ
ijkl + Ωijkl

and
∇kΩij −∇jΩik + R̄βγδθn

βBγδθ
ijk = 0

where Ωijkl = ΩljΩik − ΩilΩjk.
From (1.9), the above equations reduce to the following forms

Rijkl = R̄αβγθB
αβγθ
ijkl +

M2

n2
(gljgik − gligjk) (1.13)
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and

R̄αγδθn
αBγδθ

ijk =
1
n

(gik∇jM − gij∇kM) (1.14)

respectively, where Rijkl and R̄αβγθ are the curvature tensors (M, g) and (M̄, ḡ),
and Bαβγθ

ijkl = Bα
i B

β
j B

γ
kB

θ
l , Bα

i = yα
i .

From the Gauss equation, we get

R̄ = R+ 2R̄αβn
αnβ − Ωijklg

ilgjk (1.15)

The concircular curvature tensors of (M, g) and (M̄, ḡ) can be written in the
form

Zhijk = Rhijk +
R

n(n− 1)
Ghijk (1.16)

and

Z̄αβγθ = R̄αβγθ +
R̄

n(n+ 1)
Gαβγθ (1.17)

where Ghijk = ghjgik − ghkgij and Gαβγθ = ḡαγ ḡβθ − ḡαθḡβγ . On account of
(1.7), (1.13), (1.16) and (1.17), we get

Zhijk = Z̄αβγθB
αβγθ
hijk +

M2

n2
Ghijk +

1
n

(
R

n− 1
− R̄

n+ 1
)Ghijk (1.18)

2 Totally umbilical hypersurface of a weakly concircular
symmetric manifold

Now, we consider an (n+1)-dimensional weakly concircular symmetric Rieman-
nian manifold and we denote this manifold by (WZS)n+1. For a (WZS)n+1,
we have

∇eZ̄abcd = AeZ̄abcd +BaZ̄ebcd +BbZ̄aecd +DcZ̄abed +DdZ̄abce (2.1)

Using (1.17), we obtain

Z̄abcdn
aBbcd

ijk = R̄abcdn
aBbcd

ijk (2.2)

We assume that the scalar curvature of (WZS)n is not constant and (WZS)n

is a totally umbilical hypersurface. In this case, we find that

∇sZhijk = AsZ̄abcdB
abcd
hijk +BhZ̄ebcdB

ebcd
sijk +BiZ̄aecdB

aecd
hsjk

+DjZ̄abedB
abed
hisk +DkZ̄abceB

abce
hijs +

1
n2
Ghijk∇sM

2

+
1
n
Ghijk∇s

( R

n− 1
− R̄

n+ 1

)
+
M

n

(
ghsR̄abcdB

bcd
ijkn

a + gisR̄badcB
adc
hkjn

b

+ gjsR̄cdabB
dab
khin

c + gksR̄dcbaB
cba
jihn

d
)

(2.3)
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By the aid of the Gauss equation, (2.3) can be written as

∇sZhijk = As

(
Zhijk − M2

n2
Ghijk − 1

n

( R

n− 1
− R̄

n+ 1

)
Ghijk

)
+Bh

(
Zsijk − M2

n2
Gsijk − 1

n

( R

n− 1
− R̄

n+ 1

)
Gsijk

)
+Bi

(
Zhsjk − M2

n2
Ghsjk − 1

n

( R

n− 1
− R̄

n+ 1

)
Ghsjk

)
+Dj

(
Zhisk − M2

n2
Ghisk − 1

n

( R

n− 1
− R̄

n+ 1

)
Ghisk

)
+Dk

(
Zhijs − M2

n2
Ghijs − 1

n

( R

n− 1
− R̄

n+ 1

)
Ghijs

)
+

1
n2
Ghijk∇sM

2 +
1
n
Ghijk∇s

( R

n− 1
− R̄

n+ 1

)
+
M

n2
[(ghsgik − gisghk)∇jM + (gisghj − gijghs)∇kM

+ (gjsgik − gijgsk)∇hM + (gksghj − gjsghk)∇iM ] (2.4)

Now, we suppose that (M, g) is (WZS)n.
By the aid of (1.4) and (2.4), we have[

M2

n2
+

1
n

( R

n− 1
− R̄

n+ 1

)]
(AsGhijk+BhGsijk+BiGhsjk+DjGhisk+DkGhijs)

−Ghijk∇s

(
M2

n2
+

1
n

( R

n− 1
− R̄

n+ 1

))
− M

n2
(Ghisk∇jM +Gihsj∇kM +Gsijk∇hM +Gkjsh∇iM) = 0 (2.5)

Multiplying (2.5) by ghkgij , we can obtain(
M2

n2
+

1
n

( R

n− 1
− R̄

n+ 1

))
(2Bs + 2Ds + nAs)

− (n+ 2)
n2

∇sM
2 −∇s

( R

n− 1
− R̄

n+ 1

)
= 0 (2.6)

Similarly, multiplying (2.5) by gikghs, it is easily obtained that(
M2

n2
+

1
n

( R

n− 1
− R̄

n+ 1

))
(Bs +As + (n− 1)Ds)

− (n+ 2)
2n2

∇sM
2 − 1

n
∇s

( R

n− 1
− R̄

n+ 1

)
= 0 (2.7)

Let us suppose that

R = (1− 2
n+ 1

)R̄ (2.8)
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where the scalar curvature R is not constant.
From (2.6) and (2.7), we get

As = 2Ds or M = 0 (2.9)

We assume that As = 2Ds. Transvecting (1.4) with glk and gij , we get

gks∇sGhk = (Ak −Bk +Dk)Ghsg
sk (2.10)

where Ghk = Rhk − R
n ghk (n > 2) is the Einstein tensor.

Similarly, transvecting (1.4) with ghk and gij , we have

(Bk +Dk)Ghsg
sk = 0 (2.11)

Hence, using the equations (2.9)1 and (2.10), it can be obtained that

(Ak + 2Bk)Ghsg
sk = 0 (2.12)

Now, multiplying the equation (1.4) by ghl and gij and using the result
∇sR

s
h = 1

2∇hR, we obtain R ≡ const. In the beginning, we suppose that
R �= const. Thus, As �= 2Ds. From (2.9), we have M = 0, i.e., the hypersurface
is totally geodesic. Thus, we can state the following theorem:

Theorem 2.1 In the totally umbilical hypersurface (WZS)n of (WZS)n+1, if
the expression R = (1− 2

n+1 )R̄ , (R �= const.) is satisfied then the hypersurface
is totally geodesic.

Theorem 2.2 If the totally umbilical hypersurface (WZS)n of a (WZS)n+1

satisfies the condition R
n−1 − R̄

n+1 = c (c < 0, const.) then either the mean
curvature or the scalar curvature of this hypersurface is constant.

Proof We assume that the totally umbilical hypersurface (WZS)n of (WZS)n+1

satisfies the condition

− R̄

n+ 1
+

R

n− 1
= c (2.13)

From (2.5) and (2.13), we obtain(M2

n2
+
c

n

)
(AsGhijk +BhGsijk +BiGhsjk +DjGhisk +DkGhijs)

− 1
n2
Ghijk∇sM

2 − M

n2
(Ghisk∇jM

+Gihsj∇kM +Gsijk∇hM +Gkjsh∇iM) = 0 (2.14)

Multiplying (2.14) by ghkgij , we find that(M2

n2
+
c

n

)
(2Bs + 2Ds + nAs)− (n+ 2)

n2
∇sM

2 = 0 (2.15)
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Similarly, multiplying (2.14) by gikghs, we can easily obtain that(M2

n2
+
c

n

)
(Bs +As + (n− 1)Ds)− (n+ 2)

2n2
∇sM

2 = 0 (2.16)

Using (2.15) and (2.16), we get

M2 = −cn or As = 2Ds (2.17)

On the other hand, from (1.4), we have

∇lZhijk = AlZhijk +BhZlijk +BiZhljk +DjZhilk +DkZhijl (2.18)

Permutating j, k and l by cyclic in (2.18), adding the three equations and
using the expression (1.5) and the first Bianchi Identity, we obtain

(Al − 2Dl)Zhijk + (Aj − 2Dj)Zhikl + (Ak − 2Dk)Zhilj

− 1
n(n− 1)

(Ghijk∇lR+Ghikl∇jR+Ghilj∇kR) (2.19)

Transvecting (2.19) with gijghk, we can obtain

2(Ak − 2Dk)ghkGhl =
(n− 2)
n

∇lR (2.20)

If Ak = 2Dk, from (2.20), then we say that the scalar curvature of this
hypersurface is constant. If Ak �= 2Dk, from (2.17), the mean curvature of this
hypersurface must be constant. If c = 0 then it is clear that this hypersurface
is totally geodesic. Thus, the proof is completed. �

Theorem 2.3 If a totally geodesic hypersurface of a (WZS)n+1 satisfies the
condition R = (1− 2

n+1 )R̄ then this hypersurface is (WZS)n.

Proof From (1.4) and (2.4), the proof is easily seen that.

3 Totally umbilical hypersurface of a pseudo concircular
symmetric manifold

We consider a non-concircular flat Riemannian manifold (M, g) whose concir-
cular curvature tensor Zhijk satisfies the condition

∇lZhijk = 2λlZhijk + λhZlijk + λiZhljk + λjZhilk + λkZhijl (3.1)

where λl is a non-zero covariant vector. Such a manifold will be called a pseudo-
concircular symmetric manifold and denoted by (PZS)n. Permutating j, k, l by
cyclic in (3.1), we obtain the following equations

∇jZhikl = 2λjZhikl + λhZjikl + λiZhjkl + λkZhijl + λlZhikj (3.2)
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and
∇kZhilj = 2λkZhilj + λhZkilj + λiZhklj + λlZhikj + λjZhilk (3.3)

Adding the equations (3.1), (3.2) and (3.3) and by using the first and the second
Bianchi identities, it is obtained that

Ghijk∇lR+Ghikl∇jR+Ghilj∇kR = 0 (3.4)

Transvecting (3.4) with ghkgij , we get (1− n)(2 − n)∇lR = 0.
Since n > 2, we find that the scalar curvature of the hypersurface is constant.

Now, we can state the following theorem:

Theorem 3.1 The scalar curvature of a pseudo concircular symmetric mani-
fold is constant.

Theorem 3.2 Let us suppose that a hypersurface (PZS)n of a pseudo con-
circular symmetric manifold (PZS)n+1 be totally umbilical. Then the scalar
curvature of (PZS)n+1 is constant.

Proof Taking the relation As

2 = Bs = Ds = λs in (2.3), (2.4) and (2.5) and
using the equation (3.1), we get(M2

n2
+

1
n

( R

n− 1
− R̄

n+ 1

))
(2λsGhijk +λiGhsjk +λjGhisk +λkGhijs +λhGsijk)

− 1
n2
Ghijk∇sM

2 − 1
n
Ghijk∇s

( R

n− 1
− R̄

n+ 1

)
− M

n2
(Ghisk∇jM +Gihsj∇kM +Gsijk∇hM +Gkjsh∇iM) = 0 (3.5)

Multiplying (3.5) by ghkgij and gikghs, respectively, we obtain(M2

n2
+

1
n

( R

n− 1
− R̄

n+ 1

))
2λs(2 + n)− (n+ 2)

n2
∇sM

2

−∇s

( R

n− 1
− R̄

n+ 1

)
= 0 (3.6)

and (M2

n2
+

1
n

( R

n− 1
− R̄

n+ 1

))
λs(2 + n)− (n+ 2)

2n2
∇sM

2

− 1
n
∇s

( R

n− 1
− R̄

n+ 1

)
= 0 (3.7)

From (3.6) and (3.7), we obtain

− R̄

n+ 1
+

R

n− 1
= c (3.8)
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where c is a positive constant. By using Theorem 3.1, we can say that

R̄ ≡ const. (3.9)

�

Theorem 3.3 If a totally geodesic hypersurface of (PZS)n+1 satisfies the con-
dition R = (1− 2

n+1 )R̄ then the hypersurface is (PZS)n.

Proof Let us suppose that a hypersurface of (PZS)n+1 be totally geodesic.
From the expressions (1.12) and (2.4) and the condition As

2 = Bs = Ds = λs,
the proof is clear. �

4 An example of a (WZS)n

In this section, we want to construct a (WZS)n spaces. On the coordinate space
Rn (with coordinates x1, x2, . . . , xn), we define a Riemannian space V n and
calculate the components of the curvature tensor and its covariant derivative.

Let each Latin index run over 1, 2, . . . , n and each Greek index over 2, 3, . . . ,
n− 1. We define a Riemannian metric on Rn (n > 3) by the formula

ds2 = φ(dx1)2 + kαβdx
αdxβ + 2dx1dxn (4.1)

where [kαβ ] is a symmetric and non-singular matrix consisting of constants
and φ is a function of (x1, x2, . . . , xn−1) and independent of xn. In the metric
considered, the only non-vanishing components of the curvature tensor, [9]

R1αβ1 =
1
2
φ.αβ (4.2)

where “.” denotes the partial differentiation with respect to the coordinates and
kαβ are the elements of the matrix inverse to [kαβ ].

We consider Vn and

φ = f(x1)(Vαβx
αxβ cos g(x1) + wαβx

αxβ sin g(x1) + kαβx
αxβh(x1))

where f, g, h are functions of x1 only and the matrices [wαβ ], [Vαβ ] and [kαβ ]
are the form

wαβ = −1 for α = β and wαβ = 0 for α �= β (4.3)

Vαβ = 1 for α = β and Vαβ = 0 for α �= β (4.4)

and

kαβ =
{

1 for α = β

0 otherwise

}
(4.5)

From (4.2), the only non-vanishing components of the concircular curvature
tensor Zhijk are

Z1αβ1 =
{
f(cos g − sin g + h) for α = β

0 for α �= β

}
(4.6)
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Here, we consider

Ai = Bi = Di = 0 for i �= 1 and A1 +B1 +D1 = c1, c1 �= 0 and const. (4.7)

Thus, from (1.4), Vn will be (WZS)n if and only if the following relations

∇1Z1αα1 = A1Z1αα1 +B1Z1αα1 +BαZ11α1 +DαZ1α11 +D1Z1αα1 (4.8)

∇αZ11α1 = AαZ11α1 +B1Zα1α1 +B1Z1αα1 +DαZ11α1 +D1Z11αα (4.9)

∇αZ1α11 = AαZ1α11 +B1Zαα11 +BαZ1α11 +D1Z1αα1 +D1Z1α1α (4.10)

Thus, using (4.8), (4.9) and (4.10), we find

f ′(x1)(cos g − sin g + h) + f(x1)(−g′ sin g − g′ cos g + h′)

= (A1 +B1 +D1)f(x1)(cos g − sin g + h). (4.11)

By the aid of (4.11), we get

f(cos g − sin g + h) = c2e
(A1+B1+D1)x

1
, c2 > 0. (4.12)

So, the n-dimensional weakly concircular recurrent Riemannian manifold has
the metric of the form

ds2 = φ(dx1)2 + kαβdx
αdxβ + 2dx1dxn,

φ = c2e
c1x1

n−1∑
k=2

(xk)2.
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