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Abstract

The measurable sets of pairs of intersecting non-isotropic straight lines
of type β and the corresponding densities with respect to the group of gen-
eral similitudes and some its subgroups are described. Also some Crofton-
type formulas are presented.
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1 Introduction

The simply isotropic space I3
(1) (see [8]) is defined as a projective space P3(R) in

which the absolute consists of a plane ω (the absolute plane) and two complex
conjugate straight lines f1, f2 (the absolute lines) within ω. In homogeneous
coordinates (x0, x1, x2, x3) we can choose the plane x0 = 0 as the plane ω, the
line x0 = 0, x1 + ix2 = 0 as the line f1, and the line x0 = 0, x1 − ix2 = 0
as the line f2. Then the intersecting point F of f1 and f2, which is called an
absolute point, has coordinates (0, 0, 0, 1). All regular projectivities transforming
the absolute figure into itself form the 8-parametric group G8 of general simply

7



8 Adrijan V. BORISOV, Margarita G. SPIROVA

isotropic similitudes. In affine coordinates (x, y, z) with respect to the affine
coordinate system (O,−→e1 ,−→e2 ,−→e3), any similitude of G8 can be written in the
form ([8, p. 3])

x = c1 + c7(x cosϕ− y sinϕ),
y = c2 + c7(x sinϕ+ y cosϕ),
z = c3 + c4x+ c5y + c6z,

(1)

where c1, c2, c3, c4, c5, c6, c7, and ϕ are real parameters and c7 > 0.

A plane in I3
(1) is said to be non-isotropic if its infinite line is not incident

with the absolute point F ; otherwise the plane is called isotropic.

A straight line in I3
(1) is said to be (completely) isotropic if its infinite point

coincides with the absolute point F ; otherwise the straight line is said to be
non-isotropic ([8, p. 5]).

Let G1 and G2 be two non-isotropic straight lines and let us denote by U1

and U2 their infinite points, respectively. The straight lines G1 and G2 are said
to be of type β if the points U1, U2, and F are collinear; otherwise the straight
lines are said to be of type α ([8, p. 45]).

We will consider also the following subgroups of G8:

I. B7 ⊂ G8 ⇐⇒ c7 = 1. This is the group of simply isotropic similitudes of
the δ-distance ([8, p. 5]).

II. S7 ⊂ G8 ⇐⇒ c6 = 1. This is the group of simply isotropic similitudes of
the s-distance ([8, p. 6]).

III. W7 ⊂ G8 ⇐⇒ c6 = c7. This is the group of simply isotropic angular
similitudes ([8, p. 18]).

IV. G7 ⊂ G8 ⇐⇒ ϕ = 0. This is the group of simply isotropic boundary
similitudes ([8, p. 8]).

V. V7 ⊂ G8 ⇐⇒ c6c
2
7 = 1. This is the group of simply isotropic volume

preserving similitudes ([8, p. 8]).

VI. G6 = G7 ∩ V7. This is the group of simply isotropic volume preserving
boundary similitudes ([8, p. 8]).

VII. B6 = B7 ∩ G7. This is the group of modular boundary motions ([8,
p. 9]).

VIII. B5 = B7∩S7∩G7. This is the group of unimodular boundary motions
([8, p. 9]).

Basic references on the geometry of the simply isotropic space I3
(1) are Sachs’

book [8] and Strubecker’s papers [8], [11] and [12].

Using some basic concepts from integral geometry in the sense of R. Deltheil
[3], M. I. Stoka [10], G. I. Drinfel’d, and A. V. Lucenko [4], [5], [6], we study the
measurability of sets of pairs of intersecting nonisotropic straight lines of type β
with respect to G8 and indicated above subgroups. Analogous problems about
sets of pairs of intersecting non-isotropic straight lines of type α in I3

(1) have
been treated in [2].



On the measurability of sets of pairs. . . 9

2 Measurability with respect to G8

Let (G1, G2) be a pair of intersecting non-isotropic straight lines of type β.
Let Gi have Plücker coordinates (pij), i = 1, 2, j = 1, . . . , 6, which satisfy the
relations ([8, p. 38])

pi1p
i
4 + pi2p

i
5 + pi3p

i
6 = 0, i = 1, 2. (2)

Since G1 and G2 are intersecting non-isotropic lines of type β, we have

p1
1p

2
4 + p1

2p
2
5 + p1

3p
2
4 + p1

4p
2
1 + p1

5p
2
2 + p1

6p
2
3 = 0, p1

3 − p2
3 �= 0, (3)

|pi1|+ |pi2| �= 0, i = 1, 2, (4)

p1
1p

2
2 − p1

2p
2
1 = 0. (5)

Having in mind (4), we can assume, without loss of generality, that pi1 = 1.
From (2), pi4 can be expressed by the remaining Plücker coordinates of Gi, and
in view if (3) and (5), p2

2 and p2
6 also can be expressed by p1

2, p1
3, p1

5, p1
6, p2

3 and
p2
5. Thus the pair (G1, G2) can be determined by p1

2, p1
3, p1

5, p1
6, p2

3, p2
5.

Remark 2.1 We note that if Gi, i = 1, 2, are represented in the usual way by
the equations

G1 :
{
x = a1(z − r) + p
y = b1(z − r) + q

, G2 :

{
x = a2(z − r) + p

y =
a2

a1
b1(z − r) + q , (6)

where P (p, q, r) = G1 ∩G2 and a1 �= 0, a2 �= 0, then

p1
2 =

b1
a1
, p1

3 =
1
a1
, p1

5 = r − p

a1
, p1

6 = p
b1
a1
− q,

p2
3 =

1
a2
, p2

5 = r − p

a2
.

(7)

Under the action of (1) the pair (G1, G2)(p1
2, p

1
3, p

1
5, p

1
6, p

2
3, p

2
5) is transformed

into the pair (G1, G2)(p1
2, p

1
3, p

1
5, p

1
6, p

2
3, p

2
5). Thus we have

p1
2 = Kc7(sinϕ+ p1

2 cosϕ),

p1
3 = K(c4 + c5p

1
2 + c6p

1
3),

p1
5 = K{(c3 − c5p1

6 + c6p
1
5)c7 cosϕ

− [c3 + c4p
1
6 + c6(p1

2p
1
5 + p1

3p
1
6)]c7 sinϕ− c1(c4 + c5 + c6p

1
3)},

p1
6 = Kc7[(c1p1

2 − c2) cosϕ+ (c1 + c2p
1
2) sinϕ+ c7p

1
6],

p2
3 = K(c4 + c5p

1
2 + c6p

2
3),

p2
5 = K{(c3 − c5p1

6 + c6p
2
5)c7 cosϕ

− [c3 + c4p
1
6 + c6(p1

2p
2
5 + p2

3p
1
6)]c7 sinϕ− c1(c4 + c5 + c6p

2
3)},

(8)
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where K = [c7(cosϕ − p1
2 sinϕ)]−1, i = 1, 2. The transformations (8) form the

associated group G8 of G8 ([10, p. 34]). The group G8 is isomorphic to G8 and
the density with respect to G8 of the pairs (G1, G2) if it exists, coincides with
the density with respect to G8 of the set of parameters (p1

2, p
1
3, p

1
5, p

1
6, p

2
3, p

2
5).

The associated group G8 has the infinitesimal operators

X1 = p1
3

∂

∂p1
5

− p1
2

∂

∂p1
6

− p2
3

∂

∂p2
5

, X2 =
∂

∂p1
6

, X3 =
∂

∂p1
5

+
∂

∂p2
5

,

X4 =
∂

∂p1
3

+
∂

∂p2
3

, X5 = p1
2

∂

∂p1
3

− p1
6

∂

∂p1
5

+ p1
2

∂

∂p2
3

− p1
6

∂

∂p2
5

,

X6 = p1
3

∂

∂p1
3

+ p1
5

∂

∂p1
5

+ p2
3

∂

∂p2
3

+ p2
5

∂

∂p2
5

, X7 = p1
3

∂

∂p1
3

− p1
6

∂

∂p1
6

+ p2
3

∂

∂p2
3

,

X8 = [1 + (p1
2)

2]
∂

∂p1
2

+ p1
2p

1
3

∂

∂p1
3

− p1
3p

1
6

∂

∂p1
5

+ p1
2p

1
6

∂

∂p1
6

+ p1
2p

2
3

∂

∂p2
3

− g1
6p

2
3

∂

∂p2
5

,

(9)
and it acts transitively on the set of parameters (p1

2, p
1
3, p

1
5, p

1
6, p

2
3, p

2
5). The in-

finitesimal operators X1, X2, X3, X4, X7, and X8 are arcwise unconnected
and

X6 =
p2
5 − p1

5

p2
3 − p1

3

X1 + p1
6X2 +

p1
3p

2
5 − p1

5p
2
3

p2
3 − p1

3

X3 +X7.

Since

X1(
p2
5 − p1

5

p2
3 − p1

3

) +X2(p1
6) +X3(

p1
3p

2
5 − p1

5p
2
3

p2
3 − p1

3

) +X7(1) = 3 �= 0,

we can establish the following

Theorem 2.1 The set of pairs of intersecting non-isotropic straight lines is not
measurable with respect to the group G8, and it has no measurable subsets.

3 Measurability with respect to S7

The associated group S7 of the group S7 has the infinitesimal operators X1,
X2, X3, X4, X5, X7, and X8 from (9), and it acts transitively on the set of
parameters (p1

2, p
1
3, p

1
5, p

1
6, p

2
3, p

2
5). The integral invariant function

f = f(p1
2, p

1
3, p

1
5, p

1
6, p

2
3, p

2
5)

satisfying the so-called system of R. Deltheil (see [3, p. 28]; [10, p. 11])

X1(f) = 0, X2(f) = 0, X3(f) = 0, X4(f) = 0, X5(f) = 0
X7(f) + f = 0, X8(f) + 5p1

2f = 0

has the form

f =
h

(p1
3 − p2

3)[1 + (p1
2)2]2

,

where h = const.
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Thus we state the following

Theorem 3.1 The set of pairs (G1, G2)(p1
2, p

1
3, p

1
5, p

1
6, p

2
3, p

2
5) is measurable with

respect to the group S7 and has the density

d(G1, G2) =
1

|p2
3 − p1

3|[1 + (p1
2)2]2

dp1
2 ∧ dp1

3 ∧ dp1
5 ∧ dp1

6 ∧ dp2
3 ∧ dp2

5. (10)

Differentiating (7) and substituting into (10) we obtain other expression for
the density:

Corollary 3.1 The density (10) for the pairs (G1, G2) represented by (6) can
be written in the form

d(G1, G2) = | a1

a2
2(a

2
1 + b21)2

| da1 ∧ db1 ∧ da2 ∧ dp ∧ dq ∧ dr. (11)

4 Some Crofton-type formulas with respect to S7

Let us consider the isotropic plane ι, which is determined by the lines G1 and
G2. The plane ι has the equation

ι : b1x− a1y + a1q − b1p = 0.

If P̃ is the orthogonal projection of P into Oxy, consider the affine coordinate
system (P̃−→e1 ′−→e2 ′) in the isotropic plane ι, where −→e1 ′ = (a1, b1, 1), −→e2 ′ = −→e3 . It
should be noticed, that if G̃ = ι ∩ Oxy then −→e1 ′‖G̃. Let J1 = Oxz ∩ ι and
J2 = Oyz ∩ ι. Obviously

J1 : x = p− a1

b1
q, y = 0, J2 : y = q − b1

a1
p, x = 0,

and J1, J2 have the equations

J1 : x = − q

b1
, J2 : x = − p

a1

with respect to (P̃−→e1 ′−→e2 ′).
Then the density d(J1, J2) for the pairs (J1, J2) with respect to the group

H1
4 , which is the restriction of S7 into ι, is (see [1, p. 201])

d(J1, J2) =
(
p

a1
− q

b1

)2

d
p

a1
∧ d q

b1
.

Recall that ([8, p. 45])

s =
a1 − a2

a2

√
a2
1 + b21

(12)

is the angle from G1 to G2, we find

d(J1, J2) ∧ dP ∧ ds =
(pb1 − qa1)pq
a3
1b

4
1a

2
2

√
a2
1 + b21

da1 ∧ db1 ∧ dp ∧ dq ∧ dr ∧ da2.
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Comparing with (11), we get

d(G1, G2) =

∣∣∣∣∣ a4
1b

4
1

pq(pb1 − qa1)(a2
1 + b21)

3
2

∣∣∣∣∣ d(J1, J2) ∧ ds ∧ dP. (13)

Let ϕi, i = 1, 2, b the angle between Gi and Oxy. Then ([8, p. 48])

ϕ1 =
1√

a2
1 + b21

, ϕ2 =
a1

a2

√
a2
1 + b21

, (14)

and (13) becomes

d(G1, G2) =
∣∣∣∣ a4

1b
4
1ϕ

3
1

pq(pb1 − qa1)

∣∣∣∣ d(J1, J2) ∧ ds ∧ dP. (15)

By differentiation of (14) and by exterior multiplication by (12), we obtain

d(G1, G2) =

∣∣∣∣∣ a4
1b

4
1

pq(pb1 − qa1)(a2
1 + b21)

3
2

∣∣∣∣∣ d(J1, J2) ∧ dϕ2 ∧ dP

=
∣∣∣∣ a4

1b
4
1ϕ

3
1

pq(pb1 − qa1)

∣∣∣∣ d(J1, J2) ∧ dϕ2 ∧ dP. (16)

If ϕ̃ is the isotropic distance from J1 to J2, then ([7, p. 19])

ϕ̃ = − p

a1
+

q

b1
. (17)

Putting (17) into (15) and (16), we find

d(G1, G2) =
∣∣∣∣a3

1b
3
1ϕ

3
1

pqϕ̃

∣∣∣∣ d(J1, J2)∧ds∧dP =
∣∣∣∣a3

1b
3
1ϕ

3
1

pqϕ̃

∣∣∣∣ d(J1, J2)∧dϕ2∧dP. (18)

Let G1
i and G2

i be now the projections of Gi into Oxz and Oyz obtained in
a parallel way to Oy and Ox, respectively. Then

G1
i : z =

1
ai
x+ r − p

ai
, y = 0, i = 1, 2,

G2
1 : z =

1
b1
y + r − q

b1
, x = 0,

G2
2 : z =

a1

a2b1
y + r − a1

a2b1
q, x = 0.

Furthermore,

d(G1
1, G

1
2) =

∣∣∣∣ 1
a1a2(a2 − a1)

∣∣∣∣ da1 ∧ da2 ∧ dp ∧ dr (19)

is the density for the pairs (G1
1, G

1
2) in the isotropic plane Oxz with respect 1H1

4

which is the restriction of S7 into Oxz and

d(G2
1, G

2
2) =

∣∣∣∣ 1
b21a2(a2 − a1)

∣∣∣∣ (a1db1 ∧ da2 − a2db1 ∧ da1) ∧ dq ∧ dr
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is the density for the pairs (G2
1, G

2
2) in the isotropic plane Oyz with respect 2H1

4

which is the restriction of S7 into Oyz (see [1, p. 177]).
By exterior multiplication of (G1

1, G
1
2) and ds ∧ dq, we get

d(G1, G2) =
∣∣∣∣a2

1ϕ1

b1

∣∣∣∣ d(G1
1, G

1
2) ∧ ds ∧ dq, (20)

and by exterior multiplication of (19) and dϕ1 ∧ dq:

d(G1, G2) =
∣∣∣∣a2

1s

b1

∣∣∣∣ d(G1
1, G

1
2) ∧ dϕ1 ∧ dq. (21)

If, instead of using dϕ1 ∧ dq, we multiply by dϕ2 ∧ dq, we obtain

d(G1, G2) =
∣∣∣∣a1a2s

b1

∣∣∣∣ d(G1
1, G

1
2) ∧ dϕ2 ∧ dq. (22)

Analogously, we can derive the following formulas:

d(G1, G2) =
∣∣∣∣a2

1b
2
1ϕ1

a3
2

∣∣∣∣ d(G2
1, G

2
2) ∧ ds ∧ dp

=
∣∣∣∣b21sa1

∣∣∣∣ d(G2
1, G

2
2) ∧ dϕ1 ∧ dp

=
∣∣∣∣a2b

2
1s

a2
1

∣∣∣∣ d(G2
1, G

2
2) ∧ dϕ2 ∧ dp. (23)

In summary, the following theorem holds.

Theorem 4.1 The density for the set of pairs (G1, G2) of intersecting non-
isotropic straight lines of type β, determined by (6), with respect to the group
S7 satisfies the relations (15), (16), (18), (20), (21), (22), and (23).

5 Measurability with respect to G6

Now, the corresponding associated group G6 has the infinitesimal operators

Y1 = p1
3

∂

∂p1
5

− p1
2

∂

∂p1
6

+ p2
3

∂

∂p2
5

, Y2 =
∂

∂p1
6

,

Y3 =
∂

∂p1
5

+
∂

∂p2
5

, Y4 = p1
2

∂

∂p1
3

− p1
6

∂

∂p1
5

+ p1
2

∂

∂p2
3

− p1
6

∂

∂p2
5

,

Y7 = 3p1
3

∂

∂p1
3

+ 2p1
5

∂

∂p1
5

− p1
6

∂

∂p1
6

+ 3p2
3

∂

∂p2
3

+ 2p2
5

∂

∂p2
5

, Y8 =
∂

∂p1
1

+
∂

∂p2
3

.

The group G6 acts intransitively on the set of points (p1
2, p

1
3, p

1
5, p

1
6, p

2
3, p

2
5) and

therefore the set of pairs (G1, G2) has not invariant density with respect to G6.
The system

Y1(f) = 0, Y2(f) = 0, Y3(f) = 0, Y4(f) = 0, Y7(f) = 0, Y8(f) = 0
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has the solution
f = p1

2,

and it is an absolute invariant of G6. Consider the subset of pairs (G1, G2)
satisfying the condition

p1
2 = h, (24)

where h = const. The group G6 induces on this subset the group G∗
6 with the

infinitesimal operators

Z1 = p1
3

∂

∂p1
5

− h ∂

∂p1
6

+ p2
3

∂

∂p2
5

, Z2 =
∂

∂p1
6

,

Z3 =
∂

∂p1
5

+
∂

∂p2
5

, Z4 = p1
2

∂

∂p1
3

− p1
6

∂

∂p1
5

+ p1
2

∂

∂p2
3

− p1
6

∂

∂p2
5

,

Z7 = 3p1
3

∂

∂p1
3

+ 2p1
5

∂

∂p1
5

− p1
6

∂

∂p1
6

+ 3p2
3

∂

∂p2
3

+ 2p2
5

∂

∂p2
5

, Z8 =
∂

∂p1
1

+
∂

∂p2
3

.

The integral invariant function f = f(p1
3, p

1
5, p

1
6, p

2
3, p

2
5), which satisfies the Deltheil

system

Z1(f) = 0, Z2(f) = 0, Z3(f) = 0, Z4(f) = 0, Z7(f)− 9f = 0, Z8(f) = 0,

has the form
f =

c

(p1
3 − p2

3)3
,

where c = const.
Thus we state the following

Theorem 5.1 The set of pairs (G1, G2)(p1
2, p

1
3, p

1
5, p

1
6, p

2
3, p

2
5) of intersecting non-

isotropic lines of type β is not measurable with respect to G6, but it has the
measurable subset

p1
2 = h, h = const,

with the density

d(G1, G2) =
1

|p2
3 − p1

3|3
dp1

3 ∧ dp1
5 ∧ dp1

6 ∧ dp2
3 ∧ dp2

5. (25)

Differentiating (7), (24), and replacing into (25), we establish

Corollary 5.1 The set of pairs (G1, G2) of intersecting non-isotropic lines of
type β, determined by (6), is not measurable with respect to the group G6, but
it has the measurable subset

b1
a1

= h, h = const,

with the density

d(G1, G2) =
1

(a1 − a2)2
da1 ∧ da2 ∧ dp ∧ dq ∧ dr.
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6 Measurability with respect to B7, W7, G7, V7, B6, and
B5

By arguments similar to those used in the sections 2, 3, and 5, we investigated
the measurability with respect to all the remaining groups. We have the follow-
ing results:

Theorem 6.1 The set of pairs (G1, G2) of intersecting non-isotropic straight
lines of type β, determined by (6), is measurable with respect to the group
(i) B7 and it has the density

d(G1, G2) =

∣∣∣∣∣ a1a2

(a1 − a2)3
√
a2
1 + b21

∣∣∣∣∣ da1 ∧ db1 ∧ da2 ∧ dp ∧ dq ∧ dr;

(ii) V7 and it has the density

d(G1, G2) =
|a1|

(a1 − a2)2(a2
1 + b21)

da1 ∧ db1 ∧ da2 ∧ dp ∧ dq ∧ dr.

Theorem 6.2 With respect to the groups W7 and S7 the set of pairs (G1, G2)
of intersecting non-isotropic lines of type β is not measurable and it has no
measurable subsets.

Theorem 6.3 The set of pairs (G1, G2) of intersecting non-isotropic straight
lines of type β, determined by (6), is not measurable with respect to the group
(i) B6, but it has the measurable subset

b1
a1

= h, h = const,

with the density

d(G1, G2) =
∣∣∣∣ a1a2

(a1 − a2)3

∣∣∣∣ da1 ∧ da2 ∧ dp ∧ dq ∧ dr;

(ii) B5, but it has the measurable subset

b1
a1

= h1,
1
a1
− 1
a2

= h2, h1, h2 = const,

with the density

d(G1, G2) =
∣∣∣∣ a2

a1(a1 − a2)

∣∣∣∣ da1 ∧ da2 ∧ dp ∧ dq ∧ dr.
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Abstract

We generalize the correspondence between basic algebras and lattices
with section antitone involutions to a more general case where no lattice
properties are assumed. These algebras are called conjugated if this cor-
respondence is one-to-one. We get conditions for the conjugary of such
algebras and introduce the induced relation. Necessary and sufficient con-
ditions are given to indicated when the induced relation is a quasiorder
which has “nice properties”, e.g. the unary operations are antitone invo-
lutions on the corresponding intervals.

Key words: Conjugated alegebras, basic algebra, section antitone
involution, quasiorder.
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Correspondence between MV-algebras and bounded distributive lattices with
section antitone involutions is well-known, see e.g. [3] and [5]. This was gen-
eralized for basic algebras and general bounded lattices with section antitone
involutions, see [2] and [3] for details. Semilattices and lattices with section an-
titone involutions were treated separately in [1]. If a bounded lattice is replaced
by the so-called λ-lattice, the corresponding algebra is called an NMV-algebra,
an non-associative generalization of an MV-algebra, see [4]. If a little less is
assumed, we get the correspondence between weak basic algebras and direc-
toids with section antitone involutions, see [6]. These attempts motivate us to
find a general correspondence between algebras of two sorts. One of them are
“MV-like algebras”, the other are “semilattice-like algebras” with a set of unary
operations. Since in all the aforementioned cases the “semilattice-like algebras”
were ordered, we add an assumption that our algebras of the second sort will

*Supported by the Research and Development Council of the Czech Government MSM 6
198 959 214.
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be at least quasiordered. If there is a one-to-one correspondence between these
algebras, we will say that they are conjugated.

At first, we get precise meaning to mentioned concepts.
We consider two kinds of algebras. The first are algebras A = (A;⊕,¬, 0)

of type (2, 1, 0). For the sake of brevity, we will denote 1 := ¬0 the algebraic
constant of A.

The second are algebras L = (A;�, (b)b∈A, 0) where � is a binary operation,
0 is a nullary operation and for each b ∈ A, b is a unary operation on A, i.e. it
is a mapping A→ A assigning to x ∈ A an element xb. Denote by 1 := 00. To
every A = (A;⊕,¬, 0) there can be assigned an algebra L(A) = (A;�, (b)b∈A, 0),
where

x � y = ¬(¬x ⊕ y)⊕ y and xy = ¬x⊕ y.
To every L= (L;�,(b)b∈L, 0) there can be assigned an algebraA(L) = (L;⊕,¬,0),
where

x⊕ y = (x0 � y)y and ¬x = x0.

We call algebras A = (A;⊕,¬, 0) and L = (L;�, (b)b∈A, 0) conjugated if

L = L(A) and A = A(L).

This yields A(L(A)) = A and L(A(L)) = L, i.e. if they share the same base-set
and the aforementioned assignments are one-to-one correspondences.

At first, we can describe the following properties of conjugated algebras.

Theorem 1 Let A = (A;⊕,¬, 0) satisfy the conditions

(A1) ¬¬x = x;

(A2) x⊕ 0 = x;

(A3) ¬(¬(x ⊕ y)⊕ y)⊕ y = x⊕ y.
Then A(L(A)) = A and L(A) satisfies the conditions

(L1) (x � y)yy = x � y;
(L2) xy = (x � y)y;
(L3) x � 0 = x.

Proof Assume that A satisfies (A1), (A2) and (A3) and denote by �,∼ the
operations of A(L(A)). Of course, the nullary operation 0 is the same both in
A and A(L(A)). We have by (A2)

∼ x = x0 = ¬x⊕ 0 = ¬x.
Further, we compute by (A1) and (A3)

x� y = (x0 � y)y = (¬x � y)y = (¬(¬¬x ⊕ y)⊕ y)y
= ¬(¬(x ⊕ y)⊕ y)⊕ y = x⊕ y

thus A(L(A)) = A.
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Further, applying (A3), we conclude

xy = ¬x⊕ y = ¬(¬(¬x ⊕ y)⊕ y)⊕ y = ¬(x � y)⊕ y = (x � y)y

proving (L2). Using this we obtain

(x � y)yy = xyy = ¬(¬x ⊕ y)⊕ y = x � y

which is (L1). Using (A1) and (A2) we prove also (L3):

x � 0 = ¬(¬x ⊕ 0)⊕ 0 = ¬¬x = x. �

Theorem 2 Let L = (L;�, (b)b∈L, 0) satisfy (L1), (L2) and (L3). Then
L(A(L)) = L and A(L) satisfies (A1), (A2) and (A3).

Proof Assume that L satisfies (L1), (L2) and (L3) and denote by ∨ the binary
operation and by (fb)b∈L the set of unary operations of L(A(L)). Of course,
the nullary operation 0 is the same in both the algebras. Then, by (L1),

x ∨ y = ¬(¬x ⊕ y)⊕ y = (¬x⊕ y)y = (x � y)yy = x � y.

Further, ¬¬x = x00 = (x � 0)00 = x � 0 = x by (L1), (L2) and (L3). Next, by
(L2),

fy(x) = ¬x⊕ y = ((¬x)0 � y)y = (x00 � y)y = (x � y)y = xy

thus L(A(L)) = L and A(L) satisfies (A1). Analogously,

x⊕ 0 = (x0 � 0)0 = x00 = (x � 0)00 = x � 0 = x

thus A(L) satisfies (A2). Since A(L) already satisfies (A1), we can easily com-
pute

¬(¬(x ⊕ y)⊕ y)⊕ y = (¬x � y)y = (¬x)y = ¬¬x ⊕ y = x⊕ y

proving (A3). �

Corollary 1 Let A satisfy (A1), (A2) and (A3). Then A and L(A) are con-
jugated. Let L satisfy (L1), (L2) and (L3). Then L and A(L) are conjugated.

Corollary 2 Let A,L be conjugated algebras. Then A satisfies (A1), (A2),
(A3) if and only if L satisfies (L1), (L2), (L3).

Remark 1 As mentioned in the introduction, the correspondence between A =
(A;⊕,¬, 0) and L = (A;�, (b)b∈A, 0) was studied for several cases. The results
are as follows:

(1) If A is a basic algebra then L = L(A) is a bounded semilattice with section
antitone involutions (SAI for short);
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(2) If A is an MV-algebra then L = L(A) is a bounded semilattice with SAI
satisfying the Exchange Property;

(3) If A is an NMV-algebra then L = L(A) is a commutative directoid with
SAI;

(4) If A is a weak basic algebra then L = L(A) is a directoid with SAI (not
necessarily commutative).

In all the cases, A and L are conjugated and there exists an induced order
such that 0 (or 1) is the least (or the greatest) element and y ≤ x � y. We
are going to study this question concerning some “order-like” relation also on
conjugated algebras in general.

Define a binary relation ≤ on an algebra A = (A;⊕,¬, 0) as follows

x ≤ y if and only if ¬x⊕ y = 1.

Call ≤ the induced relation on A.
Let us note that 1 = ¬0. If A satisfies (A1), then also ¬1 = ¬¬0 = 0.

Lemma 1 The induced relation ≤ on A is reflexive if and only if A satisfies
the identity

(P) ¬x⊕ x = 1.

Let A satisfy (A1). Then 0 ≤ x ≤ 1 for each x ∈ A if and only if A satisfies
the identity

(A4) 1⊕ x = 1 = x⊕ 1.

Proof The first assertion is trivial. For the second one, 0 ≤ x is equivalent to
1 ⊕ x = ¬0 ⊕ x = 1 and x ≤ 1 is equivalent to ¬x ⊕ 1 = 1 for each x ∈ A, i.e.
due to (A1), A satisfies also the identity x⊕ 1 = 1. �

Lemma 2 Let A,L be conjugated algebras and ≤ be the induced relation on A.
Let A satisfy (A1) and (A4) and L satisfy (L1). Then the following conditions
are equivalent

(a) 1x = x and xx = 1;

(b) x ≤ y if and only if x � y = y.

Proof (a)⇒(b): Let x ≤ y. Then

(x � y)y = ¬x⊕ y = 1

thus, by (L1),
x � y = (x � y)yy = 1y = y.

Conversely, if x � y = y then

¬x⊕ y = (x � y)y = yy = 1,

i.e. x ≤ y.
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(b)⇒(a): Applying Lemma 1, (A4) yields 0 ≤ x and, by the assumption (b),
0 � x = x. By (A4) and (L1) we have

1x = (1⊕ x)x = (¬1 � x)xx = (0 � x)xx = 0 � x = x.

Similarly,
xx = (0 � x)x = 00 ⊕ x = 1⊕ x = 1. �

Lemma 3 Let A and L be conjugated algebras. Then x ≤ x � y if and only if
A satisfies
(A5) ¬x⊕ (¬(¬x ⊕ y)⊕ y) = 1.

Proof By the definition of ≤ we have that

x ≤ x � y if and only if ¬x⊕ (x � y) = 1.

However, A,L are conjugated thus x � y = ¬(¬x ⊕ y)⊕ y. �

A binary relation is called a quasiorder if it is reflexive and transitive. We are
going to characterize algebras A = (A;⊕,¬, 0) for which the induced relation is
a quasiorder which has a special meaning for the assigned algebra L.

Lemma 4 Let A = (A;⊕,¬, 0) satisfy the identities (A1) and

(A6) 0⊕ x = x;

(A7) ¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = 1.

Then the induced relation ≤ is transitive.

Proof Assume x ≤ y and y ≤ z, i.e. ¬x ⊕ y = 1 and ¬y ⊕ z = 1. By (A1),
(A7) and (A6) we compute

1 = ¬(¬(¬(¬x ⊕ y)⊕ y)⊕ z)⊕ (¬x⊕ z)
= ¬(¬(¬1 ⊕ y)⊕ z)⊕ (¬x⊕ z) = ¬(¬(0 ⊕ y)⊕ z)⊕ (¬x ⊕ z)
= ¬(¬y ⊕ z)⊕ (¬x ⊕ z) = ¬1⊕ (¬x ⊕ z) = 0⊕ (¬x⊕ z) = ¬x⊕ z

whence x ≤ z. �

Let (A;≤) be a quasiordered set and f : A→ A be a mapping. We say that
f is antitone if x ≤ y yields f(y) ≤ f(x) and f is an involution if f(f(x)) = x
for every x ∈ A. If a, b ∈ A and a ≤ b, by an interval [a, b] is meant the subset
of A given by [a, b] = {x ∈ A; a ≤ x ≤ b}.

Theorem 3 Let A,L be conjugated algebras, let ≤ be the induced relation on
A. Let A satisfy (A1), (A2), (A3), (A4) and (A6). The following conditions
are equivalent

(1) A satisfies (A7);
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(2) ≤ is a quasiorder on A such that x ≤ x� y for each x, y ∈ A and for each
z ∈ A the mapping x �→ xz is an antitone involution on the interval [z, 1].

Proof (1)⇒ (2): Put y = 0 = z in (A7). We get ¬x⊕ x = 1 which is (P) of
Lemma 1, i.e. ≤ is reflexive. Since A satisfies (A6) and (A7), ≤ is transitive by
Lemma 4 and hence (A;≤) is a quasiordered set.

Assume x ≤ y. Then ¬x ⊕ y = 1 and, by (A7),

1 = ¬(¬(¬(¬x ⊕ y)⊕ y)⊕ z)⊕ (¬x ⊕ z) = ¬(¬y ⊕ z)⊕ (¬x ⊕ z)

thus
¬y ⊕ z ≤ ¬x⊕ z. (∗)

For z = 0 we have x ≤ y ⇒ ¬y ≤ ¬x which is equivalent to

¬x ⊕ y = 1 ⇒ y ⊕ ¬x = 1. (∗∗)

Taking z = 0 and replacing x by ¬x in (A7), we obtain

(¬(¬x ⊕ y)⊕ y)⊕ ¬x = 1

thus, by (∗∗), we obtain

¬x⊕ (¬(¬x ⊕ y)⊕ y) = 1

which yields
x ≤ ¬(¬x ⊕ y)⊕ y = x � y.

Let x, y ∈ [z, 1] and x ≤ y. By (∗) we have yz = ¬y ⊕ z ≤ ¬x⊕ z = xz thus
the mapping x �→ xz is antitone. By (A4) we have xz ≤ 1. Applying (∗) twice
and using (A1), we obtain

x ≤ y ⇒ x⊕ z ≤ y ⊕ z. (∗∗∗)

Since ¬x ≤ 1 by (A4), (∗) yileds 0 ≤ x thus, by (∗∗∗) and (A6), we obtain

y = 0⊕ y ≤ x⊕ y.

This yields z ≤ ¬x ⊕ z = xz . We have shown that x �→ xz is really a mapping
of the interval [z, 1] into itself. By (L1) and (L2), it is an involution. We have
shown (1)⇒ (2).

(2) ⇒ (1): By (2) we have ¬x ≤ ¬x � y where the induced relation ≤ is a
quasiorder on A. By (2),

¬(¬(x ⊕ y)⊕ y)⊕ z) = ¬(¬x � y)⊕ z =

= ((¬x � y) � z)z = (¬x � y)z ≤ (¬x)z = (¬x � z)z = x⊕ z
thus ¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = 1 which is just (A7). �
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Abstract

The concept of a basic pseudoring is introduced. It is shown that
every orthomodular lattice can be converted into a basic pseudoring by
using of the term operation called Sasaki projection. It is given a mutual
relationship between basic algebras and basic pseudorings. There are
characterized basic pseudorings which can be converted into othomodular
lattices.

Key words: Basic algebra, basic pseudoring, orthomodular lattice.
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It is well-known that every Boolean algebra can be converted into a Boolean
ring by using of the symmetrical difference, see e.g. [2]. Also conversely, every
Boolean ring can be converted into a Boolean algebra. For orthomodular lattices
(instead of Boolean algebras) a similar construction giving a ring-like structure
called Boolean quasiring was settled in [6], [7] and generalized for bounded
lattices with an antitone involution in [8] and [9]. The natural question is for
which algebras used in non-classical logics a similar conversion into a ring-like
structure is possible. Of course, Boolean algebras serve as axiomatization of the
classical propositional logic and orthomodular lattices play a similar role in the
logic of quantum mechanics, see e.g. [1], [7], [8], [9].

In this study we are concentrated in an algebraic counterpart of many-valued
logics. This is usually considered to be an MV-algebra for many-valued �Lukasie-
wicz logic. However, it was generalized for more wide class as the concept of
basic algebra, see e.g. [3], [4] as sources.
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Let us note that a certain ring-like structures corresponding to MV-algebras
were investigated by the first author and H. Länger in [5] and analogously, it
was done for pseudo MV-algebras by Y. Shang in [10]. We will involve a similar
approach which, however, can be used both for MV-algebras and orthomodular
lattices.

The concept of basic algebra was introduced in [3] as a common generaliza-
tion of an MV-algebra and an orthomodular lattice. Recall that a basic algebra
(see e.g. [3], [4]) is an algebra A = (A;⊕,¬, 0) of type (2, 1, 0) satisfying the
following identities

(BA1) x⊕ 0 = x;

(BA2) ¬¬x = x (double negation);

(BA3) ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x (�Lukasiewicz axiom);

(BA4) ¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = 1 (where 1 := ¬0).

Let us note that every basic algebra satisfies also the identities 1⊕ x = 1 =
x ⊕ 1, 0 ⊕ x = x, x ⊕ ¬x = ¬x ⊕ x = 1 (see e.g. [3]). In every basic algebra
A = (A;⊕,¬, 0), the partial order can be defined by x ≤ y if and only if ¬x⊕y =
1. The ordered set (A;≤) is a bounded lattice where x ∨ y = ¬(¬x ⊕ y) ⊕ y,
x∧y = ¬(¬x∨¬y) and 1 = ¬0. Moreover, it satisfies y ≤ x⊕y and the mapping
x �→ ¬x is antitone for every x, y ∈ A.

A basic algebra A = (A;⊕,¬, 0) is called commutative if it satisfies the
identity x⊕ y = y ⊕ x.

The concept of symmetrical difference can be introduced for basic algebras
in a way similar to that of [6] for orthomodular lattices, however, an operation
⊕ is considered instead of ∨ in orthomodular lattice because ⊕ expresses the
logical connective disjunction in the corresponding logic.

Searching for an appropriate ring-like structure, we choose the following one
from a number of possible ways.

Definition 1 By a basic pseudoring we mean an algebra R = (R; +, ·, 0, 1) of
type (2, 2, 0, 0) satisfying the identities

(R1) 1 + 0 = 1;

(R2) x · 1 = x;

(R3) 1 + (1 + x) = x;

(R4) (1 + x · (1 + y)) · (1 + y) = (1 + y · (1 + x)) · (1 + x);

(R5) 1+(1+(1+(1+((1+x)·(1+y)))·(1+y))·(1+z))·((1+x)·(1+z)) = 1.

One can immediately mention that this concept differs from the concept of
a Boolean quasiring or a generalized Boolean quasiring as defined in [7], [8], [9].
From this point it can be of interest that this ring-like structure can be also
reached from every orthomodular structure. Of course, this conversion differs
due to the fact that instead of a symmetrical difference (see [6]) the Sasaki
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operation (alias Sasaki projection, see [1]) is used. Let us recall that by a Sasaki
operation of an orthomodular lattice is meant a term operation

(x ∨ y′) ∧ y.
We are ready to state our first result.

Theorem 1 Let L = (L;∨,∧,′ , 0, 1) be an orthomodular lattice. Define

x · y = (x ∨ y′) ∧ y and x+ y = ((x′ · y)′ · (x · y′)′)′.
Then R(L) = (R; +, ·, 0, 1) is a basic pseudoring satisfying the conditions
(a) x · x = x

(b) x·(1+y) = 0⇒ 1+(1+((1+(1+y)·(1+x))·(1+x))·(1+x))·(1+x) = y.

Proof It is an immediate reflexion that

x · x = (x ∨ x′) ∧ x = 1 ∧ x = x

proving (a).
Further, 1 · x = (1 ∨ x′) ∧ x = x and 0 · x = (0 ∨ x′) ∧ x = 0. Hence,

1 + x = ((1′ · x)′ · (1 · x′)′)′ = (0′ · x′′)′ = (1 · x)′ = x′.

This yields 1 + 0 = 0′ = 1 proving (R1). Evidently,

x · 1 = (x ∨ 1′) ∧ 1 = x

proving (R2) and 1 + (1 + x) = x′′ = x proving (R3). For (R4) we compute

(1 + x · (1 + y)) · (1 + y) = (x · y′)′ · y′ = ((x ∨ y) ∧ y′)′ · y′
= (((x ∨ y) ∧ y′)′ ∨ y) ∧ y′ = ((x ∨ y)′ ∨ y) ∧ y′ = (x ∨ y)′

due to the orthomodular law since (x∨ y)′ ≤ y′. By symmetry we obtain (R4).
Since

1 + (1 + ((1 + x) · (1 + y))) · (1 + y) = 1 + ((x′ ∨ y) ∧ y′)′ · y′
= (((x ∧ y′) ∨ y) ∧ y′)′ = ((x′ ∨ y) ∧ y′) ∨ y = x′ ∨ y

by the orthomodular law, for (R5) we have

1 + (1 + (1 + (1 + ((1 + x) · (1 + y))) · (1 + y)) · (1 + z)) · ((1 + x) · (1 + z))
= 1 + (1 + (x′ ∨ y) · (1 + z)) · ((1 + x) · (1 + z))
= 1 + (1 + (x′ ∨ y) · z′) · ((x′ ∨ z) ∧ z′)
= ((((x′ ∨ y) · z′)′) · ((x′ ∨ z) ∧ z′))′
= (((((x′ ∨ y) ∨ z)′ ∨ z) ∨ ((x′ ∨ z) ∧ z′)′) ∧ ((x′ ∨ z) ∧ z′))′
= ((((x′ ∨ y) ∨ z) ∧ z′) ∧ ((x′ ∨ z) ∧ z′)) ∨ ((x′ ∨ z) ∧ z′)′
= ((x′ ∨ z) ∧ z′) ∨ ((x′ ∨ z) ∧ z′)′ = 1.



28 Ivan CHAJDA, Miroslav KOLAŘÍK

It remains to prove (b). Assume x · (1+y) = 0. Then 0 = x ·y′ = (x∨y)∧y′
thus x ∨ y = y whence x ≤ y. Thus

1 + (1 + ((1 + (1 + y) · (1 + x)) · (1 + x)) · (1 + x)) · (1 + x)
= 1 + (1 + (y ∧ x′) · (1 + x)) · (1 + x) = (y ∧ x′) ∨ x = y

by the orthomodular law. �

Now, we are going to describe a mutual relationship between basic pseudor-
ings and basic algebras.

Theorem 2 Let R = (R; +, ·, 0, 1) be a basic pseudoring. Define

x⊕ y = 1 + (1 + x) · (1 + y) and ¬x = 1 + x.

Then A(R) = (R;⊕,¬, 0) is a basic algebra.

Proof We will check the axioms of a basic algebra.

(BA1): x⊕ 0 = 1 + (1 + x) · (1 + 0) = 1 + (1 + x) · 1 = 1 + (1 + x) = x;

(BA2): ¬¬x = 1 + (1 + x) = x;

(BA3): ¬(¬x ⊕ y)⊕ y =
= 1 + (1 + (1 + (¬x ⊕ y))) · (1 + y) = 1 + (¬x ⊕ y) · (1 + y)
= 1 + (1 + (1 + (1 + x)) · (1 + y)) · (1 + y) = 1 + (1 + x · (1 + y)) · (1 + y)
= 1 + (1 + y · (1 + x)) · (1 + x) = 1 + (¬y ⊕ x) · (1 + x)
= ¬(¬y ⊕ x)⊕ x;

(BA4): ¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) =
= ¬(¬((1 + (1 + ((1 + x) · (1 + y))) · (1 + y))⊕ z)⊕ (1 + (1 + x) · (1 + z))
= (1 + (1 + ((1 + x) · (1 + y))) · (1 + y)) · (1 + z)⊕ (1 + (1 + x) · (1 + z))
= 1 + (1 + (1 + (1 + ((1 + x) · (1 + y))) · (1 + y)) · (1 + z)) · ((1 + x) · (1 + z))
= 1. �

We can prove the converse.

Theorem 3 Let A = (A;⊕,¬, 0) be a basic algebra. Define

x+ y = ¬(x⊕ ¬y)⊕ ¬(¬x ⊕ y) and x · y = ¬(¬x ⊕ ¬y) and 1 = ¬0.
Then R(A) = (A; +, ·, 0, 1) is a basic pseudoring satisfying the correspondence
identity

1 + (1 + (1 + x) · y) · (1 + x · (1 + y)) = x+ y. (CI)

Proof First we mention that

1 + x = ¬(1 ⊕ ¬x)⊕ ¬(0 ⊕ x) = ¬1 ⊕ ¬x = 0⊕ ¬x = ¬x.
Now we check the axioms of a basic pseudoring.

(R1): 1 + 0 = ¬(1⊕ ¬0)⊕ ¬(¬1 ⊕ 0) = ¬1 ⊕ ¬0 = 1;

(R2): x · 1 = ¬(¬x ⊕ ¬1) = ¬(¬x ⊕ 0) = ¬¬x = x;
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(R3): 1 + (1 + x) = ¬¬x = x;

(R4): (1 + x · (1 + y)) · (1 + y)
= (¬(x · ¬y)) · ¬y = (¬x ⊕ y) · ¬y = ¬(¬(¬x ⊕ y)⊕ y) = ¬(¬(¬y ⊕ x)⊕ x)
= (1 + y · (1 + x)) · (1 + x);

(R5): 1 + (1 + (1 + (1 + ((1 + x) · (1 + y))) · (1 + y)) · (1 + z)) · ((1 + x) · (1 + z))
= 1 + (1 + (1 + (x⊕ y) · ¬y) · ¬z) · (¬x · ¬z)
= 1 + (1 + (¬((x ⊕ y) · ¬y)) · ¬z) · ¬(x⊕ z)
= 1 + (1 + (¬(x ⊕ y)⊕ y) · ¬z) · ¬(x ⊕ z)
= 1 + (¬(¬(x ⊕ y)⊕ y)⊕ z) · ¬(x⊕ z)
= 1 + ¬(¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x⊕ z))
= ¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x⊕ z)
= 1.
Hence, R(A) = (A; +, ·, 0, 1) is a basic pseudoring. It remains to prove (CI).

For this, we compute

1 + (1 + (1 + x) · y) · (1 + x · (1 + y))
= ¬(¬(¬x · y) · ¬(x · ¬y)) = ¬(x⊕ ¬y)⊕ ¬(¬x ⊕ y) = x+ y �

In what follows we show that this relationship is in fact a one-to-one corre-
spondence if R satisfies the correspondence identity.

Theorem 4 (a) Let A = (A;⊕,¬, 0) be a basic algebra and R(A) the induced
basic pseudoring and A(R(A)) the induced basic algebra. Then A(R(A)) = A.
(b) Let R = (R; +, ·, 0, 1) be a basic pseudoring satisfying the correspondence

identity (CI), let A(R) be the induced basic algebra and R(A(R)) the induced
basic pseudoring. Then R(A(R)) = R.
Proof Denote by ⊕̂ and ¬̂ the binary and the unary operation of A(R(A)).
Then clearly,

¬̂x = 1 + x = ¬(1⊕ ¬x) ⊕ ¬(¬1 ⊕ x) = 0⊕ ¬x = ¬x
and

x⊕̂y = 1 + (1 + x) · (1 + y) = ¬(¬x · ¬y) = ¬(¬(x ⊕ y)) = x⊕ y
thus A(R(A)) = A.

Denote by +̂ and ·̂ the binary operations of R(A(R)). Then, due to (CI) we
compute

x+̂y = ¬(x⊕ ¬y)⊕ ¬(¬x ⊕ y) = (1 + x) · y ⊕ x · (1 + y)
= 1 + (1 + (1 + x) · y) · (1 + x · (1 + y)) = x+ y

and

x ·̂ y = ¬(¬x ⊕ ¬y) = 1 + ((1 + x)⊕ (1 + y))
= 1 + (1 + (1 + (1 + x)) · (1 + (1 + y))) = 1 + (1 + x · y) = x · y

thus also R(A(R)) = R. �
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Several interesting properties of basic pseudorings are described by the fol-
lowing theorem and its corollary.

Theorem 5 Let R = (R; +, ·, 0, 1) be a basic pseudoring and a, b ∈ R. Then

a+ b = 0 if and only if a = b.

Proof Let R = (R; +, ·, 0, 1) be a basic pseudoring and A(R) = (R;⊕,¬, 0)
the induced basic algebra. In A(R) we have c ≤ d if and only if ¬c ⊕ d = 1.
Since x ≤ x and ¬x ≤ ¬x, we get ¬x ⊕ x = 1 and x ⊕ ¬x = ¬¬x ⊕ ¬x = 1
whence

x+ x = ¬(x⊕ ¬x) ⊕ ¬(¬x ⊕ x) = ¬1⊕ ¬1 = 0⊕ 0 = 0.

Assume now that c, d ∈ R and c ⊕ d = 0. Since d ≤ c ⊕ d = 0, we conclude
d = 0 and hence c = c⊕ 0 = c⊕ d = 0, i.e.

c⊕ d = 0⇒ c = d = 0. (∗∗)

Suppose a, b ∈ R and a+ b = 0. Then

¬(a⊕ ¬b)⊕ ¬(¬a ⊕ b) = 0

and, by (∗∗), ¬(a ⊕ ¬b) = 0 = ¬(¬a ⊕ b), i.e. a⊕ ¬b = 1 and ¬a ⊕ b = 1 thus
¬a ≤ ¬b and a ≤ b. However, the first inequality yields b ≤ a thus a = b. �

Corollary 1 (a) Every basic pseudoring satisfies the identity x+ x = 0.
(b) If a pseudoring R satisfies the identity x · y = y · x then A(R) is a

commutative basic algebra.
(c) If a basic algebra A is commutative then R(A) satisfies the identities

x · y = y · x and x+ y = y + x.

In what follows, we are going to show that not only every basic algebra
induces a basic pseudoring and vice versa as shown by Theorems 2 and 3 but
also Theorem 1 can be inverted, i.e. every orthomodular lattice induces a basic
pseudoring satisfying the conditions (a), (b) but also every such basic pseudoring
induces an orthomodular latttice.

Now, we are ready to prove the following

Theorem 6 Let R = (R; +, ·, 0, 1) be a basic pseudoring satisfying the identi-
ties (a) and (b) of Theorem 1. Define a binary relation ≤ on R as follows

x ≤ y if and only if x · (1 + y) = 0.

Then ≤ is an order on R and (R;≤) is an orthomodular lattice where

x ∨ y = 1 + (1 + x · (1 + y)) · (1 + y) and x′ = 1 + x.
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Proof Let R = (R; +, ·, 0, 1) be a basic pseudoring satisfying (a) and (b).
Consider the induced basic algebra A(R) = (R;⊕,¬, 0). Then clearly

x · (1 + y) = 0 iff ¬x⊕ y = 1 iff x ≤ y

thus ≤ is an order on R and (R;≤) is the lattice induced by the basic algebra
A(R) where x∨ y = ¬(¬x⊕ y)⊕ y = 1+(1+x · (1+ y)) · (1+ y) and ¬x = 1+x
(as already shown by Theorem 2). Hence, for x ∧ y = (x′ ∨ y′)′ we have that
(R;∨,∧,′ , 0, 1) is a bounded lattice with an antitone involution (i.e. x′′ = x and
x ≤ y ⇒ y′ ≤ x′).

Further, by (a) we have x = x · x = ¬(¬x ⊕ ¬x), i.e. ¬x = ¬x ⊕ ¬x
and, due to the double negation law in A(R), also x ⊕ x = x for each x ∈ R.
Thus ¬x ∨ x = ¬(x ⊕ x) ⊕ x = ¬x ⊕ x = 1 and, due to De Morgan law,
also x ∧ ¬x = ¬(¬x ∨ x) = ¬1 = 0 thus x′ = ¬x is a complement of x, i.e.
(R;∨,∧,′ , 0, 1) is an ortholattice.

Finally,

1 + (1 + ((1 + (1 + y) · (1 + x)) · (1 + x)) · (1 + x)) · (1 + x)
= 1 + (1 + (y ∧ x′) · (1 + x)) · (1 + x) = (y ∧ x′) ∨ x,

thus x ≤ y ⇒ x · (1 + y) = 0 and, by (b) and the previous computation,
x ∨ (x′ ∧ y) = y, which is the orthomodular law. Hence, (R;∨,∧,′ , 0, 1) is an
orthomodular lattice. �
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Abstract

Let p be a k-ary lattice term. A k-pointed lattice L = (L;∨,∧,
d1, . . . , dk) will be called a p-lattice (or a test lattice if p is not specified),
if (L;∨,∧) is generated by {d1, . . . , dk} and, in addition, for any k-ary
lattice term q satisfying p(d1, . . . , dk) ≤ q(d1, . . . , dk) in L, the lattice
identity p ≤ q holds in all lattices.
In an elementary visual way, we construct a finite p-lattice L(p) for

each p. If p is a canonical lattice term, then L(p) coincides with the
optimal p-lattice of Freese, Ježek and Nation [6]. Some results on test
lattices and short proofs for known facts on free lattices indicate that our
approach is useful.

Key words: Free lattice, test lattice, lattice identity, Whitman’s
condition.
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1 Introduction

For a fixed natural number k, by a k-pointed lattice we mean a lattice L with
k distinguished elements d1, . . . , dk. For 
d = (d1, . . . , dk) ∈ Lk, the “k-pointed
lattice” (L;∨,∧, d1, . . . , dk) will be denoted by (L; 
d). If p and q are k-ary lattice
terms, then both p = q and p ≤ q are called lattice identities. A lattice identity
is said to be trivial, if it holds in all lattices.

We introduce a new concept. Given a k-ary lattice term p = p(α1, . . . , αk),
we will call a k-pointed lattice (L; 
d) a p-lattice, if

• {d1, . . . , dk} generates L, and

• for any k-ary lattice term q, p(d1, . . . , dk) ≤ q(d1, . . . , dk) in L if and only
if p ≤ q is a trivial lattice identity.

*This research was partially supported by the NFSR of Hungary (OTKA), grant no.
T 049433 and K 60148
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We use the terminology “test lattice” if we do not want to specify p. That is, if
(L; 
d) is a p-lattice for some p, then it is also called a test lattice.

For example, if L is freely generated by {d1, . . . , dk}, then it is obviously a
p-lattice for every k-ary lattice term p. Beside other aims, we are going to give
a new proof for the following result, which is not so obvious.

Proposition 1 [Freese and Nation [7], Freese, Ježek and Nation [6])] For each
lattice term p, there exists a finite p-lattice.

Our first goal is to point out that test lattices deserve some attention in-
dependently from the well-developed theory of free lattices (see Freese, Ježek,
Nation [6]). Hence we present Theorem 3, soon, and give new proofs for two
more or less known properties of test lattices, see Theorems 5 and 6. Further,
we give two easy applications. Namely, we demonstrate the usefulness of test
lattices by giving a very short, new proof that free lattices satisfy Whitman’s
condition, see Corollaries 12 and 13, and also by solving (and generalizing) the
following (not very difficult) exercise.

Exercise 2 Let p♦ = (α1 ∨α2)∧(α1 ∨α3). Is there a non-trivial lattice iden-
tity p♦ ≤ q that holds in the five-element non-modular lattice?

Our second goal is to construct a finite k-pointed lattice L(p), for each k-
ary lattice term p, in a conceptually simple way, and to give an elementary
proof that it is a p-lattice. To follow the rest of the paper until the “Historical
remarks” section, the reader is assumed to be familiar only with the rudiments
of lattice theory, that is, with a small fraction of, say, G. Grätzer [8]. The only
outer reference used in our proof is Jónsson’s type 3 representation theorem, see
[10], and see also Theorem IV.4.4 in Grätzer [8].
Our third goal is to give a new approach that is visual, not just elemen-

tary. We develop a visual toolkit consisting of purely lattice theoretical results
from this section and several statements (Lemmas 7, 8, 9, 14, 15 and Corollar-
ies 10, 11) from Section 3. Although this toolkit is applied to prove some known
or easy results only, the geometric perspective may serve a better understanding
of the underlining reasons, and it may lead to further useful observations in the
future.

Notice at this point that powerful tools from the theory of free lattices, see
Freese, Ježek and Nation [6] and its references, have already given or may easily
give shorter “standard” proofs to several of our statements. Hence, in the last
section, our results will be related to [6]. However, if the necessary previous
pages of [6] are also counted, then some of the standard proofs are lengthier
than ours. Although we will give some hints to a standard proof in the last
section, many readers will probably find easier to follow our approach.

Notice also that, opposed to the present paper, free lattices are hard to
imagine visually. For example, FL(ω) is a sublattice of FL(3) by Whitman [13],
and this fact is an obstacle to a proper visual understanding of FL(3), the free
lattice on three generators. Hence we hope that our pictorial approach with



A visual approach to test lattices 35

graphical background makes sense and contributes to a better understanding of
free lattices.

Finally, notice at this point that the only outer reference, Jónsson’s type 3
representation theorem, see [10] or Theorem IV.4.4 in [8], is also visual.

From now on, let p = p(α1, . . . , αk) be a fixed k-ary lattice term. We are
going to construct a k-pointed lattice L(p) = (L(p); d1, . . . , dk) such that the
following theorem holds.

Theorem 3 L(p) = (L(p); d1, . . . , dk) is a finite p-lattice.

By an optimal p-lattice, we mean a p-lattice that is a k-pointed lattice ho-
momorphic image of any other p-lattice. The following corollary of Theorem 3
is straightforward and more or less evident.

Corollary 4 For each lattice term p, there exists an optimal p-lattice K(p). It
is finite and it is unique up to k-pointed lattice isomorphism.

The length of a lattice term q, to be defined in the usual syntactical way
later, will be denoted by length(q). We say that p is a canonical lattice term
if for every k-ary lattice terms q, p =triv q implies length(p) ≤ length(q). Like
every term, each canonical lattice term p is

• either a variable,

• or the meet of at least two terms,

• or the join of at least two terms.

In the first two cases we say that p is a join-irreducible canonical term. (This
means that p represent a join-irreducible element of the free lattice generated
by {α1, . . . , αk}.)

Unfortunately, L(p) is usually not an optimal p-lattice in general. For ex-
ample, for p� =

((
(α1 ∨α2)∧(α1 ∨α2 ∨α3)

)∨α2

)∧α4, the p�-lattice L(p�) is
not optimal. As a compensation, we have the following two theorems.

Theorem 5 [essentially in Freese, Ježek and Nation [6]] If p is a canonical
lattice term, then L(p) equals K(p), the optimal p-lattice.

Theorem 6 [Freese, Ježek and Nation [6]] If p is a join-irreducible canonical
lattice term, then K(p) = L(p) is subdirectly irreducible.

Notice that the assumption of join-irreducibility in Theorem 6 cannot be
avoided. For example, L(α1 ∨ α2) = K(α1 ∨ α2) is the four-element boolean
lattice, which is subdirectly (and even directly) reducible. On the other hand,
this assumption is not so restrictive. Indeed, if p is the join of its subterms
p1, . . . , pn, then, evidently, p ≤triv q iff pi ≤triv q for i = 1, . . . , n. Hence, to
investigate if p ≤triv q, we can use the subdirectly irreducible L(p1), . . . , L(pn)
instead of L(p).
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2 The construction of L(p)

We fix a set X = {α1, . . . , αk} of variables. Since we do not want to make a
distinction between lattice terms that differ only modulo commutativity, asso-
ciativity and idempotency, we give the following inductive definition of T (X),
the set of lattice terms over X.

• Every αi ∈ X is a doubly irreducible member of T (X) with length(αi) = 1.

• Each element of T (X)\X is of length > 1, and it is either join-irreducible
and meet-reducible, or meet-irreducible and join-reducible.

• If q1, . . . , qn, n ≥ 2, are distinct meet-irreducible members of T (X) then
q =

∧n
i=1 qi belongs to T (X). It is join-irreducible and meet-reducible,

and we have length(q) = 1 +
∑n
i=1 length(qi). The terms q1, . . . , qn are

called the meetands of p.

• If q1, . . . , qn, n ≥ 2, are distinct join-irreducible members of T (X) then
q =

∨n
i=1 qi belongs to T (X). It is meet-irreducible and join-reducible,

and we have length(q) = 1 +
∑n
i=1 length(qi). The terms q1, . . . , qn are

called the joinands of p.

• Each member of T (X) is obtained by the previous rules in a finite number
of steps.

Notice that for each q ∈ T (X), either q has no meetand or it has at least two
meetands. Dually, the same holds for the joinands of q. For concrete terms in
examples, we will write q1 ∨ · · · ∨ qn rather than

∨n
i=1 qi, and similarly for the

meet. By a join-free term we mean a variable or a meet of variables.
Our definition of terms is only slightly different from that in page 10 of Freese,

Ježek and Nation [6]. Namely, x∨y∨z and x∨(y∨z) are different terms in [6] but
x∨(y∨z) is not a term in the present paper. Notice also that the (ir)reducibility
of a term has not much to do with the (ir)reducibility of the corresponding
element of the free lattice FL(X). For example, (α1 ∨ α2) ∧ (α1 ∨ α2 ∨ α3) is a
join-irreducible and meet-reducible term, but it represents a join-reducible and
meet-irreducible element of FL(X).

The color set C(p) of p is defined by the following induction. (The termi-
nology “color” will be clear soon.)

• C(αi) = {αi}
• If p is join-reducible with joinands p1, . . . , pn, then C(p) = C(p1) ∪ · · · ∪
C(pn).

• If p is meet-reducible, then let

M(p) = {s : s is a meetand of p with length(s) > 1}
= {s : s is a meetand of p and s is join-reducible}, (1)

and define
C(p) = {p} ∪

⋃
s ∈M(p)

C(s) .
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Notice that all elements of C(p) are join-irreducible terms. For an example of
C(p), see the set of colors of H(p�) in Figure 3.

Given a relation E, let E∗ denote its transitive closure. Throughout the
paper, by a p-graph or, shortly, graph we mean a structure G = (V,E, col) such
that

• (V,E) = (V (G), E(G)) is a directed graph without loops and multiple
edges. That is, V is a nonempty set, the vertex set, and E ⊆ V 2, the edge
set, is an irreflexive and antisymmetric relation;

• col : E → C(p), that is, each edge e ∈ V has a unique color col(e) ∈ C(p);

• E∗, also denoted by �, is a partial ordering of V with least element, called
the left endpoint of G, and greatest element, called the right endpoint.

Unless otherwise specified, the left and right endpoints of our graphs are
denoted by x0 and x1, respectively. The subgraphs we are going to consider are
also graphs in the above sense. However, a proper subgraph of a p-graph G is
(isomorphic with) a q-graph for some term q distinct from p.

In figures, the edges are directed from left to right by convention, so the
orientation of edges is not indicated. An edge (a, b) ∈ E is called a covering
edge of G, if there is no c ∈ V with a � c � b. To ease our notations, we will
say that (a, r, b) is an “edge of G” to express that (a, b) ∈ E and r = col((a, b)).

If {G1, G2} is a two-element set of graphs, then a 4-series connection of this
set is obtained from two copies of G1 and two copies of G2, all the four copies
being pairwise disjoint, via identifying some endpoints as depicted in Figure 1.
Of course, this depends on the order of G1 and G2, whence {G1, G2} has two
4-series connections.

Figure 1: A 4-series connection of {G1, G2}

If {G1, . . . , Gn} is an n-element set of graphs, then each 4-series connection
of this set is obtained in the following way: for some i ∈ {1, . . . , n} and a 4-series
connection H of {G1, . . . , Gi−1, Gi+1, . . . , Gn}, we form a 4-series connection of
H and Gi. Notice that {G1, . . . , Gn} has exactly n! many 4-series connections;
for n = 3 one of them is depicted in Figure 2

Figure 2: A 4-series connection of {G1, G2, G3}

Next, we define a sequence Gj(p) of sets of p-graphs associated with p via
induction on j as follows. A particular case,

p� = α1 ∧
(
α2 ∨

(
α3 ∧(α4 ∨α5)

))∧(α2 ∨(α3 ∧α5)
)
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is depicted in Figure 3. The reader is advised to look at this figure often while
reading the following definition. In Figure 3, Hj(p�) is just one member of
Gj(p�) .

Figure 3: Constructing a member of G(p�)

If p is join-irreducible, then G0(p) consists of a single graph H0(p). This
graph has only two vertices, x0 and x1, and only one edge, (x0, x1). This edge
is colored by p.

If s =
∨n
i=1 ti is a join-reducible lattice term with joinands t1, . . . , tn, then

any 4-series connection of the set {H0(t1), . . . , H0(tn)} is called an s-arc; for
n = 3 see Figure 4.

Figure 4: An s-arc, if s =
∨3
i=1 ti

If p =
∨n
i=1 pi is join-reducible, then let G0(p) be the set of all p-arcs.

If j ≥ 1 and each covering edge of every member of Gj−1(p) is colored by a
join-free term (variable or meet of variables), then let Gj(p) = Gj−1(p).

In the opposite case we obtain Gj(p) from Gj−1(p) in the following way.
Take a member H = Hj−1(p) ∈ Gj−1(p). Consider each covering edge (a, r, b)
of H whose color r is not join-free. Then r is meet-reducible. For each s ∈M(r),
see formula (1), we glue an s-arc to H by identifying the left and right endpoints
of this arc with a and b, respectively, but keeping other vertices of this arc
disjoint from the vertices of H and that of any other arc glued to H . We glue
all the necessary arcs to all covering edges with not join-free colors at the same
time such that these arcs should be disjoint from each other and from H as
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much as possible and, in addition,

we must use isomorphic s-arcs for all r-colored covering edges. (2)

This way we obtain H+. Finally, let Gj(p) = {H+ :H ∈ Gj−1(p)}.
If Gj(p) is different from Gj−1(p), then the maximal length of not join-free

colors on covering edges in members of Gj−1(p) decreases when we pass from
Gj−1(p) to a Gj(p). Hence there is a smallest n ∈ N with Gn(p) = Gn−1(p).
Let G(p) = Gn−1(p) for this n. Clearly, the colors of covering edges of any
member of G(p) are join-free.

Let us agree on the following convention: H(p) will always denote an ar-
bitrarily fixed graph in G(p). Then Hj(p) will stand for the unique graph in
Gj(p) that occurs in the inductive definition leading to H(p). For technical
reasons, H−1(p) will denote the empty graph with no edge.

It is evident from the construction that the set of colors occurring on edges
of each H(p) ∈ G(p) is exactly C(p).

An edge (a, r, b) of a p-graph H(p) ∈ G(p) is called an αi-edge if r = αi
or αi is a meetand of r. (Notice that an αi-edge is not necessarily αi-colored!)
Let V (p) and E(p) denote the vertex set and the edge set of H(p), respectively,
and let Equ(V (p)) stand for the lattice of equivalences on V (p). The smallest
member of Equ(V (p)) collapsing the endpoints of each αi-edge will be denoted
by αi|H(p). In other words, for a, b ∈ V (p) we have (a, b) ∈ αi|H(p) iff there
are vertices c0 = a, c1, . . . , cn = b, n ≥ 0, such that for all i = 0, 1, . . . , n − 1
either (ci, ci+1) or (ci+1, ci) is an αi-edge. Still in other words: if there is an
undirected path from a to b whose edges are αi-edges. Such a path will be called
an αi-path.

Finally, the p-lattice we wanted to construct is

L(p) = (L(p); d1, . . . , dk) :=
(
[α1|H(p), . . . , αk|H(p)];α1|H(p), . . . , αk|H(p)

)
(3)

where H(p) ∈ G(p) and [α1|H(p), . . . , αk|H(p)] is the sublattice of Equ(V (p))
generated by {α1|H(p), . . . , αk|H(p)}. Since L(p) will be appropriate for any
choice of H(p) in G(p), we will not investigate if L(p) depends on H(p) in the
abstract sense or not.

3 Visual statements and proofs

In forthcoming computations, ≤(n), ≤(Tn), ≤(Cn) and ≤(Ln) will indicate that
Formula (n), Theorem n, Corollary n and Lemma n is applied, respectively.
Analogous superscript are used with =, ≤triv and =triv . Let H(p) ∈ G(p).
For a k-ary lattice term t, the equivalence relation t(α1|H(p), . . . , αk|H(p)) ∈
L(p) ⊆ Equ(V (p)) will be denoted by t|H(p). For t ∈ X , a variable, t|H(p) has its
previous meaning. By an (undirected) t|H(p)-path we mean an (undirected) path
U such that for every (undirected) edge (a, b) of U , (a, b) ∈ t|H(p). Similarly,
for n ≥ 1 and μ1, . . . , μn ∈ Equ(V (p)), an (undirected) path U is said to be an
(undirected) μ1 ∪ · · · ∪ μn-path, if (a, b) ∈ μ1 ∪ · · · ∪ μn for every (undirected)
edge (a, b) ∈ U .
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In what follows, the graph H(p) = (V (p), E(p), col) ∈ G(p) is fixed. Let
(a, r, b) be an edge of H(p). Then the set {c : a � c � b} of vertices determines
a full subgraph denoted by S(a, r, b). The left and right endpoint of S(a, r, b) are
a and b, respectively. If the color r is irrelevant, then we write S(a, , b) instead
of S(a, r, b). Notice that S(x0, p, x1) is H(p), provided p is a join-irreducible
term. It is clear from the construction that S(a, r, b) is a graph. Moreover,

S(a, r, b) ∼= H(r) for a (unique) H(r) ∈ G(r). (4)

Notice that there is exactly one isomorphism between H(r) and S(a, r, b).
The following lemma is evident by the construction; we formulate it for later

reference only.

Lemma 7 Suppose that (a, r, b) is an edge of H(p). Let x, y ∈ V (p) such that
x belongs to S(a, r, b) but y does not. Let U be an undirected path in H(p) from
x to y. Then U goes through at least one of a and b.

The following lemma is the heart our paper. Roughly saying, its first part
states that the “outer world” does not disturb our equivalences inside S(a, r, b).

Lemma 8 Let t be a k-ary lattice term.

(a) If (a, r, b) is an edge of H(p) and x and y are vertices of S(a, r, b) then

(x, y) ∈ t|H(p) iff (x, y) ∈ t|S(a,r,b).

(b) Let x and y be vertices of H(p). Then (x, y) ∈ t|H(p) iff there is an
undirected t|H(p)-path from x to y. In other words, t|H(p) is the equivalence
generated by t|H(p) ∩ E(p).

Proof The proof is an induction on the length of t. The induction hypothesis
is the conjunction of (a) and (b) for all terms t′ shorter than t and for any p.
(Notice that the induction would not work for (a) or (b) separately.) We assume
that x �= y. The “if” part of (a) and that of (b) are trivial (and, implicitly, will
be used in the proof). So we will focus on the ”only if” parts. Let H0(p), H1(p),
H2(p), . . . be the series of graphs that leads to H(p) according to its inductive
definition. We have to fix some notations according to p.

If p is join-irreducible, then let m = � = c(1) = 1, let z0 = x0, the left
endpoint, z1 = x1, the right endpoint, and let p1 = pc(�) stand for p.

If p =
∨
i∈F pi is join-reducible, then let {z0 = x0, z1, . . . , zm−1, zm = x1}

be the vertex set and {(zi−1, pc(i), zi) : i = 1, 2, . . . ,m} be the edge set of H0(p).
Here all the c(i) belong to F . If we wrote pi in Figure 4 instead of ti, then
we would obtain an illustration for the case F = {1, 2, 3}. Clearly, there is a
unique � ∈ {1, . . . ,m} such that both a and b are vertices of S(z�−1, pc(�), z�).
Therefore, S(a, r, b) is a full subgraph of S(z�−1, pc(�), z�).
Case 1: t = β ∈ X is a variable. Part (b) is evident. To prove (the “if” part of)
(a), let us assume that (x, y) ∈ β|H(p). We also assume that (a, b) �= (x0, x1) =
(z0, zn), because otherwise S(a, r, b) = H(p), and there is nothing to prove.
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Next, we assume that (a, b) = (z�−1, z�). By the definition of β|H(p), there
is a shortest undirected β-path in H(p) that connects x and y. It follows from
the structure of H0(p) (even without invoking Lemma 7) that any path exiting
S(a, r, b) = S(z�−1, pc(�), z�) at a can enter S(a, r, b) again only at a, and the
same holds for b. Hence our shortest β-path cannot exit S(a, r, b) at all, and we
conclude that (x, y) ∈ β|S(a,r,b).

Now that we have settled the easier subcases, we assume that {a, b} �⊆
{z�−1, z�}. Then there is a j ≥ 1 such that a and b belong to Hj(p), in fact
to S(z�−1, pc(�), z�) ∼= Hj(pc(�)), but at least one of a and b is not in Hj−1(p).
Hence there is an edge (e, q, f) in Hj−1(p), in fact in S(z�−1, pc(�), z�), and there
is an s ∈M(q) such that the edge (a, r, b) belongs to the s-arc glued to the edge
(e, q, f) when Hj(p) was obtained from Hj−1(p), see Figure 5. This uniquely
determined s-arc will be called the supporting arc of S(a, r, b).

From the definition of an arc it follows that there is another r-colored edge
of our s-arc, say (c, r, d). Notice that, opposed to Figure 5, {a, b, c, d} ∩ {e, f}
is not necessarily empty. However, {a, b} ∩ {c, d} = ∅ by the construction.

Figure 5: S(a, r, b) and its supporting arc

Since (x, y) ∈ β|H(p), there is a shortest undirected β-path U in H(p) from
x to y. If U goes entirely in S(a, r, b), then (x, y) ∈ β|S(a,r,b) and we are ready
with this subcase. So assume that U leaves S(a, r, b). Since U is a shortest path,
we can assume by Lemma 7 that U leaves S(a, r, b) at a and enters it again at
b. (Interchanging a and b would make no difference in what follows.) Then, in
the order given below, U must go through the vertices x, a, u1, u2, . . . , e of the
supporting arc, then through f , . . . , v2, v1, d, c, . . . , b, y, see Figure 5. (Notice
that these vertices are not necessarily consecutive vertices of U .)

Let W denote the segment of U between d and c. Since every path from d to c
outside S(c, r, d) should go through a, which would contradict to the assumption
that U is the shortest path, we conclude that W goes entirely in S(c, r, d).
By stipulation (2), there is a graph isomorphism from S(c, r, d) to S(a, r, b).
Replacing the “outer” a, . . . , e, f , . . . , b segment of U by the image of W , we
obtain a shorter β-path from x to y, a contradiction. Hence (x, y) ∈ β|S(a,r,b),
completing the case where t is a variable.
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Case 2: t is meet-reducible with meetands t1, . . . , tv. We assume that the lemma
is valid for the meetands t1, . . . , tv. Then part (a) of the lemma is clearly valid
for t. To prove part (b), suppose that (x, y) ∈ t|H(p) and x �= y.

Subcase 2.1: p is join-irreducible, that is, m = 1. Let j denote the smallest
subscript such that both x and y belongs to Hj(p); we will prove (b) for t by
induction on j.

If j = 0, then {x, y} = {x0, x1}, whence (x, y) is an undirected edge, which
is an undirected t|H(p)-path. This settles the case j = 0.

Next, let j > 0, and assume that (b) holds for t and any two vertices from
Hj−1(p). We can assume that (x, y) is not an edge of H(p). Let, say, x do not
belong to Hj−1(p). Then x belongs to an arc glued to Hj−1(p), cf. Figure 5
with x = a. Suppose that e, the left endpoint of this arc, is nearer the edge
(x, r, b) = (a, r, b) than f . (The supporting arc consists of an even number of
edges, so either e or f is strictly nearer.) According to the position of y, we
have to distinguish two possibilities.

Sub-subcase 2.1.1: y is not on this arc. Let i ∈ {1, . . . , v} be an arbitrary
subscript. By the induction hypothesis, there is an undirected ti|H(p)-path Ui
from x to y. This path leaves the arc at e or f .

We claim that there is an undirected ti|H(p)-path Vi from x to e. This is
clear if Ui leaves the arc at e, so assume that it leaves the arc at f . Since e is
nearer the edge (a, r, b) than f (in short, e is near and f is far from the edge
(a, r, b)), each color on the arc between e and a = x occurs between a and f .
For example, let r′ be the color of the edge (u2, u1), and also of the edge (v1, v2).
Since Ui goes through v1 and v2, (v1, v2) ∈ ti|H(p). Since part (a) is already
valid for ti, we get (v1, v2) ∈ ti|S(v1,r′,v2). It follows from stipulation (2) that

S(v1, r′, v2) ∼= S(u2, r
′, u1), (5)

so (u2, u1) ∈ ti|S(u2,r′,u1), whence (u2, u1) ∈ ti|H(p). This argument shows that
the segment of the arc between e and x = a is an undirected ti|H(p)-path, indeed.

This holds for all i ∈ {1, . . . , v}, and we conclude that there is an (undirected)
t|H(p)-path from x to e ∈ Hj−1(p). Similarly, there is a t|H(p)-path from y to
a vertex y′ ∈ Hj−1(p). (Possibly, y′ = y.) Since (x, x′), (y, y′) ∈ t|H(p), the
transitivity of t|H(p) implies that (x′, y′) ∈ t|H(p). By the induction hypothesis
on j, there is an undirected t|H(p)-path between x′ and y′. Composing the three
paths mentioned we obtain an undirected t|H(p)-path from x to y, as requested.

Sub-subcase 2.1.2: y is on the same arc as x. Let i ∈ {1, . . . , v}, and consider a
shortest (undirected) ti|H(p)-path Ui that connects x and y. Related to the arc,
there are two possibilities for Ui. We say that it is a detour, if it consists of e, f ,
and all vertices of the arc that are not strictly between x and y. On the other
hand, if Ui consists of all edges of the arc that are between x and y, then we
say that Ui is a straight path. Clearly, Ui is either a detour or a straight path
(but not both).

Similarly, there are two possibilities for the position of x and y; note that
both possibilities can hold simultaneously. Namely, either x and y are far in
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the sense that each color occurring on the arc occurs between x and y, or x and
y are near in the sense that each such color occurs not only between x and y.

Now assume that x and y are far. We claim that there is a ti|H(p) detour
connecting x and y. We have to investigate only the case when Ui is a straight
path. Then, similarly to the argument above with (5), part (a) for ti gives that
every edge of the arc is a ti|H(p)-edge. By transitivity, (e, f) ∈ ti|H(p). Hence
the (unique) detour from x to y is an undirected ti|H(p)-path, indeed. This holds
for all i, whence this detour is a t|H(p)-path connecting x and y.

If x and y are near, then a straightforward analogous argument shows that
the (unique) straight path from x to y is an undirected t|H(p)-path.

Subcase 2.2: p is join-reducible, that is, m ≥ 2. Firstly, assume that x and y
belong to the same subgraph S(z�−1, pc(�), z�). For all i ∈ {1, . . . , v}, (x, y) ∈
ti|S(z�−1,pc(�),z�) by part (a) of the lemma. Since pc(�) is join-irreducible and we
have S(z�−1, pc(�), z�) ∼= H(pc(�)) for an appropriate H(pc(�)) ∈ G(pc(�)), the
previous case implies the existence of a t|S(z�−1,pc(�),z�) path from x to y. It is
clearly a t|H(p)-path.

Secondly, assume that x belongs to the subgraph S(z�−1, pc(�), z�) and y
belongs to S(zh−1, pc(h), zh). Let, say, � < h. We know that there are shortest
ti|H(p)-paths Ui from x to y for i ∈ {1, . . . , v}. There can be no detours now, so
all these paths go through z�, z�+1, . . . , zh−1. This holds for all i ∈ {1, . . . , v},
whence (x, z�), (z�, z�+1), . . . , (zh−1, y) belong to t|H(p). Since the components
of each of these pairs belong to the same subgraph, the previous case yields
that these components can be connected by t|H(p)-paths. Putting these paths
together, we obtain a t|H(p)-path from x to y.

Case 3: t is join-reducible with joinands t1, . . . , tv. Suppose that the lemma is
valid for these joinands. Since ti|H(p)-paths are t|H(p)-paths as well, part (b) of
the lemma is evident.

The argument for part (a) is similar to the case when t was a variable, so we
will use the notations introduced in connection with Figure 5. In particular, x
and y are vertices of S(a, r, b) and (x, y) ∈ t|H(p) = t1|H(p) ∨ · · · ∨ tv|H(p). Using
the description of joins in Equ(V (p)) and then the induction hypothesis for the
ti, we obtain a shortest undirected t1|H(p) ∪ · · · ∪ tv|H(p)-path U connecting x
and y. We want to show that U goes entirely in S(a, r, b).

This is evident if (a, b) is an edge of H0(p), that is, it is of the form (z�−1, z�).
So, assume that (a, b) is not an edge of H0(p) and, by way of contradiction,
assume that U exits S(a, r, b). Then a segment of U connects c and d within
S(c, r, d). Each edge of this segment is collapsed by some ti|H(p), whence by
ti|S(c,r,d) according to the induction hypothesis. Using the isomorphism between
S(c, r, d) and S(a, r, b), we obtain a shorter path from a to b within S(a, r, b)
whose edges are collapsed by appropriate ti|S(a,r,b), whence by ti|H(p).

This contradiction shows that U goes in S(a, r, b), indeed. By the induction
hypothesis, if an edge of U is collapsed by ti|H(p) then it is collapsed by ti|S(a,r,b),
and therefore by t|S(a,r,b). Finally, (x, y) ∈ t|S(a,r,b) follows by transitivity. �

The next lemma will obviously imply Theorem 3 and Proposition 1.
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Lemma 9 The k-pointed lattice L(p) defined by formula (3) is a p-lattice.
Moreover, the following three conditions are equivalent for any k-ary lattice
term q:

(a) p ≤triv q;
(b) p(α1|H(p), . . . , αk|H(p)) ≤ q(α1|H(p), . . . , αk|H(p)) in L(p);

(c) (x0, x1) ∈ q(α1|H(p), . . . , αk|H(p)).

Proof (a) implies (b) trivially. An easy induction on the length of p gives
(x0, x1) ∈ p(α1|H(p), . . . , αk|H(p)) = p|H(p), whence (b) implies (c).

Next, suppose (c), let L be an arbitrary lattice, and let β1, . . . , βk ∈ L. We
know from Jónsson [10] that each lattice has a type 3 representation, see also
Theorem IV.4.4 in Grätzer [8]. Hence we can assume that L is a sublattice of
some Equ(Y ) and γ ∨ δ = γ ◦ δ ◦ γ ◦ δ holds for any γ, δ ∈ L. Let (y0, y1) ∈
p(β1, . . . , βk). A straightforward induction on the length of p shows the existence
of a map ϕ : V (p) → Y such that x0 �→ y0, x1 �→ y1, and for each αi-edge
(u, αi, v) of H(p), we have (uϕ, vϕ) ∈ βi. The same kind of induction on the
length of q shows that, for a, b ∈ V (p), if (a, b) ∈ q|H(p), then (aϕ, bϕ) ∈
q(β1, . . . , βk). In particular, (y0, y1) ∈ (x0ϕ, x1ϕ) ∈ q(β1, . . . , βk). Hence p ≤ q
holds in L, so p ≤triv q. �

Corollary 10 Let (a, r, b) be an edge of H(p) ∈ G(p), and let t be an arbitrary
k-ary lattice term. Then

(a) r|H(p) is the smallest element of L(p) that collapses a and b;

(b) (a, b) ∈ t|H(p) if and only if r ≤triv t;
(c) r|H(p) ≤ t|H(p) if and only if r ≤triv t.

Proof By (4), there is a (unique) graph H(r) ∈ G(r) such that H(r) ∼=
S(a, r, b). Since r ≤triv r, we conclude (x0,H(r), x1,H(r)) ∈ r|H(r) by Lemma 9.
Hence (a, b) ∈ r|S(a,r,b), and Lemma 8(a) gives (a, b) ∈ r|H(p).

Next, assume that (a, b) ∈ t|H(p). We obtain from Lemma 8(a) that (a, b) ∈
t|S(a,r,b). Hence (x0,H(r), x1,H(r)) ∈ t|H(r), so r ≤triv t by Lemma 9. This
proves part (b) and completes the proof of part (a). Finally, (c) is an evident
consequence of (a) and (b). �

Corollary 11 Suppose μ ∈ L(p), (a, r, b) is an edge of H(p), and t is a k-ary
lattice term. Then

(a) it depends only on r if (a, b) ∈ μ;
(b) μ =

∨{s|H(p) : s ∈ C(p) and all s-colored edges are collapsed by μ}.
(c) t|H(p) =

∨{s|H(p) : s ∈ C(p) and s ≤triv t}.
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Proof Since μ is of the form t|H(p), part (a) follows from Corollary 10(b).
Let B = {s ∈ C(p) : all s-colored edges are collapsed by μ} and ν =∨

s∈B s|H(p). Suppose (c, s, d) is an edge with (c, d) ∈ μ = t|H(p). Then s ∈ B
by part (a), and (c, d) ∈ s|H(p) by Corollary 10(a). Hence (c, d) ∈ ν. Therefore,
Lemma 8(b) implies μ = t|H(p) ≤ ν. Conversely, Corollary 10(b) yields that
s ≤triv t for every s ∈ B. Hence ν ≤ t|H(p) = μ, proving part (b).

Finally, part (c) is a consequence of part (b) and Corollary 10(b). �

The following two corollaries (and the dual of the second one) say that free
lattices satisfy Whitman’s condition. Their original proof in [13] is a bit lengthy.
Based on A. Day [5], the approach of Freese, Ježek, Nation [6] to Whitman’s
condition is shorter. Now, armed with the basic properties of L(p), we are going
to give an even shorter proof. Since it is visual, it reveals some new ingredients
from the underlying reasons.

Corollary 12 (Whitman [13]) Let p be a meet-reducible lattice term with with
meetands p1, . . . , pu, and let q be a join-reducible lattice term with joinands q1,
. . . , qv. Assume that p ≤triv q. Then either pi ≤triv q for some i ∈ {1, . . . , u}
or p ≤triv qj for some j ∈ {1, . . . , v}.
Proof Lemma 9 yields that (x0, x1) ∈ q|H(p) = q1|H(p) ∨ · · · ∨ qv|H(p). Hence
there exists a shortest undirected q1|H(p) ∪ · · · ∪ qv|H(p)-path U that connects
x0 and x1.

Firstly, if U is of length 1, then p ≤triv qj for some j by Lemma 9.
Secondly, if length(U) ≥ 2, then U goes through all vertices of a unique

pi-arc glued to H0(p). Hence U goes within H(pi). Let (c, s, d) be an edge of
U . Then (c, d) ∈ q|H(p). Using Lemma 8(a) twice, we get (c, d) ∈ q|S(c,s,d)

and (c, d) ∈ q|H(pi). By transitivity, (x0, x1) ∈ q|H(pi). Hence pi ≤triv q by
Lemma 9. �

Corollary 13 Let p =
∧u
i=1 pi and q =

∨v
i=1 qi as in the previous corollary,

and let αi be a variable. Then

• if αi ≤triv q then αi ≤triv qj for some j ∈ {1, . . . , v};
• if p ≤triv αi then pj ≤triv αi for some j ∈ {1, . . . , u}.
To demonstrate the usefulness of test lattices, we prove the two parts of

this corollary separately even if each of them implies the other by the duality
principle.
Proof For the first part, let p′ = αi and H(p′) ∈ G(p′). Since |V (H(p′))| =
|L(p′)| = 2 and 1L(p′) is join-irreducible, we obtain from (x0, x1) ∈ 1L(p′) =
p′|H(p′) ≤ q|H(p′) = q1|H(p′) ∨ · · · ∨ qv|H(p′) that (x0, x1) ∈ qj |H(p′) for some j.
Hence αi ≤triv qj by Lemma 9.

For the second part, take a shortest αi-path U connecting x0 and x1 in
H(p). If length(U) = 1, then αi equals a meetand pj of p, whence pj ≤triv αi.
If length(U) ≥ 2, then U goes within some H(pj), and pj ≤triv αi by Lemma 9.

�
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For a congruence Θ of a k-pointed lattice (L; 
d), we will use the notation

d/Θ = (d1/Θ, . . . , dk/Θ). Let us call Θ a p-preserving congruence, if (c, p(
d)) ∈
Θ holds for no c < p(
d). The following lemma implies Corollary 4; we formulate
this lemma for a later reference. By homomorphisms we still mean k-pointed
lattice homomorphisms, and isomorphisms are particular cases.

Lemma 14 Let (L, 
d) be a p-lattice, and let Θ be a congruence of (L; 
d).

• (L/Θ; 
d/Θ) is a p-lattice iff Θ is p-preserving.

• There exists an optimal p-lattice. It is finite, and it is unique up to iso-
morphism.

• (L; 
d) is an optimal p-lattice iff 0 is the only p-preserving congruence of
L(p).

Proof Assume that Θ is not p-preserving, and choose an element c = q(
d)
such that c < p(
d) and (c, p(
d)) ∈ Θ. Then p(
d/Θ) ≤ q(
d/Θ), for they are
equal, but p � ≤triv q, so L/Θ is not a p-lattice. Conversely, suppose that Θ
is p-preserving and p(
d/Θ) ≤ q(
d/Θ). Then p(
d/Θ)∧ q(
d/Θ) = p(
d/Θ) gives
(p(
d)∧ q(
d), p(
d)) ∈ Θ. Using that Θ is p-preserving, we get p(
d)∧ q(
d) = p(
d).
This means that p(
d) ≤ q(
d) in L, whence p ≤triv q, proving the first part.

Let F = [d1, . . . , dk] be the free lattice generated by {d1, . . . dk}. Then (F ; 
d)
is a p-lattice, whence its smallest congruence is p-preserving. Since the (non-
empty) join of all p-preserving congruences of (F ; 
d) is clearly p-preserving by
Lemma III.1.3 from Grätzer [8], (F ; 
d) has a largest p-preserving congruence Ψ.
By the first part of the Lemma, (K, 
d) := (F/Ψ; 
d/Ψ) is a p-lattice.

Let (M ; 
d) be another p-lattice. Let ϕ denote the surjective lattice homo-
morphism ϕ : F → M , d1 �→ d1, . . . , dk �→ dk, that is, the unique k-pointed
lattice homomorphism from (F ; 
d) to (M ; 
d). Clearly, Kerϕ ⊆ Ψ, whence
(K; 
d) ∼= (F/Ψ; 
d/Ψ) is a homomorphic image of (M, 
d) ∼= (F/Kerϕ; 
d/Kerϕ).
Hence (K; 
d) is an optimal p-lattice. It is finite by Theorem 3. Its uniqueness
is an evident consequence of finiteness. This proves the second part.

To prove the third part, let Θ be a p-preserving congruence of an optimal p-
lattice (L; 
d). By the first part, (L/Θ; 
d/Θ) is again a p-lattice. So, (L; 
d) is a
homomorphic image of (L/Θ; 
d/Θ), and the finiteness of L implies Θ = 0.

Conversely, assume that 0 is the only p-preserving congruence of a p-lattice
(L; 
d). Consider the (unique) homomorphism ϕ : (L; 
d)→ (K; 
d). Since

(L; 
d)/Kerϕ ∼= (K; 
d)

is a test lattice, Kerϕ is p-preserving by the first part. Hence Kerϕ = 0 yields
that ϕ is an isomorphism. This implies that (L; 
d) is an optimal p-lattice. �

Let H(p) ∈ G(p), and let U = (x0 = a0, a1, a2, . . . , an = x1) be a directed
path in H(p). We say that U is a uniform path, if the following condition holds:
for any 0 ≤ i1 < i2 < i3 < i4 ≤ n such that (ai1 , ai2) and (ai3 , ai4) are edges of
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the same color r, the unique isomorphism S(ai1 , r, ai2)→ S(ai3 , r, ai4), see (4),
sends the segment of U between ai1 and ai2 onto the segment of U between ai3
and ai4 .

Lemma 15 Let U be a uniform path as above and let {r1, . . . , rm} be the set
of colors of edges of U . Then length(r1 ∨ · · · ∨ rm) ≤ length(p).

Proof We use induction on length(p). If p is a variable or n = length(U) = 1,
then the statement is evident. If p is join-reducible, then n > 1 and the induction
step is straightforward. If p is meet-reducible and n > 1, then there is an
s ∈M(p), see (1), such that U includes the vertices of the s-arc glued to H0(p),
and the induction step is straightforward again. �

Proof of Theorem 5 According to Lemma 14, it suffices to show that Θ is
not p-preserving for any nontrivial congruence Θ of L(p). Since Θ is nontrivial,
μ < ν and (μ, ν) ∈ Θ hold for some μ, ν ∈ L(p). In virtue of Lemma 8(b), there
is an edge (a, r, b) with (a, b) ∈ ν \ μ. Let η = μ ∩ r|H(p). Corollary 11 implies
that r|H(p) = r|H(p) ∧ ν. Hence

η < r|H(p), (η, r|H(p)) ∈ Θ and (a, b) ∈ r|H(p) \ η. (6)

Let us fix an r ∈ C(p) with maximal length such that (6) holds with an appro-
priate edge (a, r, b) and an η ∈ L(p). According to Corollary 11(b), there are
t1, . . . , tu ∈ C(p) such that

η = t1|H(p) ∨ · · · ∨ tu|H(p). (7)

Let j denote the unique subscript from N0 = {0, 1, 2, . . .} such that (a, r, b) is
an edge of Hj(p) but not of Hj−1(p).

We have to consider several cases.

Case 1: j > 0. Then there is a meet-reducible q ∈ C(p), an edge (e, q, f) of
Hj−1(p), and a meetand s of q such that

s = r ∨ tu+1 ∨ · · · ∨ tu+v ∈M(q). (8)

In particular,

s|H(p) = r|H(p) ∨ tu+1|H(p) ∨ · · · ∨ tu+v|H(p). (9)

Notice that v ≥ 1, and the situation is similar to that of Figure 5. Let

δ := η ∨ tu+1|H(p) ∨ · · · ∨ tu+v|H(p) = t1|H(p) ∨ · · · ∨ tu+v|H(p). (10)

Then (6), (9) and (10) yield that (δ, s|H(p)) ∈ Θ and δ ≤ s|H(p). Since

δ �< s|H(p) by length(r) < length(s), (11)

we conclude that
δ = s|H(p).
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Since (e, f) ∈ q|H(p) by Corollary 10(a) and, clearly, q ≤triv s, we obtain that

(e, f) ∈ s|H(p) = t1|H(p) ∨ · · · ∨ tu+v|H(p) = (t1 ∨ · · · ∨ tu+v)|H(p). (12)

Since t1, . . . , tu+v ∈ C(p), (12) and Corollary 10(b) imply

t1 ∨ · · · ∨ tu+v ≤triv s. (13)

Let H(q) := S(e, q, f). Then H(q) ∈ G(q) by (4), and

(e, f) ∈ (t1 ∨ · · · ∨ tu+v)|H(q) = t1|H(q) ∨ · · · ∨ tu+v|H(q) (14)

follows from (12) and Lemma 8(a). Hence, by Lemma 8(b), there is a t1|H(q) ∪
· · ·∪tu+v|H(q)-path U in H(q) = S(e, q, f) that connects e and f . We can assume
that U goes through each vertex of H(q) at most once. Then a trivial induction
on length(q) shows that U is a directed path. Another trivial induction on
length(q), based on (4), yields that U can be chosen to be uniform. Let (x, c, y)
be an edge of U . Then (x, y) ∈ ti|H(q) for some i. Hence (x, y) ∈ ti|H(p) by the
(trivial direction of) Lemma 8(a).

This shows that U is a uniform t1|H(p) ∪ · · · ∪ tu+v|H(p)-path from e to f ; in
fact, we assume that U is the shortest uniform path with this property.

Subcase 1.1: U consists of a single edge. Then (e, f) ∈ ti|H(p) and Corol-
lary 10(b) yield that q|≤triv ti for some i ∈ {1, . . . , u+ v}.

Firstly, assume that i ≤ u. Then q|H(p) ≤ ti|H(p) ≤ η ≤ r|H(p). Hence
Corollary 10(c) implies q ≤triv r. Let q′ denote the lattice term that we obtain
from q by replacing its meetand s with r. Then q ≤triv r ≤triv s implies
q′ =triv q. Since length(r) < length(s), we see that length(q′) < length(q).
So, q is not a canonical term. This is a contradiction, for all subterms of the
canonical p are canonical.

Secondly, assume that u < i ≤ u + v. Then q ≤triv ti ≤triv s, like above.
Hence, using ti instead of r, we can derive the same contradiction.

Subcase 1.2: U consists of at least two edges. Then there is an s′ ∈ M(q), see
(1), such that U goes through all the vertices of the s′-arc that was glued to
Hj−1(p).

Sub-subcase 1.2.1: s′ and s are distinct. Let

z0 = e, z1, . . . , zn−1, zn = f and (z0, t′1, z1), . . . , (zn−1, t
′
n, zn)

be the vertices and the edges of the s′-arc, respectively. Since U goes through
zi−1 and zi,

(zi−1, zi) ∈ t1|H(p) ∨ · · · ∨ tu+v|H(p) = δ = s|H(p)

holds for i ∈ {1, . . . , n}. By Corollary 10(b), t′i ≤triv s for all i, which yields
that s′ = t′1 ∨ · · · ∨ t′n ≤triv s. This is a contradiction, for the canonical term q
cannot have two trivially comparable meetands.
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Sub-subcase 1.2.2: s′ and s are the same. Then a section W of U , which is a
uniform path again, connects a and b. Let t′1, . . . , t′w be the colors of the edges
of W . By Corollary 10(b),

∀j ∈ {1, . . . , w} ∃i ∈ {1, . . . , u+ v} such that t′j ≤triv ti. (15)

Corollary 10(a), applied to the edges of W , and transitivity imply

(a, b) ∈ t′1|H(p) ∨ · · · ∨ t′w|H(p) = (t′1 ∨ · · · ∨ t′w)|H(p).

Hence Corollary 10(b) implies

r ≤triv t′1 ∨ · · · ∨ t′w. (16)

This together with (8) yields that s ≤triv t′1 ∨ · · · ∨ t′w ∨ tu+1 ∨ · · · ∨ tu+v.

Conversely, t′1 ∨ · · · ∨ t′w ∨ tu+1 ∨ · · · ∨ tu+v ≤(15)
triv t1 ∨ · · · ∨ tu+v ≤(13)

triv s. Hence

s =triv t′1 ∨ · · · ∨ t′w ∨ tu+1 ∨ · · · ∨ tu+v. (17)

If i = i(j) belonged to {1, . . . , u} in (15) for each j, then

r|H(p) ≤(16) (t′1 ∨ · · · ∨ t′w)|H(p) ≤ (t1 ∨ · · · ∨ tu)|H(p) =(7) η

would contradict (6). Hence, by (15), there is a j, say j = 1, such that t′1 ≤triv ti
holds for some i ∈ {u+1, . . . , u+v}. Let g = t′2∨· · ·∨t′w∨tu+1∨· · ·∨tu+v. We see
by (17) that s =triv g. However, (8) together with length(t′1 ∨ · · · ∨ t′w) ≤(L15)

length(r) yields that length(g) < length(s). This is a contradiction, because s,
as a subterm of p, is canonical.

Case 2: j = 0. Firstly, assume p is join-irreducible. Then H0(p) consists of a
single p-colored edge, r coincides with p, whence Θ is not p-preserving, indeed.

Secondly, assume that p is join-reducible. With the temporary notations
s′ = s := p, e := x0 and f := x1, the argument for Sub-subcase 1.2.2 works
almost the same way as previously. The only difference is that, instead of (11),
we say that

• either δ �< s|H(p) and we derive a contradiction the same way as before,

• or δ < s|H(p) = p|H(p), whence Θ is not p-preserving, indeed.

(Since (e, f) is not an edge now, (11) in itself would not work.) �

Proof of Theorem 6 We can assume that a p is not a join-free term, because
otherwise |L(p)| = 2 and there is nothing to prove.

We claim that p|H(p) is a join-irreducible element of L(p). By way of con-
tradiction, suppose that there are terms h1 and h2 such that h1|H(p) < p|H(p),
h2|H(p) < p|H(p) but h1|H(p) ∨ h1|H(p) = p|H(p). Similarly to (and even eas-
ier than) the argument right after (14), we conclude that there is a uniform
h1|H(p)∪h2|H(p)-path U connecting x0 and x1. Since length(U) = 1 would imply
p ≤triv hi for some i ∈ {1, 2} by Corollary 10(b), we obtain that length(U) > 1.
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Hence there is an s ∈ M(p) such that U goes through the vertices of the
s-arc glued to H0(p). Let s =

∨n
i=1 ti. Since U is also a p|H(p)-path, we get

ti ≤(C10)
triv p for i = 1, . . . , n. Hence s ≤triv p. Since s is a meetand of p, we

have p ≤triv s. Since p is canonical, p coincides with s, which contradicts the
assumption that p is a join-irreducible term.

This proves that p|H(p) is join-irreducible in L(p). It is not the 0 of L(p),
since (x0, x1) ∈ p|H(p) by Corollary 10(a). Hence p|H(p) has a unique lower
cover p∗|H(p). Since congruence classes are intervals and L(p) is optimal by
Theorem 5, it follows by Lemma 14 that each non-zero congruence of L(p)
collapses p|H(p) and p∗|H(p). Thus, L(p) is subdirectly irreducible. �

It is trivial to check that, for any ternary term q, if q is shorter than p♦ of
Exercise 2, then the identity p = q fails even in the free modular lattice on three
generators. Hence p♦ is a join-irreducible canonical term. It is also trivial to
verify that |L(p♦)| > 5. Notice that even Figure 6, which is a useful illustration
for test lattices, was very easy to construct. Hence the following proposition
clearly solves Exercise 2. In Proposition 16, K will be a lattice in the usual
sense while (L(p); 
d), the p-lattice, is a k-pointed lattice.

Figure 6: The test lattice L(p♦)

Proposition 16 Let p be a join-irreducible canonical k-ary lattice term, and
let K be a lattice with |K| < |L(p)|. Then there exists a k-ary lattice term q
such that p ≤ q is a nontrivial lattice identity that holds in K.

Proof Let n = |K|. There are nk ways to make K into a k-pointed lattice
(K; 
d) by selecting k elements in K. Let (G; 
d) be the direct product of all these
(nk many) k-pointed lattices.

Assume that the proposition fails for K. Then (G; 
d) is a p-lattice. The
(unique) optimal p-lattice is a homomorphic image of (G; 
d) by Lemma 14.
But, by Theorem 5, the optimal p-lattice is (L(p); 
d). Therefore, L(p), as a
lattice without constants, belongs to the variety generated by K. Since L(p)
is subdirectly irreducible by Theorem 6, the famous HSP = PsHSPu theorem
of B. Jónsson [11] gives that L(p) is a homomorphic image of a sublattice of K.
This contradicts |K| < |L(p)|. �
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4 Historical remarks

Graphs similar to those here were formerly useful in [1], [2], [4], M. Haiman [9]
and P. Lipparini [12]. Even one of the efficient known algorithms for the word
problem of lattices is due to graphs, see [3]. (For other algorithms, see also
Section XI.8 of Freese, Ježek, Nation [6]). In fact, [3] gives the main motivation
to the present work: if graphs are appropriate to solve the word problem, then
why not use them for other purposes? However, the mentioned similarity is
limited, because our graphs here have more edges than their precursors. In
fact, finding the right amount of edges was the main step towards the present
approach.

The results of this paper were presented at the conferences organized by the
University of Nov Sad and the Technical University of Košice, respectively. It
has appeared since then that our approach overlaps Freese, Ježek and Nation
[6] more than previously recognized. Since the concepts and the methods of [6]
are very different from ours and the counterparts of our results are sometimes
only implicitly given in [6], it is reasonable to give a short comparison below.

If we do not assume that p is canonical, then, generally, L(p) does not occur
in the book [6]. So, in what follows, let as assume that p′ is a canonical lattice
term.

Using Theorem 3.12 of [6] (in short, Thm. [6].3.12), it is easy to see that
J(p′) = J∗(p′) of [6] is the same as our C(p′). Then Cor. [6].3.18 together with
Corollary 11(c) gives that L∨(p′) coincides with our L(p′), whence it is our
K(p′) by Theorem 5. This shows that each optimal test lattice K(p′) has been
constructed in [6]. This shows also that Theorem 6 is included in Thm. [6].3.24.

The result that L∨(p′) is a p′-lattice can be easily extracted from [6] in the
following way. By the second and third sentences in the proof of Thm. [6].3.15,
f in Cor. [6].3.18 is a contraction that acts identically on L∨(p′), which is a join-
subsemilattice of the free lattice FL(α1, . . . , αk). Hence p′ ∈ FL(α1, . . . , αk) is
the least preimage of p′ ∈ L∨(p′). So, f(p′) ≤ f(q) implies p′ ≤triv q, whence
L∨(p′) is a p′-lattice.

It is also possible to extract from [6] that L∨(p′) is an optimal p′-lattice;
however, this would require a deeper look into the book, so the details are
omitted.

In connection with Theorems 5 and 6, we notice that the name “canonical
term” in the present paper means only a shortest term, which trivially exists.
Opposed to [6], we do not use Whitman’s non-trivial theorem on its uniqueness,
see [13].
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Abstract

Compositional data, multivariate observations that hold only relative
information, need a special treatment while performing statistical anal-
ysis, with respect to the simplex as their sample space ([1], [2], [3], [8],
[9], [10], [11], [18]). For the logratio approach to the statistical analysis
of compositional data the so called Aitchison geometry was introduced
and confirmed to be the meaningful one. It was shown in [7], [17] that it
is quite easy to express simple geometric objects like compositional lines,
this is however not the case for ellipses, although they play a fundamental
role within most statistical methods, for example in outlier detection ([8]).
The aim of the paper is to introduce a way, based on coordinate repre-
sentations of compositions, how to obtain an analytical representation of
ellipses in the Aitchison geometry.

Key words: Aitchison geometry on the simplex, coordinates, el-
lipse.

2000 Mathematics Subject Classification: 14P99, 15A03, 15A63,
62H99, 62J05

1 Compositional data

At first, we briefly summarize all the basic properties of compositional data as
well as the geometry on the simplex, called in the following Aitchison geometry.
More detailed insight is available e.g. in [7]:
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Definition 1 A row vector x = (x1, . . . , xD), is called D-parts composition
when all its components are strictly positive real numbers and they carry only
relative information.

The assertion that D-parts compositions (or only compositions in short)
carry only relative information means that all the relevant information is con-
tained in the ratios among the parts, i.e. if c is a nonzero real number, (x1, . . . , xD)
and (cx1, . . . , cxD) convey essentially the same information. A way to simplify
the use of compositions is to represent them in closed form, i.e. as positive
vectors with constant sum κ (usually 1 or 100 in case of percentages) of the
parts ([7]). As a consequence, D-parts compositions can be identified with the
following vector:

Definition 2 For any composition x, the closure operation of x to the constant
κ is defined as

C(x) =

(
κx1∑D
i=1 xi

, . . . ,
κxD∑D
i=1 xi

)
.

Proposition 1 The sample space of compositional data is the simplex, defined
as

SD = {x = (x1, . . . , xD), xi > 0,
D∑
i=1

xi = κ}.

The basics of the Aitchison geometry on the simplex are mentioned below:

Definition 3 Perturbation of a composition x = C(x1, . . . , xD) ∈ SD by a
composition y = C(y1, . . . , yD) ∈ SD is a composition

x⊕ y = C(x1y1, . . . , xDyD).

Power transformation of a composition x ∈ SD by a constant α ∈ R is a
composition

α� x = C(xα1 , . . . , xαD).

The inner product of x,y ∈ SD can be expressed as

〈x,y〉A =
1
D

D−1∑
i=1

D∑
j=i+1

ln
xi
xj

ln
yi
yj
.

Proposition 2 The simplex with the perturbation operation and the power
transformation, (SD,⊕,�), is a linear vector space. Moreover, the Aitchison
inner product induces a (D − 1)-dimensional Hilbert space.

Definition 4 If compositions e1, . . . , eD−1 are independent (in terms of the
Aitchison geometry), they constitute a (simplicial) basis of SD, i.e. each com-
position x ∈ SD can be expressed as

x = (α1 � e1)⊕ · · · ⊕ (αD−1 � eD−1)

for some coefficients αi, i = 1, . . . , D − 1, that are termed coordinates with
respect to the basis.
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Obviously, using orthonormal bases on the simplex, all operations and metric
concepts like perturbation, power transformation, inner product and norm are
translated into coordinates as ordinary vector operations (sum of two vectors
and multiplication of a vector by a scalar), see [6], [7] and [17] for details. For
a composition x, we denote h(x) its representation in coordinates. Thus, for
α, β ∈ R it holds that

h(α� x⊕ β � y) = α · h(x) + β · h(y);

〈x,y〉A = 〈h(x), h(y)〉E , ‖x‖A =
√
〈x,x〉A = ‖h(x)‖E . (1)

Example 1 Let us denote the coordinate representation of x as z = (z1, . . . ,
zD−1). Coefficients for a chosen simplicial basis ([5]) can be expressed as

zi =

√
i

i+ 1
ln

i

√∏i
j=1 xj

xi+1
for i = 1, . . . , D − 1.

The inverse transformation, i.e. h−1(z) = x = C(x1, . . . , xD), is then obtained
using

xi = exp

⎛⎝ D∑
j=i

zj√
j(j + 1)

−
√
i− 1
i

zi−1

⎞⎠ with z0 = zD = 0 for i = 1, . . . , D.

2 Simplicial ellipses

A (D − 1)-dimensional real vector μ = (μ1, . . . , μD−1) and a positive definite
real matrix Σ = (sij) determine an ellipse ED−1(z) with centre μ,

ED−1(z) : (z − μ)Σ (z − μ)T = c2, c > 0. (2)

The ellipse ED−1(z) can be equivalently expressed in analytical form

D−1∑
i=1

D−1∑
j=1

sijzizj − 2
D−1∑
i=1

D−1∑
j=1

sijμizj + k = 0

with k = μΣμT − c2. Using (2) and spectral decomposition of the matrix Σ,

Σ =
D−1∑
i=1

λif
T
i f i,

where λi and f i denote eigenvalues (in descending order) and orthonormal eigen-
vectors of Σ, respectively, the ellipse ED−1(z) can also be expressed in terms of
the Euclidean inner product as

D−1∑
i=1

λi(〈f i, z〉E)2 − 2
D−1∑
i=1

λi〈f i,μ〉E〈f i, z〉E + k = 0. (3)
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It is easy to see that the spectral decomposition of Σ represents only one chosen,
nevertheless the most convenient, decomposition of Σ in order to obtain (3).
Namely, the vectors f i determine the ellipse axes’ directions, and their lengths
are functions of the eigenvalues λi.

Let h(x) = z, h(γ) = μ and h(ei) = f i, i = 1, . . . , D − 1. Considering
(1), the simplicial counterpart to ED−1(z), denoted in the following as ESD(x),
is given by

D−1∑
i=1

λi(〈ei,x〉A)2 − 2
D−1∑
i=1

λi〈ei,γ〉A〈ei,x〉A + k = 0. (4)

The following theorem is thus a simple consequence of the above mentioned
considerations and definition of the Aitchison inner product:

Theorem 1 The analytical form of the simplicial ellipse ESD(x) is uniquely de-
termined as

D−1∑
i=1

D∑
j=i+1

D−1∑
k=1

D∑
l=k+1

aijkl ln
xi
xj

ln
xk
xl

+
D−1∑
i=1

D∑
j=i+1

bij ln
xi
xj

+ k = 0,

where

aijkl =
1
D2

D−1∑
m=1

λm ln
emi
emj

ln
emk
eml

, bij = − 2
D

D−1∑
m=1

λm〈ei,γ〉A ln
emi
emj

and

k =
D−1∑
i=1

λi(〈em,γ〉A)2 − c2.

The compositions γ and ei = (ei1, . . . , eiD) represent centre of ESD(x) and
the ellipse axes’ directions, respectively. Theorem 1 provides a procedure how
to construct an analytical representation of an ellipse on the simplex, obtained
as a result of statistical computations in coordinates.

Example 2 A simplicial ellipse in coordinates (see Example 1) is given by

μ = (1, 1), Σ =
(

2.5, 1.5
1.5, 2.5

)
, c = 1,

i.e. with centre μ = (1, 1), eigenvalues λ1 = 4, λ2 = 1 and axis directions

f1 =
1√
2
(1, 1) and f2 =

1√
2
(1,−1).

The analytical form of the ellipse ES3 (x) in coordinates, i.e. E2(z), is thus

2.5z2
1 + 2.5z2

2 + 3z1z2 − 8z1 − 8z2 + 7 = 0.
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Using (4) and Theorem 1 and after an adjustment we obtain the analytical
form of ES3 (x) as

0.56 ln2 x1

x2
+ 0.84 ln2 x1

x3
+ 0.27 ln2 x2

x3
+ 1.13 ln

x1

x2
ln
x1

x3
+ 0.02 ln

x1

x2
ln
x2

x3

+ 0.56 ln
x1

x3
ln
x2

x3
− 3.77 ln

x1

x2
− 5.15 ln

x1

x3
− 1.38 ln

x2

x3
+ 7 = 0.

Here, the centre γ = (0.72, 0.18, 0.10) and axis directions are e1 = (0.61, 0.23, 0.16)
and e2 = (0.36, 0.13, 0.51), respectively. Fig. 1 shows the simplicial ellipse dis-
played in a ternary diagram as well as in coordinates.

x1 x2

x3

e1

e2

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

z1

z 2
f1

f2

Fig. 1. The simplicial ellipse displayed in a ternary diagram (left) and in coordinates
(right) together with the directions of the ellipse axes.

Let us remark that the existence of an analytical expression for ellipses on the
simplex opens also a possibility for further generalizations in many directions,
e.g. [13], [14].

3 Application in a statistical method

Ellipses frequently occur as a result of many statistical methods. In the case of
compositional data one has to be careful to check whether the given problem
is solvable in coordinates and how the results can be interpreted back on the
simplex. One such problem is to find a regression line (in the compositional
sense) that represents the main trend in the data, e.g. using the first principal
component or equivalently the total least squares problem, computed in coordi-
nates ([4], [15], [19]). In its simplest form it attempts to fit a line that explains
the set of n two-dimensional data points (e.g. three-part compositions in co-
ordinates) in such a way that the sum of squared distances from data points
to the estimated line is minimal. In [12] it was shown that in this case, the
problem is also solvable iteratively using the theory of linear regression models
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with type-II constraints (in the constraints not only parameters of the model
but also additional parameters occur, [16]), see [12] for details. Moreover, this
approach enables to perform deeper statistical analysis like confidence regions
and hypotheses testing. Considering the first mentioned possibility, under the
assumption of normality we can construct confidence ellipses for locations of
the unknown errorless results of the measurement, i.e. for the locations of each
of n points zi = h(xi) = (zi1, zi2), i = 1, . . . , n. The numerical results in the
text below correspond to the statistical analysis of the well known Aphyric Skye
Lavas data set that comes from [1, p. 360] and represents percentages of three
variables (Na2O + K2O, Fe2O3 and MgO) related to the chemistry of 23 lava
samples.

The confidence ellipses for the single errorless results of the measurement
(true concentrations of the chemical compounds) in coordinates are constructed
in such a way that their centers μi (and γi in the Aitchison geometry) lie on the
regression line z2 = β1 + β2z1, where the parameters β1, β2 are estimated using
the iterative algorithm described in [12]. Thus, we can assert that the unknown
errorless results lie in the ellipses with the prescribed probability 1 − α. The
directions f1 of the main half-axes of such ellipses follow the direction given by
the estimated line, f1 = (0.8903,−0.4554), thus f2 = (0.4554, 0.8903) for the
adjacent half-axes.

Although it might not to be visible from the ternary diagram, the unitary
directions of the ellipses’ main and adjacent half-axes are also the same and for
all of them we have e1 = (0.4515, 0.1282, 0.4203), e2 = (0.5654, 0.2969, 0.1377);
note that, of course, 〈e1, e2〉A = 0. Concretely, for a 95%-confidence ellipse,
belonging to x1, we obtain the center of this ellipse in coordinates and on the
simplex as

μ1 = (0.0122, 1.7471), γ1 = (0.4763, 0.4682, 0.0556),

respectively. Here c2 equals 2F2,21(0.95), 95%-quantile of the F distribution
with 2 and 21 degrees of freedom, see again [12] for details. The analytical
representation of the ellipse in coordinates equals to

570.53z2
1 + 233.99z2

2 − 466.44z1z2 + 801.04z1 − 811.93z2 + 697.45 = 0

(the matrix Σ was obtained as inverse of the covariance matrix of the centre
μ1, [12]) and back-transformed to the simplex we obtain for ES3 (x)

126.79 ln2 x1

x2
+25.81 ln2 x1

x3
+115.58 ln2 x2

x3
+37.02 ln

x1

x2
ln
x1

x3
−216.55 ln

x1

x2
ln
x2

x3

+ 14.61 ln
x1

x3
ln
x2

x3
+ 377.61 ln

x1

x2
− 142.66 ln

x1

x3
− 520.28 ln

x2

x3
+ 697.45 = 0.

Here, the composition x1 = (0.52, 0.42, 0.06) is not contained in the corre-
sponding confidence ellipse, because ES3 (x1) = 9.85 > 0. The corresponding
results of all compositions x1, . . . ,xn are collected in Table 1. Note that there
are many positive values, meaning that the data point is outside the ellipse.
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This indicates a poor fit of the model to the data. As a consequence, a more
complex model could be selected.

obs. number i 1 2 3 4 5 6
ES3 (xi) 9.85 −6.40 −4.20 −6.05 3.70 −3.69

obs. number i 7 8 9 10 11 12
ES3 (xi) 1.38 13.92 7.42 6.81 21.94 31.44

obs. number i 13 14 15 16 17 18
ES3 (xi) 13.26 −0.33 −5.71 −1.95 67.19 −3.80

obs. number i 19 20 21 22 23
ES3 (xi) −6.85 −3.61 −6.44 22.36 −5.20

Tab. 1. Overview of results for the Aphyric Skye Lavas data. The values correspond
to the observed compositions xi, i = 1, . . . , 23, substituted in the corresponding confi-
dence ellipses. A value less than zero indicates that the data point is contained inside
the ellipse and for values greater than zero outside. Exact zero values would mean
that the composition lies on the boundary.

Detailed interpretation of the logratios’ coefficients in the analytical repre-
sentation of ellipses on the simplex is the topic of the author’s research and will
be presented in the future.
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Abstract

The aim of the paper is to determine an influence of uncertainties in
design and covariance matrices on estimators in linear regression model.

Key words: Linear statistical model, uncertainty, design matrix,
covariance matrix.
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1 Introduction

Uncertainties in entries of design and covariance matrices influence the variance
of estimators and cause their bias. A problem occurs mainly in a linearization
of nonlinear regression models, where the design matrix is created by deriva-
tives of some functions. The question is how precise must these derivatives be.
Uncertainties of covariance matrices must be suppressed under some reasonable
bound as well.

The aim of the paper is to give the simple rules which enables us to decide
how many ciphers an entry of the mentioned matrices must be consisted of.
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2 Symbols used

In the following text a linear regression model (in more detail cf. [2]) is denoted
as

Y ∼n (Fβ,Σ), β ∈ Rk, (1)

where Y is an n-dimensional random vector with the mean value E(Y) equal
to Fβ and with the covariance matrix Var(Y) = Σ. The symbol Rk means the
k-dimensional linear vector space. The n × k matrix F is given. It is assumed
that the rank r(F) of the matrix F is r(F) = k < n and the given matrix Σ
is positive definite. The k-dimensional unknown vector parameter β must be
estimated on the basis of the realization y of the random vector Y. Symbol
e(n)
i means n-dimensional vector with the entry 1 at the i-th position; other

entries are zero. The matrix of the normal equation F′Σ−1F is denoted as C;
its (i, j)-th entry is {C}i,j and the (i, j)-th entry of C−1 is {C}i,j. F′ means the
transpose of the matrix F. The (i, j)-th entry of the matrix Σ is σi,j = {Σ}i,j
and the i-th component of the vector v is {v}i.

The symbol ∂l′hY/∂F means

∂l′hY
∂F

=

⎛⎜⎝
∂l′hY
∂F1,1

, . . .
∂l′hY
∂F1,k

. . . . . . . . . . . . . . .
∂l′hY
∂Fn,1

, . . .
∂l′hY
∂Fn,k

⎞⎟⎠ , (2)

where Fi,j = {F}i,j, i = 1, . . . , n, j = 1, . . . , k, and l′h = h′C−1F′Σ−1 for an
arbitrary h ∈ Rk, h �= 0.

The Kronecker multiplication of matrices A and B is denoted as A⊗B (in
more detail cf. [3]). If A = (a1, . . . ,am), then vec(A) = (a′

1, . . . ,a
′
m)′. The

identity matrix is denoted as I.

3 Uncertainty in the design matrix

In the following text a sensitivity approach is used, i.e. the influence of uncer-
tainty in the design matrix is judged according to the linear term of the Taylor
series (cf. also in [1], chpt. VI). The Taylor series of the quantity l′hY = h′β̂
will be considered.

Lemma 3.1 Let h′ ∈ Rk be an arbitrary vector. It is valid that

∂h′β̂
∂F

= −l′hβ̂
′
+ Σ−1vh′C−1, lh = Σ−1FC−1h, (3)

β̂ = C−1F′Σ−1Y, (4)

v = Y − Fβ̂. (5)
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Proof The BLUE (best linear unbiased eastimator) of the linear function
h(β) = h′β, β ∈ Rk, is h′β̂ = l′hY = h′C−1F′Σ−1Y. Thus

∂h′β̂
∂Fi,j

= h′ ∂C
−1

∂Fi,j
F′Σ−1Y + h′C−1 ∂F

′

∂Fi,j
Σ−1Y

and

∂C−1

∂Fi,j
=
∂(F′Σ−1F)−1

∂Fi,j
= −C−1

(
∂F′

∂Fi,j
Σ−1F + F′Σ−1 ∂F

∂Fi,j

)
C−1

= −C−1
{[

e(n)
i (e(k)

j )′
]′
Σ−1F + F′Σ−1e(n)

i (e(k)
j )′

}
C−1

= −C−1F′Σ−1e(n)
i (e(k)

j )′C−1 −C−1e(k)
j (e(n)

i )′Σ−1FC−1.

It implies

∂h′β̂
∂Fi,j

= −l′he
(n)
i (e(k)

j )′C−1F′Σ−1Y − h′C−1e(k)
j (e(n)

i )′Σ−1FC−1Σ−1Y

+ h′C−1e(k)
j (e(n)

i )′Σ−1Y

= −l′he
(n)
i (e(k)

j )′β̂ + h′C−1e(k)
j (e(n)

i )′Σ−1v

=
{
−lhβ̂

′
+ Σ−1vh′C−1

}
i,j
, i = 1, . . . , n, j = 1, . . . , k. �

Lemma 3.2 Let in the model from Lemma 3.1 the symbol δF denote the matrix
of uncertainties in the design matrix F. Then

(i) E

[
Tr

(
δF′ ∂h

′β̂
∂F

)]
= −Tr(δF′lhβ′), (6)

(ii) Var

[
Tr

(
δF′ ∂h

′β̂
∂F

)]
= l′hδFC−1δF′lh + h′C−1δF′(MFΣMF )+

× δFC−1h, (7)

where
(MFΣMF )+ = Σ−1 −Σ−1FC−1F′Σ−1

is the Moore–Penrose generalized inverse of the matrixMFΣMF (in more detail
cf. [3]).

Proof The statement (i) is obvious. As far as (ii) is concerned, it is valid that

Var

[
Tr

(
δF′ ∂h

′β̂
∂F

)]
= Var

{
[vec(δF)]′ vec

(
∂h′β̂
∂F

)}

= Var
(
[vec(δF)]′

{
−(I⊗ lh)β̂ +

[
(C−1h)⊗Σ−1

]
v
})

.



64 Lubomír KUBÁČEK, Jaroslav MAREK

Since β̂ and v are noncorrelated, Var(β̂) = C−1 and Var(v) = Σ − FC−1F′,
we have

Var

[
Tr

(
δF′ ∂h

′β̂
∂F

)]
= [vec(δF)]′(I⊗ lh)C−1(I⊗ l′h) vec(δF)

+ [vec(δF)]′[(C−1h)⊗Σ−1](Σ− FC−1F′)[(h′C−1)⊗Σ−1] vec(δF)

= [vec(δF)]′[C−1 ⊗ (lhl′h)] vec(δF) + [vec(δF)]′[(C−1hh′C−1)⊗ (MFΣMF )+]

× vec(δF) = Tr[(δF)′lhl′hδFC−1] + Tr[(δF)′(MFΣMF )+δFC−1hh′C−1]

= l′hδFC−1(δF)′lh + h′C−1(δF)′(MFΣMF )+δFC−1h. �

Remark 3.1 Regarding Lemma 3.1 the influence of δF on the estimate of the
function h′β, β ∈ Rk, can be evaluated. If δF �= 0, then instead of h′β̂ =
h′C−1F′Σ−1y (y is a realization of Y) we obtain

h′β̃ ≈ h′C−1F′Σ−1y − Tr[(δF)′lhβ̂
′
] + Tr[(δF)′Σ−1vh′C−1] (8)

(for practical purposes the values β̃ and y−Fβ̃ can be used on the right hand
side of the last approximate equality instead of β̂ and v).

In an actual case we can judge whether uncertainty δF in the used matrix
F satisfy the inequality

| − Tr[(δF)′lhβ̂
′
] + Tr[(δF)′Σ−1vh′C−1]| < ε

√
h′C−1h,

where ε > 0 is sufficiently small (according to an opinion of a statistician)
number.

If δF = e(n)
i (e(k)

j )′Δ, then

−Tr[(δF)′lhβ̂
′
] + Tr[(δF)′Σ−1vh′C−1] =

= −Tr
[
e(k)
j (e(n)

i )′lhβ̂
′]

+ Tr
[
e(k)
j (e(n)

i )′Σ−1vh′C−1
]

= −{lh}i {β̂}j + {Σ−1v}i
{
C−1h

}
j
.

Remark 3.2 According to Lemma 3.2 the influnce of δF on the estimator of
the function h′β, β ∈ Rk, can be evaluated. As far as the bias of the estimator
h′β̂ is concerned, if

β̃ =
[
(F + δF)′Σ−1(F + δF)

]−1(F + δF)′Σ−1Y,

then
E(h′β̃) ≈ h′β − Tr

[
(δF)′lhβ′],

i.e. the bias of the estimator is −Tr
[
(δF)′lhβ′]. It must be suppressed under

some reasonable bound, i.e. it must be

|Tr
[
(δF)′lhβ′]| < ε

√
h′C−1h.

(Instead of β the estimator of it can be used what could be sufficient for practical
purposes.)
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For the sake of simplicity let δF = e(n)
i (e(k)

j )′Δ. Then

Tr
[
(δF)′lhβ′] = Δ Tr

[
e(k)
j (e(n)

i )′lhβ′] = Δ{lh}i{β}j ;
thus it should be valid

Δ ε
√

h′C−1h
1

{lh}i{β}j .

The value

�(F )
crit,i,j = ε

√
h′C−1h

1
{lh}i{β}j (9)

is the maximum admissible contamination of the (i, j)-th entry of the design
matrix F. It causes a bias of the estimator h′β̃ not larger than ε

√
h′C−1h.

As far as the variance of the estimator h′β̂ is concerned, we have

h′β̃ = h′β̂ +
{

Tr
[− (δF)′lhβ̂

′]
+ Tr

[
(δF)′Σ−1vh′C−1

]}
= (h′ − l′hδF)β̂ + h′C−1δF′Σ−1v

and thus

Var(h′β̃) = (h′ − l′hδF)C−1
[
h− (δF)′lh

]
+ h′C−1(δF)′(MFΣMF )+δFC−1h

= Var(h′β̂)− 2l′hδFC−1h + l′hδFC−1(δF)′lh + h′C−1(δF)′

×(MFΣMF )+δFC−1h.

The variance of the estimator with an uncertain design matrix differs from the
variance of the estimator with the proper design matrix. The difference is

−2l′hδFC−1h + l′hδFC−1(δF)′lh + h′C−1(δF)′(MFΣMF )+δFC−1h.

For the sake of simplicity let δF = e(n)
i (e(k)

j )′Δ. Then the difference is

γh,(i,j) =

= −2Δ{lh}i{C−1h}j + Δ2
[
{C}j,j({lh}i)2 + ({C−1h}j)2{(MFΣMF )+}i,i

]
.

It can be assumed that γh,(i,j)  h′C−1h and thus√
Var(h′β̃) =

√
h′C−1h + γh,(i,j) =

√
h′C−1h

(
1 +

γh,(i,j)

h′C−1h

)1/2

≈
√

h′C−1h
(

1 +
1
2
γh,(i,j)

h′C−1h

)
.

The solution �(V )
crit,i,j of the quadratic equation

Δ2
[
{C}j,j({lh}i)2 + ({C−1h}j)2{(MFΣMF )+}i,i

]
− 2Δ{lh}i{C−1h}j − 2ε

√
h′C−1h = 0 (10)
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is the maximum admissible contamination of the (i, j)-th entry of the design
matrix F. It causes an enlargement of the standard deviation

√
h′C−1h not

larger than ε
√

h′C−1h. The value of the quantity γh,(i,j) is the same for both
roots of the quadratic equation.

It is useful to arrange tables of the values �(F )
crit,i,j (cf. (9)) and �(V )

crit,i,j

(cf. (10)) for all i = 1, . . . , n and j = 1, . . . , k, cf. section 5 Numerical examples.

Remark 3.3 The most dangerous shift δF of the matrix F with respect to the
bias of the estimator is in the direction of the gradient, i.e.

δF∗ = kE

(
∂h′β̂
∂F

)
= −klhβ′.

(The number k will be determined later.) The bias of the estimator caused by
δF∗ is

−Tr
[
(δF∗)′lhβ′] = kβ′βl′hlh.

The number k now can be bounded according to the condition

kβ′βl′hlh < ε
√

h′C−1h.

The matrix

δF∗ =
ε
√

h′C−1h
β′βl′hlh

lhβ
′ (11)

can serve as a good information on the necessary accuracy of the matrix F in
connection with the bias of the estimator h′β̂.

It is to be remarked that in the case Σ = σ2I, the number k must satisfy

the inequality k < σε/
(
β′β

√
h′(F′F)−1h

)
.

4 Uncertainty in the covariance matrix

Lemma 4.1 In the regular linear model Y ∼n (Fβ,Σ), β ∈ Rk, for a given
linear function h′β, β ∈ Rk, it is valid that

∂h′β̂
∂σi,j

= −{lh}i{Σ−1v}j − {lh}j{Σ−1v}i, i, j = 1, . . . , n.

Proof Since h′β̂ = h′(F′Σ−1F)−1F′Σ−1Y, it is valid that

∂h′β̂
∂σi,j

= h′ ∂(F′Σ−1F)−1

∂σi,j
F′Σ−1Y + h′(F′Σ−1F)−1F′ ∂Σ

−1

∂σi,j
Y

= h′C−1F′Σ−1
[
e(n)
i (e(n)

j )′ + e(n)
j (e(n)

i )′
]
Σ−1FC−1F′Σ−1Y

− h′C−1F′Σ−1
[
e(n)
i (e(n)

j )′ + e(n)
j (e(n)

i )′
]
Σ−1Y

=
{
−

[
lh(Σ−1v)′ + Σ−1vl′h

]}
i,j
, i, j = 1, . . . , n.

�
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Remark 4.1 Since uncertainty in the covariance matrix does not cause the
bias of the estimator, only a change of the variance of the estimator must be
taken into account. Since it is valid that

h′[F′(Σ + δΣ)−1F
]−1

F′(Σ + δΣ)−1Y ≈ h′C−1F′Σ−1Y

−Tr
[
δΣ(lhv′Σ−1 + Σ−1vl′h)

]
= h′β̂ − 2l′δΣΣ−1v,

we have

VarΣ
{
h′[F′(Σ + δΣ)−1F

]−1
F′(Σ + δΣ)−1Y

}
≈ h′C−1h + 4l′hδΣ(MFΣMF )+δΣlh.

If

δΣ =

{ [
e(n)
i (e(n)

j )′ + e(n)
j (e(n)

i )′
]
Δ, i �= j[

e(n)
i (e(n)

i )′
]
Δ, i = j

then if i �= j

dh,(i,j) = 4l′hδΣ(MFΣMF )+δΣlh

= 4
({lh}j, {lh}i)( {(MFΣMF )+}i,i, {(MFΣMF )+}i,j

{(MFΣMF )+}j,i, {(MFΣMF )+}j,j
)( {lh}j
{lh}i

)
Δ2,

if i = j
dh,(i,i) = 4({lh}i)2{(MFΣMF )+}i,iΔ2.

Since we can assume that dh,(i,j)  h′C−1h, we can write√
h′C−1h + dh,(i,j) ≈

√
h′C−1h

(
1 +

1
2
dh,(i,j)
h′C−1h

)
.

The matrix Dh with the (i, j)-th entry

{Dh}i,j =
(

1 +
1
2
dh,(i,j)

h′C−1h

)
, i, j = 1, . . . , n,

can help to analyze the influence of δΣ on the standard deviation of the es-
timator h′β̂. The value {Dh}i,j means the ratio of the standard deviation of
the estimator calculated with the covariance matrix Σ + δΣ to the standard
deviation of the estimator calculated with proper covariance matrix Σ.

The solution �(Σ)
crit,i,j of the equation (for i �= j)

2Δ2
({lh}j , {lh}i)( {(MFΣMF )+}i,i, {(MFΣMF )+}i,j

{(MFΣMF )+}j,i, {(MFΣMF )+}j,j
)( {lh}j
{lh}i

)
= εh′C−1h (12)

and the equation (for i = j)

2Δ2({lh}i)2{(MFΣMF )+}i,i = εh′C−1h (13)

is the maximum admissible contamination of the (i, j)-th entry of the variance
matrix Σ. It causes an enlargement of the standard deviation

√
h′C−1h not

greater than ε
√

h′C−1h.
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5 Numerical examples

Example 5.1 Let the regression model be⎛⎜⎜⎝
Y1

Y2

Y3

Y4

⎞⎟⎟⎠ ∼n
⎡⎢⎢⎣
⎛⎜⎜⎝

1, 1
1, 2
1, 3
1, 4

⎞⎟⎟⎠(
β1

β2

)
, σ2I

⎤⎥⎥⎦ , σ = 0.1

and y = (1.6, 1.9, 2.6, 3.1)′.
Then

(F′F)−1 =
(

1.5, −0.5
−0.5, 0.2

)
, σ2(F′F)−1 =

(
0.0150, −0.0050
−0.0050, 0.0020

)
,

(F′F)−1F′ =
(

1.0, 0.5, 0.0, −0.5
−0.3, −0.1, 0.1, 0.3

)
,

β̂ = (F′F)−1F′y =
(

1.00
0.52

)
, v = y − Fβ̂ = (0.08,−0.14, 0.04, 0.02)′.

Let h1 = (1, 0)′ in situation A, h2 = (0, 1)′ in situation B and ε = 0.2.
Then in situation A according Remark 3.4 formulas (9) and (10) we will

determine:

�(F )
crit =

⎛⎜⎜⎝
0.0245 0.0471
0.0490 0.0942
∞ ∞

−0.0490 −0.0942

⎞⎟⎟⎠ , δF∗ =

⎛⎜⎜⎝
0.0129 0.0067
0.0064 0.0033

0 0
−0.0064 −0.0033

⎞⎟⎟⎠ ,

from (10) two solution 1�(V )
crit and 2�(V )

crit are obtained

1�(V )
crit =

⎛⎜⎜⎝
−0.9620 −6.4139
−1.2464 −5.9078
−1.7637 −5.2910
−2.9893 −4.5720

⎞⎟⎟⎠ , 2�(V )
crit =

⎛⎜⎜⎝
2.3413 2.7775
2.0156 3.6855
1.7637 5.2910
1.5608 8.5720

⎞⎟⎟⎠ .

These two matrices cause an enlargement of standard deviation not more ε-times.
As a criterion the value

min
{|1�(V )

crit,i,j|, |2�(V )
crit,i,j |

}
must be choosen in practice.

�(Σ)
crit =

⎛⎜⎜⎝
0.0071 0.0063 0.0046 0.0093
0.0063 0.0093 0.0093 0.0071
0.0046 0.0093 ∞ 0.0093
0.0093 0.0071 0.0093 0.0141

⎞⎟⎟⎠ ,

For example the value �(F )
crit,(3,1) and �(F )

crit,(3,2) for h = (1, 0)′ cannot
be determined, since {lh}3{β}1 and {lh}3{β}2, respectively are zero. Ever it
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seems that the contamination of the design matrix F in the third row can be
any larger number, it is not so. An aproach to determination of the value
�(F )

crit,i,j is infinitesimal and therefore some carefulness it necessary. If, e.g.

�(F )
crit,(3,1) = 0.1, then the bias of the estimator (̂1, 0)β is (0.0096, 0.0064)′,

what is admissible. However the value �(F )
crit,(3,1) = 1 leads to a non-admissible

bias.
In situation B according Remark 3.4 formulas (9), (10) and from the Remark

3.5 formula (11) we will determine:

�(F )
crit =

⎛⎜⎜⎝
−0.0298 −0.0573
−0.0894 −0.1720

0.0894 0.1720
0.0298 0.0573

⎞⎟⎟⎠ , δF∗ =

⎛⎜⎜⎝
−0.0106 −0.0055
−0.0035 −0.0018

0.0035 0.0018
0.0106 0.0055

⎞⎟⎟⎠ ,

1�(V )
crit =

⎛⎜⎜⎝
−2.2905 −9.9767
−2.8165 −8.4173
−3.3428 −7.0840
−3.7190 −5.9767

⎞⎟⎟⎠ , 2�(V )
crit =

⎛⎜⎜⎝
3.7190 5.9767
3.3428 7.0840
2.8165 8.4173
2.2905 9.9767

⎞⎟⎟⎠ ,

and from the Remark 4.2 formulas (12) and (13) we will determine

�(Σ)
crit =

⎛⎜⎜⎝
0.0086 0.0069 0.0053 0.0105
0.0069 0.0169 0.0105 0.0053
0.0053 0.0105 0.0169 0.0069
0.0105 0.0053 0.0069 0.0086

⎞⎟⎟⎠ .

Let for δF = δF∗ the value of the estimator (8) from Remark 3.3 be com-

pared with h′β̂ = h′
(

1.00
0.52

)
; h′β̃ = h′β̂ − Tr[(δF∗)′lhβ̂

′
] + Tr[(δF∗)′vh′C−1].

If h = (1, 0)′, then h′β̃ − h′β̂ = 0.9755− 1.0000 = −0.0245.
If h = (0, 1)′, then h′β̃ − h′β̂ = 0.5111− 0.5200 = −0.0089.

Example 5.2 Let the regression model be

yi =
β1xi
β2 + xi

, i = 1, 2, 3, 4, 5 (14)

and results of measurement of y at points x1, . . . , x5 be

x 1 2 3 4 5
y 3.2 4.9 6.2 6.5 7.3

Σ =

⎛⎜⎜⎜⎜⎝
0.12, 0, 0, 0, 0
0, 0.12, 0, 0, 0
0, 0, 0.22, 0, 0
0, 0, 0, 0.22, 0
0, 0, 0, 0, 0.22

⎞⎟⎟⎟⎟⎠ .
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Equations (14) enable us to obtain an approximate values β(0).

For 1st and 5nd measurement two equations for unknown parameters lead
to an approximate values β(0) = (10, 2)′.

The linear version of the functions (14) obtained by the using the Taylor
expansion at the approximate point β(0) is in the form Y − g(β(0)) = Fδβ,

where F = ∂g(β(0)
)

∂β′ and g(β(0)) = (g1(β(0)), . . . , g5(β(0)))′, gi(β(0)) = β
(0)
1 xi

β
(0)
2 +xi

,

i = 1, 2, 3, 4, 5.
In our case we will determine

F =

⎛⎜⎜⎜⎜⎝
0.3333 −1.1111
0.5000 −1.2500
0.6000 −1.2000
0.6667 −1.1111
0.7143 −1.0204

⎞⎟⎟⎟⎟⎠ , y0
i =

β0
1xi

β0
2 + xi

, i = 1, 2, 3, 4, 5

y0 = (3.3333, 5.0000, 6.0000, 6.6667, 7.1429)′,

β̂ = β(0) + δβ̂ = β(0) + (F′Σ−1F)−1F′Σ−1(y − y0) =
(

10.5230
2.2754

)
,

v = y − Fβ̂ = (−0.0127,−0.0226, 0.2158,−0.2075, 0.0681)′.

Let h = (1, 0)′, σ = 0.1, ε = 0.2. Then in our linearized model we will
determine numerically from the Remark 3.4 formula (9) and from the Remark
3.5 formula (11)

�(F )
crit =

⎛⎜⎜⎜⎜⎝
−0.0681 −0.1294
−0.4915 −0.9333

0.3349 0.6359
0.1672 0.3174
0.1184 0.2248

⎞⎟⎟⎟⎟⎠ , δF∗ =

⎛⎜⎜⎜⎜⎝
−0.0342 −0.0180
−0.0047 −0.0025

0.0070 0.0037
0.0140 0.0073
0.0197 0.0104

⎞⎟⎟⎟⎟⎠ ,

and from the Remark 3.4 formulas (9), (10) and from the Remark 3.5 formula
(11)

1�(V )
crit =

⎛⎜⎜⎜⎜⎝
−0.5132 −1.2038
−0.3135 −0.7568
−0.3516 −0.8476
−0.2763 −0.6640
−0.2308 −0.5531

⎞⎟⎟⎟⎟⎠ , 2�(V )
crit =

⎛⎜⎜⎜⎜⎝
0.1342 0.3216
0.2530 0.6107
0.5799 1.3966
0.7268 1.7326
0.8581 2.0160

⎞⎟⎟⎟⎟⎠ ,

and from the Remark 4.2 formulas (12) and (13)

�(Σ)
crit =

⎛⎜⎜⎜⎜⎝
0.0095 0.0083 0.0116 0.0126 0.0160
0.0083 0.0536 0.0310 0.0172 0.0125
0.0116 0.0310 0.0600 0.0303 0.0226
0.0126 0.0172 0.0303 0.0329 0.0296
0.0160 0.0125 0.0226 0.0296 0.0273

⎞⎟⎟⎟⎟⎠ .
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Let h = (0, 1)′, ε = 0.2. Then

�(F )
crit =

⎛⎜⎜⎜⎜⎝
0.0027 −0.1200
0.0043 −0.1912
0.0217 −0.9609
−0.0083 0.3674
−0.0038 0.1699

⎞⎟⎟⎟⎟⎠ , δF∗ =

⎛⎜⎜⎜⎜⎝
−0.0315 −0.0166
−0.0114 −0.0060

0.0031 0.0016
0.0082 0.0043
0.0125 0.0066

⎞⎟⎟⎟⎟⎠ ,

1�(V )
crit =

⎛⎜⎜⎜⎜⎝
−0.5941 −1.3733
−0.5255 −1.1809
−0.6593 −1.4756
−0.5643 −1.2680
−0.4958 −1.1190

⎞⎟⎟⎟⎟⎠ , 2�(V )
crit =

⎛⎜⎜⎜⎜⎝
0.2216 0.5018
0.3422 0.7678
0.8050 1.8022
0.9644 2.1739
1.1108 2.5353

⎞⎟⎟⎟⎟⎠ ,

�(Σ)
crit =

⎛⎜⎜⎜⎜⎝
0.0076 0.0080 0.0097 0.0108 0.0143
0.0080 0.0166 0.0229 0.0165 0.0129
0.0097 0.0229 0.1013 0.0389 0.0262
0.0108 0.0165 0.0389 0.0415 0.0347
0.0143 0.0129 0.0262 0.0347 0.0321

⎞⎟⎟⎟⎟⎠ .

6 Concluding remarks

The aim in linear statistical models is to determine an estimator of the parameter
β on the basis of the observation vector Y.

In this article we concentrated on a fundamental questions – how uncertainty
of the design and covariance matrices influence the bias and the variance of
estimators.

The quantities �(F )
crit, δF

∗, �(V )
crit, �(Σ)

crit enables to judge how precise the
record of the design matrix and the covariance matrix must be.

In the last example it can be seen that in the situation B for ε = 0.2 the
record of the design matrix must take into account the values 0.001 and that
record of the covariance matrix must take into account the values 0.01.
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Abstract

A construction of confidence regions in nonlinear regression models
is difficult mainly in the case that the dimension of an estimated vector
parameter is large. A singularity is also a problem. Therefore some simple
approximation of an exact confidence region is welcome. The aim of the
paper is to give a small modification of a confidence ellipsoid constructed
in a linearized model which is sufficient under some conditions for an
approximation of the exact confidence region.

Key words: Nonlinear regression model, confidence region, singu-
larity.

2000 Mathematics Subject Classification: 62F10, 62J05

1 Introduction

A construction of a confidence region for unbiasedly estimable functions of non-
linear singular regression model parameters can be a difficult numerical prob-
lem (for more detail on nonlinear models cf. [6]). Mainly the case of a large
dimension of a vector parameter is unwelcome. If a confidence region can be

*Supported by the Council of the Czech Government MSM 6 198 959 214.
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approximated by a confidence ellipsoid (in the case of normally distributed ob-
servation vector), then a numerical calculation and an interpretation of results
are much more easier and simpler.

Therefore an attempt to find a simple measure of nonlinearity which enable
us to decide whether an approximate confidence ellipsoid can be used instead
of exact confidence region, is the aim of the paper.

2 Notation and some useful statements

The following notation is used.

Y ∼ Nn(f(β),Σ) (1)

means that Y is an n-dimensional normally distributed random vector with the
mean value E(Y) equal to f(β) and with the covariance matrix Var(Y) = Σ.
Let the function f(·) : Rk → Rn (Rn is the n-dimensional real linear vector
space) can be expressed by the Taylor series of the second order, i.e.

f(β) = f0 + Fδβ +
1
2
κ(δβ), δβ = β − β0,

f0 = f(β0), β0 is an approximate value of β,

F =
∂f(u)
∂u

∣∣∣
u=β0

, κ(δβ) =
[
κ1(δβ), . . . , κn(δβ)

]′
,

κi(δβ) = δβ′ ∂2fi(u)
∂u∂u′

∣∣∣
u=β0

δβ, i = 1, . . . , n.

The matrix F need not be of the full rank in columns and Σ need not be positive
definite.

The linearized version of the model (1) is

Y − f0 ∼ Nn(Fδβ,Σ) (2)

and the quadratized version is

Y − f0 ∼ Nn
(
Fδβ +

1
2
κ(δβ),Σ

)
. (3)

In the following text the notations

A− . . . g-inverse (generalized inverse) of the matrix A,

A+ . . . the Moore–Penrose g-inverse of the matrix A,

A−
m(W ) . . . minimum W-seminorm g-inverse of the matrix A, (W is positive

semidefinite matrix),

M(Am,n) = {Au : u ∈ Rn} (column space of the matrix) A,

I . . . identity matrix,
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PF ′ = F′(FF′)−F the projection matrix on the space M(F′) in the Euclidean
norm,

r(A) . . . the rank of the matrix A,

U = Var(P̂F ′δβ),

T = Σ + FF′,
will be used. More on a g-inverse of a matrix cf. [7].

In the model (2) a representative of all unbiasedly estimable linear functions
of the parameter β is the vector

γ = PF ′β = PF ′β0 + PF ′δβ = γ0 + δγ.

Lemma 1 In the model (2) the (1−α)-confidence ellipsoid of the vector PF ′δβ
is

EPF ′δβ =
{
PF ′u : PF ′u− P̂F ′δβ ∈M[

Var(P̂F ′δβ)
]
, (PF ′u− P̂F ′δβ)′

× [
Var(P̂F ′δβ)

]−(PF ′u− P̂F ′δβ) ≤ χ2
r[F ′(Σ+FF′)−Σ](0; 1− α)

}
,

where

P̂F ′δβ = PF ′
[
(F′)−m(Σ)

]′(Y − f0),

Var(P̂F ′δβ) = PF ′
[
(F′T−F)− − I

]
PF ′ , T = Σ + FF′.

Proof is given in [2]. �

In the following text it is necessary to take into account the fact that even β0

can be considered to be known, only PF ′(β − β0) = PF ′δβ can be unbiasedly
estimated. Let

β0 = γ0 + ω0, γ0 = PF ′β0, ω0 = MF ′β0;

the parameter δγ = PF ′(β − β0) is unbiasedly estimable in the model (2),
however δω = MF ′(β − β0) is not. Therefore the model

Y ∼ Nn
[
f(β0) + Fδγ +

1
2
κω0(δγ),Σ

]
(4)

will be considered instead the model (3). Here

κω0 = (κω0,1, . . . , κω0,n)
′,

κω0,i = δγ ′ ∂
2fi(γ0 + ω0)
∂γ∂γ′ δγ, i = 1, . . . , n,

F =
∂f(γ0 + ω0)

∂γ′ .
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Lemma 2 The bias b of the estimator

δ̂γ = P̂F ′δβ = PF ′
[
(F′)−m(Σ)

]′(Y − f0)

in the model (4) is

b = E(δ̂γ)− δγ =
1
2
PF ′

[
(F′)−m(Σ)

]′
κω0(δγ)

=
1
2
PF ′(F′T−F)−F′T−κω0(δγ).

Proof is implied by the definition of the bias. �

Lemma 3 Let Y ∼ Nk(μ,Σ). Then

Y′Σ+Y ∼ χ2
r(Σ)(δ),

where δ = μ′Σ+μ = μ′PΣΣ−PΣμ.

Proof Let J be a k × r(Σ) matrix such that JJ′ = Σ and K such a k × r(Σ)
matrix that KK′ = Σ+ (i.e. J′K = I). Then K′Y = K′μ + η, η ∼ Nr(Σ)(0, I).
Thus

Y′KK′Y = Y′Σ+Y = η′η + 2η′K′μ + μ′Σ+μ ∼ χ2
r(Σ)(μ

′Σ+μ).

However Σ+ = PΣΣ−PΣ, since

ΣPΣΣ−PΣΣ = Σ, PΣΣ−PΣΣPΣΣ−PΣ = PΣΣ−PΣ,

ΣPΣΣ−PΣ = PΣΣ−PΣΣ = PΣ, PΣΣ−PΣΣ = ΣPΣΣ−PΣ = PΣ.

(in more detail cf. [7]). �

3 A linearization region for a confidence ellipsoid

Since r
[

Var(P̂F ′δβ)
]

= r[F′(Σ + FF′)−Σ
]
, it can happen that

r
[

Var(P̂F ′δβ)
]

= r
[

Var(δ̂γ)
]
< r(F′).

Therefore the vector b need not be an element of M[
Var(P̂F ′δβ)

]
.

The relation

δγ = PF ′δβ = E(P̂F ′δβ)− b = E(δ̂γ)− b,

valid in the model (3) and (4), respectively, implies that in general case the
vector PF ′δβ need not be an element of EPF ′δβ from Lemma 1. Thus it seems to
be reasonable to enlarge the ellipsoid EPF ′δβ to E in such a way that PF ′δβ ∈ E
with sufficiently high probability.

In the following text the notation U = Var(P̂F ′δβ) will be used.
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Definition 1 Let a set E be defined as

E =
{
PF ′u : u ∈ Rk, (PF ′u− P̂F ′δβ)′

[
U + c2(PF ′ −PU )

]+
× (PF ′u− P̂F ′δβ) ≤ χ2

r(F ′T−Σ)(0; 1− α)
}
,

where T = Σ + FF′ and the choice c2 depends on the opinion of the user (cf.
the following remark).

Remark 1 The number c2 should be comparable with the spectral numbers of
the matrix U. The semiaxes of E in the spaceM(PF ′ −PU ) have the same size
equal to

a = c
√
χ2
r(F ′T−Σ)(0; 1− α).

The smaller is c, the smaller is the probability P
{
PF ′δβ ∈ E}. Thus c cannot

be smaller than some reasonable bound. If b ∈M(U), then it can be tolerated
in the case b′U−b ≤ ε. Let

U =
f∑
i=1

λifif ′i , f = r(F′T−Σ),

be spectral decomposition of the matrix U and

λmax = max{λi : i = 1, . . . , r(F′T−Σ)}.
If h = sfmax (the vector fmax corresponds to λmax), then, regarding the Scheffé
theorem [8] (b′U−b ≤ ε⇔ ∀{h ∈ M(U)}|h′b| ≤ ε√h′Uh),

|h′b| = s|f ′maxb| ≤ sε
√
λmax.

In the worst case (i.e. b = tfmax) ‖b‖ = t < ε
√
λmax. It implies that the bias

b with the norm smaller than ε
√
λmax can be tolerated and thus the choice

c2 = λmax is reasonable.

Definition 2 Let the measure of nonlinearity for the confidence ellipsoid be

C(ell) = sup

⎧⎨⎩2
√

b′(δγ)
[
U + λmax(PF ′ −PU )

]+
b(δγ)

δγ ′[U + λmax(PF ′ −PU )
]+
δγ

: δγ ∈ Rr(F )

⎫⎬⎭ ,

where

b(δγ) =
1
2
PF ′(F′T−F)−F′T−κ(δγ).

Theorem 1 If δβ ∈ L(ell)
δγ , where

L(ell)
δγ =

{
δγ : δγ ∈M(F′), δγ′[U + λmax(PF ′ −PU )

]−
δγ ≤ 2

√
δmax

C(ell)

}
,
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then
P
{
δγ ∈ E

}
≥ 1− α− ε.

Here δmax is a solution of the equation

P
{
χ2
f (δmax) ≤ χ2

f (0; 1− α)
}

= 1− α− ε

and f = r(F′T−Σ).

Proof Regarding Definition 6

2
√

b′(δγ)
[
U+λmax(PF ′ −PU )

]+
b(δγ) ≤ δγ′[U+λmax(PF ′ −PU )

]−
δγC(ell).

Let

δγ ′[U+λmax(PF ′ −PU )]−δγ ≤ 2
√
δmax

C(ell)
.

Further

(δ̂γ − δγ)′
[
U + λmax(PF ′ −PU )

]+(δ̂γ − δγ) =

=
[
δ̂γ − E(δ̂γ) + E(δ̂γ)− δγ]′[

U + λmax(PF ′ −PU )
]+

× [
δ̂γ − E(δ̂γ) + E(δ̂γ)− δγ]

=
[
δ̂γ − E(δ̂γ)

]′[
U + λmax(PF ′ −PU )

]+[
δ̂γ − E(δ̂γ)

]
+ 2b′(δγ)

[
U + λmax(PF ′ −PU )

]+[
δ̂γ − E(δ̂γ)

]
+ b′(δγ)

[
U + λmax(PF ′ −PU )

]+
b(δγ) = χ2

f (δ),

where

δ = b′(δγ)
[
U + λmax(PF ′ −PU )

]+
b(δγ),

what is implied by Lemma 3. The relation[
(Y − μ) + μ

]′
Σ+

[
(Y − μ) + μ

]
=

= (Y − μ)′Σ−(Y − μ) + 2μ′Σ+(Y − μ) + μ′Σ+μ = χ2
r(Σ)(μ

′Σ+μ),

based on Lemma 3 is used as well.
Thus

(δ̂γ − δγ)′
[
U + λmax(PF ′ −PU )

]+(δ̂γ − δγ) = χ2
f (δ),

where
δ = b′(δγ)

[
U + λmax(PF ′ −PU )

]+
b(δγ).

If δ ≤ δmax, then

P
{
χ2
f (δ) ≤ χ2

f (0; 1− α)
}
≥ P

{
χ2
f (δmax) ≤ χ2

f (0; 1− α)
}

= 1− α− ε,

what means P
{
δγ ∈ E

}
≥ 1− α− ε. �



Linearization regions for confidence ellipsoid. . . 79

Remark 2 Let us apply Theorem 1 on the regular linearized model. Then
PF ′ = PU = I, E = Eδγ and C(ell) = K(par), where K(par) is the Bates and
Watts parametric curvature

K(par) = sup

⎧⎨⎩
√

κ′(δβ)Σ−1PΣ−1

F κ(δβ)

δβ′F′Σ−1Fδβ
: δβ ∈ Rk

⎫⎬⎭
(in more detail cf. [1]). In this case the statement

δβ ∈
{
u : u′F′Σ−1Fu ≤ 2

√
δmax

K(par)

}
⇒ P

{
PF ′δβ ∈ EPF ′δβ

}
= P{δβ ∈ Eδβ} ≥ 1− α− ε

is true (cf. also [4]). Thus Theorem 7 is a reasonable generalization suitable for
the singular model.

Remark 3 In the case that only one function of the parameter β, i.e. h(γ) =
h′γ0 + h′δγ, δγ ∈ M(F′), is important, a very simple procedure can be used.
Let in the first case h′PF ′

[
(F′T−F)− − I

]
PF ′h > 0.

Since

bh = E(ĥ′δγ)− h′δγ =
1
2
h′PF ′

[
(F′)−m(Σ)

]′
κω0(δγ) = δγ′Ahδγ,

where

Ah =
n∑
i=1

{1
2
h′PF ′

[
(F′)−m(Σ)

]′}
i

∂2fi(u + ω0)
∂u∂u′

∣∣∣
u=γ0

,

we obtain

δγ ∈ Lh′δγ =
{
u : u ∈M(F′), |u′Ah′δβu| ≤

√
δ1,max

}
⇒ P

{
|h′δγ − δ̂γ| ≤

√
χ2

1(0; 1− α)
√

h′PF ′UPF ′h
}
≥ 1− α− ε.

Here δ1,max is a solution of the equation

P
{
χ2

1(δ1,max) ≤ χ2
1(0; 1− α)

}
= 1− α− ε.

If h′Uh = 0, then

P
{
h′δ̂γ − E(h′δ̂γ) = 0

}
= 1

and thus
P
{
h′δ̂γ = h′δγ + h′b(δγ)

}
= 1.

Thus

δγ ∈ Lh′δγ =
{
u : u ∈M(F′), |u′Ahu| ≤ Δ

}
⇒ P

{
h′δγ ∈

{
u : u ∈ R1, |u− ĥ′δγ| ≤ Δ

}
= 1.

It is interesting to compare the linearization regions Lδγ and Lh′δγ .
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4 Numerical example

Let us consider the regression model⎛⎜⎜⎜⎜⎜⎜⎝
Y1

Y2

Y3

Y4

Y5

Y6

⎞⎟⎟⎟⎟⎟⎟⎠ ∼ N6

⎡⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎝
β1 exp(−β3)
β1 exp(−β3)
β1 exp(−β3)
β2 exp(−β3)
β2 exp(−β3)
β2 exp(−β3)

⎞⎟⎟⎟⎟⎟⎟⎠ ,Σ6,6

⎤⎥⎥⎥⎥⎥⎥⎦ , β =

⎛⎝ β1

β2

β3

⎞⎠ ∈ R3,

Σ6,6 = σ2I6,6, σ2 = (0.5)2.

Then

F =
∂f(u + ω0)

∂u′

∣∣∣
u=γ0

=
(

13, 0, −13

0, 13, −13

)
, 13 =

⎛⎝ 1
1
1

⎞⎠ ,

F1 = F2 = F3 =

⎛⎝ 0, 0, −1
0, 0, 0
−1, 0, 1

⎞⎠ , F4 = F5 = F6 =

⎛⎝ 0, 0, 0
0, 0, −1
0, −1, 1

⎞⎠ .

Here

Fi =
∂2fi(u + ω0)

∂u∂u′

∣∣∣
u=γ0

, i = 1, . . . , 6,

PF ′ = F′(FF′)−F =
1
3

⎛⎝ 2, −1, −1
−1, 2, −1
−1, −1 2

⎞⎠ ,

Var(P̂F ′δβ) = U = PF ′
{[

F′(Σ + FF′)−F
]− − I

}
PF ′ =

σ2

54

⎛⎝ 10, −8, −2
−8, 10, −2
−2, −2, 4

⎞⎠ ,

PU = U(U2)−U =
1
3

⎛⎝ 2, −1, −1
−1, 2, −1
−1, −1 2

⎞⎠ ,

U =
r[F′(Σ+FF′)−Σ]∑

i=1

λifif ′i =
2∑
i=1

λifif ′i , λ1 =
1
3
σ2, λ2 =

1
9
σ2, λmax =

1
3
σ2,

δmax = 0.48 is a solution of the equation

P
{
χ2
f (0; 1− α)

}
= 1− α− ε,

and f = r
[
F′(Σ + FF′)−Σ

]
= 2, α = 0.05, ε = 0.04.
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Further

C(ell) = sup

⎧⎨⎩2
√

b′(δγ)
[
U + λmax(PF ′ −PU )

]+
b(δγ)

δγ′[U + λmax(PF ′ −PU )
]+
δγ

: δγ ∈ R2

⎫⎬⎭
= σ · 0.191273,

where

b =
1
2
PF ′(F′T−F)−F′T−κω0(δγ).

The linearization region for δγ = PF ′δβ is

Lδγ =

{
u : u ∈M(F′),u′[U + λmax(PF ′ −PU )

]+
u ≤ 2

√
δmax

C(ell)

}

and the set Eδγ is

Eδγ =
{
u : u ∈M(F′), (u− δ̂γ)′

[
U + λmax(PF ′ −PU )

]+
× (u− δ̂γ) ≤ χ2

r(F ′T−Σ)(0; 1− α)
}

The linearization region Lδγ is the ellipse in the subspace M(F′) with the
semi-axes

aL,1 = 1.5539
√
σ, aL,2 = 0.8972

√
σ

and Eδγ is the ellipse in M(F′) with the semi-axes

aE,1 = 0.2359 σ, aE,2 = 0.1362 σ.

For σ = 0.5 it means
aL,1 = 1.099, aL,2 = 0.634

and
aE,1 = 0.118, aE,2 = 0.068.

Thus the linearization is possible.
As far as the single function of β is concerned let us consider h = (1, 0, 0)′.

Ah =
6∑
s=1

{
1
2
h′PF ′

[
F′(Σ + FF′)−F

]−
F′(Σ + FF′)−

}
s

Fs

=
1
18

⎛⎝ 0, 0, −6
0, 0, 3
−6, 3, 3

⎞⎠
and

Lh′δγ = {u : u ∈M(F′),u′Ahu ≤ δ1,max}
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where δ1,max = 0.339 is a solution of the equation

P
{
χ2

1(δ1,max) ≤ χ2
1(0; 0.95)

}
= 1− 0.05− 0.04.

The linearization region Lh′δγ is the hyperbola inM(F′) with the real semi-axis
a = 1.1768 and the imaginar bi, b = 1.714. Thus the linearization region for the
confidence interval for δγ1 is essentially larger (in the case σ = 0.5) than the
linearization region for the whole vector δγ.

References
[1] Bates, D. M., Watts, D. G.: Relative curvature measures of nonlinearity. J. Roy. Stat.
Soc. B 42 (1980), 1–25.

[2] Fišerová, E., Kubáček, L., Kunderová, P.: Linear Statistical Models, Regularity and
Singularities. Academia, Praha, 2007.

[3] Kubáček, L., Kubáčková, L.: Regression models with a weak nonlinearity. Technical
report Nr. 1998.1, Universität Stuttgart, 1998 1–67.

[4] Kubáček, L., Kubáčková, L.: Statistics and Metrology. Vyd. Univ. Palackého, Olomouc,
2000 (in Czech).

[5] Kubáček, L., Tesaříková, E.: Linearization region for confidence ellispoids. Acta Univ.
Palacki. Olomuc., Fac. rer. nat., Math. 47 (2008), 101–113.

[6] Pázman, A.: Nonlinear Statistical Models. Kluwer Academic Publisher, Dordrecht–
Boston–London and Ister Science Press, Bratislava, 1993.

[7] Rao, C. R., Mitra, S. K.: Generalized Inverse of Matrices and its Applications. J. Wiley,
New York–London–Sydney–Toronto, 1971.

[8] Scheffé, H.: The Analysis of Variance. J. Wiley, New York–London–Sydney, 1967 (fifth
printing).



Acta Univ. Palacki. Olomuc., Fac. rer. nat.,
Mathematica 48 (2009) 83–92

Some Stability Results in Complete
Metric Space

Memudu Olaposi OLATINWO

Department of Mathematics, Obafemi Awolowo University,
Ile-Ife, Nigeria

e-mail: polatinwo@oauife.edu.ng

(Received April 26, 2008)

Abstract

In this paper, we obtain some stability results for the Picard iteration
process for one and two metrics in complete metric space by using different
contractive definitions which are more general than those of Berinde [1],
Imoru and Olatinwo [5] some others listed in the reference section. The
results generalize and unify some of the results of Harder and Hicks [4],
Rhoades [10, 12], Osilike [8], Berinde [1], Imoru and Olatinwo [5] as well
as Imoru et al [6].
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1 Preliminaries and Introduction

Let (E, d) be a complete metric space, T : E → E a selfmap of E.

Definition 1.1 [Harder and Hicks [4]]: Suppose that FT = {p ∈ E ∣∣ Tp = p}
is the set of fixed points of T . Let {xn}∞n=0 ⊂ E be the sequence generated by
an iteration procedure involving T which is defined by

xn+1 = f(T, xn), n = 0, 1, . . . , (1.1)

where x0 ∈ E is the initial approximation and f is some function. Suppose
{xn}∞n=0 converges to a fixed point p of T . Let {yn}∞n=0 ⊂ E and set εn =
d(yn+1, f(T, yn)), n = 0, 1, 2, . . . Then, the iteration procedure (1.1) is said to
be T−stable or stable with respect to T if and only if limn→∞ εn = 0 implies
limn→∞ yn = p.

83
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Definition 1.2 [Singh et al [13]]: Let S, T : Y → E, T (Y ) ⊆ S(Y ) and z a
coincidence point of S and T , that is, Sz = Tz = p (say). For any x0 ∈ Y , let
the sequence {Sxn}∞n=0, generated by the iteration procedure

Sxn+1 = f(T, xn), n = 0, 1, . . . (1.2)

converge to p. Let {Syn}∞n=0 ⊂ E be an arbitrary sequence, and set εn =
d(Syn+1, f(T, yn)), n = 0, 1, . . . Then, the iteration procedure (1.2) will be
called (S, T )-stable if and only if limn→∞ εn = 0 implies that limn→∞ Syn = p.

This definition reduces to that of the stability of iteration procedure due to
Harder and Hicks [4] when Y = E and S = I (identity operator).

If in (1.1),
f(T, xn) = Txn, n = 0, 1, . . . ,

then we have the Picard iteration process, while we obtain the Jungck-type
iteration if in (1.2)

f(T, xn) = Txn, n = 0, 1, . . .

Definition 1.3 [Berinde [2]]: A function ψ : R+ → R+ is called a comparison
function if:

(i) ψ is monotone increasing;
(ii) lim

n→∞ψn(t) = 0, ∀t ≥ 0.

We remark here that every comparison function satisfies the condition ψ(0) = 0.

Several stability results have been obtained by various authors using dif-
ferent contractive definitions. Harder and Hicks [4] obtained interesting stabil-
ity results for some iteration procedures using various contractive definitions.
Rhoades [10, 12] generalized the results of Harder and Hicks [4] to a more gen-
eral contractive mapping. In Osilike [8], a generalization of some of the results
of Harder and Hicks [4] and Rhoades [12] was obtained by employing the fol-
lowing contractive definition: there exist a constant L ≥ 0 and a ∈ [0, 1) such
∀x, y ∈ E,

d(Tx, T y) ≤ Ld(x, Tx) + ad(x, y). (1.3)

Condition (1.3) is more general than those of Rhoades [12] and Harder and
Hicks [4]. As in Harder and Hicks [4], Berinde [1] obtained the same stability
results for the same iteration procedures using the same contractive definitions,
but applied a different method. The method of Berinde [1] is similar to that
employed in Osilike and Udomene [9].

Recently, Imoru and Olatinwo [5] obtained some stability results for Pi-
card and Mann iteration procedures by using a more general contractive condi-
tion than those of Harder and Hicks [4], Rhoades [12], Osilike [8], Osilike and
Udomene [9] and Berinde [1]. In the paper [5], the following contractive defi-
nition was employed: there exist a ∈ [0, 1) and a monotone increasing function
ϕ : R+ → R+, with ϕ(0) = 0, such that ∀x, y ∈ E,

d(Tx, T y) ≤ ϕ(d(x, Tx)) + ad(x, y). (1.4)
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It is our purpose in this paper to obtain several stability results in metric space
by applying different contractive definitions. However, we shall employ the
following lemmas in the sequel.

Lemma 1.4 [Imoru et al [6]]: If ψ : R+ → R+ is a subadditive comparison func-
tion and {εn}∞n=0 is a sequence of positive numbers such that limn→∞ εn = 0,
then for any sequence of positive numbers {un}∞n=0 satisfying

un+1 ≤
s∑

m=0

δmψ
m(un) + εn, n = 0, 1, 2, . . . ,

where
∑s

m=0 δm = 1, δ0, δ1, · · · , δs ∈ [0, 1], we have limn→∞ un = 0.

Lemma 1.5 [Imoru et al [6]]: Let {ψk(t)}nk=0 be a sequence of comparison func-
tions. Then, any convex linear combination

∑n
j=0 cjψ

j(t) of the comparison
functions is also a comparison function, where

∑n
j=0 cj = 1 and co, c1, . . . , cn

are positive constants.

Lemma 1.6 [Imoru et al [6]]: Let ψ : R+ → R+ be a comparison function and
{vn}∞n=0 a sequence of positive numbers such that limn→∞ vn = 0. Then, we
have

lim
n→∞

n∑
k=0

ψn−k(vk) = 0, for each k.

Lemma 1.7 If ψ : R+ → R+ is a subadditive comparison function and {εn}∞n=0

is a sequence of positive numbers such that limn→∞ εn = 0. Suppose that ε > 0
is an arbirarily small given number. Then, for any sequence of positive numbers
{un}∞n=0 satisfying

un+1 ≤
m∑
k=0

δkψ
k(un) + εn + ε, n = 0, 1, . . . , (1.5)

where δk ∈ [0, 1], k = 0, 1, . . . ,m, 0 ≤∑m
k=0 δk ≤ 1, we have

lim
n→∞un = 0

Proof By putting ψ̄(un) =
∑m
k=0 δkψ

k(un) in (1.5), then we have

un+1 ≤ ψ̄(un) + εn + ε, n = 0, 1, . . . , (1.6)

and also by Lemma 1.5, we have that ψ̄(un) is a comparison function. It follows
from (1.6) that

u1 ≤ ψ̄(u0) + ε0 + ε,

u2 ≤ ψ̄(u1) + ε1 + ε ≤ ψ̄(ψ̄(u0) + ε0 + ε) + ε1 + ε

≤ [ψ̄2(u0) + ψ̄(ε0) + ε1] + [ψ̄(ε) + ε],
u3 ≤ ψ̄(u2) + ε2 + ε ≤ ψ̄3(u0) + ψ̄2(ε0) + ψ̄(ε1) + ψ̄2(ε) + ψ̄(ε) + ε2 + ε

= [ψ̄3(u0) + ψ̄2(ε0) + ψ̄(ε1) + ε2] + [ψ̄2(ε) + ψ̄(ε) + ε]
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In general,

un+1 ≤ ψ̄n+1(u0) +
n∑
k=0

ψ̄n−k(εk) +
n∑
k=0

ψ̄k(ε). (1.7)

Since ψ̄ is a comparison function, then limn→∞ ψ̄n+1(u0) = 0. �

Using Lemma 1.6, we obtain that

lim
n→∞

n∑
k=0

ψ̄n−k(εk) = 0 and lim
n→∞

n∑
k=0

ψ̄k(ε) = 0

since ε > 0 is arbitrary. Hence, (1.7) leads to limn→∞ un = 0.
We shall establish our main results in the next two sections. Section 2 deals

with some stability results involving one metric, while stability results involving
two metrics are proved in section 3.

2 Stability results involving one metric in complete
metric space

Theorem 2.1 Let (E, d) be a complete metric space and T : E → E a selfmap
of E satisfying

d(Tx, T y) ≤ ϕ1(d(x, Tx)) + ψ(d(x, y))
ϕ2(d(x, Tx))

, ∀x, y ∈ E, (2.1)

where ψ : R+ → R+ is a continuous comparison function and ϕ1, ϕ2 : R+ → R+

are monotone increasing functions such that ϕ1(0) = 0 and ϕ2(0) = 1. Suppose
T has a fixed point p. Let x0 ∈ E and let xn+1 = Txn, n = 0, 1, . . . , be the
Picard iteration associated to T . Then, the Picard iteration process is T -stable.

Proof Let {yn}∞n=0 ⊂ E and εn = d(yn+1, T yn). Assume limn→∞ εn = 0.
Then, we shall establish that limn→∞ yn = p by using the contractive condition
and the triangle inequality:

d(yn+1, p) ≤ d(Tp, T yn) + εn ≤ ψ(d(yn, p)) + εn. (2.2)

Using Lemma 1.4 in (2.2) yields limn→∞ d(yn, p) = 0, that is, limn→∞ yn = p.
Conversely, let limn→∞ yn = p. Then, by the contractive condition and the
triangle inequality, we have

εn = d(yn+1, T yn) ≤ d(yn+1, p) + ψ(d(yn, p))→ 0 as n→∞. �

Corollary 2.2 Let (E, d) be a complete metric space and T : E → E a selfmap
of E satisfying

d(Tx, T y) ≤ ϕ(d(x, Tx)) + ad(x, y)
1 + Ld(x, Tx)

, ∀x, y ∈ E,
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where a ∈ [0, 1), L ≥ 0 and ϕ : R+ → R+ is a monotone increasing function such
that ϕ(0) = 0. Suppose T has a fixed point p. Let x0 ∈ E and let xn+1 = Txn,
n = 0, 1, . . . , be the Picard iteration associated to T . Then, the Picard iteration
process is T -stable.

Corollary 2.3 Let (E, d) be a complete metric space and T : E → E a selfmap
of E satisfying

d(Tx, T y) ≤ ϕ1(d(x, Tx)) +
ψ(d(x, y))
ϕ2(d(x, Tx))

, ∀x, y ∈ E,

where ψ : R+ → R+ is a continuous comparison function and ϕ1, ϕ2 : R+ → R+

are monotone increasing functions such that ϕ1(0) = 0 and ϕ2(0) = 1. Suppose
T has a fixed point p. Let x0 ∈ E and let xn+1 = Txn, n = 0, 1, . . . , be the
Picard iteration associated to T . Then, the Picard iteration process is T -stable.

Remark 2.4 Theorem 2.1 and its corollaries generalize and unify Theorem 3.1
of Imoru and Olatinwo [5] and several others in the literature. In particular,
see Berinde [1], Imoru and Olatinwo [5], Rhoades [10, 11, 12] and some other
references in the reference section of this paper for detail.

We now establish the following stability results for uniform convergence of
sequences of operators:

Theorem 2.5 Let (E, d) be a complete metric space and {Tn}∞n=0 a sequence
of operators Tn : E → E. Let {xn}∞n=0 be the Picard iteration process. If the
sequence {Tn}∞n=0 converges uniformly to an operator T : E → E satisfying

d(Tx, T y) ≤ ϕ(d(x, Tx)) + ψ(d(x, y)), ∀x, y ∈ E, (2.3)

where ϕ : R+ → R+ is a monotone increasing function such that ϕ(0) = 0 and
ψ : R+ → R+ is a continuous, subadditive comparison function. Suppose also
that T has the fixed point p. Then, the Picard iteration process is T -stable.

Proof Let {yn}∞n=0 ⊂ E and let εn = d(yn+1, Tnyn), d(Tnx, Tx) < ε, ∀x ∈ E,
∀n ≥ N . Assume limn→∞ εn = 0. Then, we shall establish that limn→∞ yn = p
by using the contraction condition (2.3) for T and the triangle inequality:

d(yn+1, p) ≤ d(yn+1, Tnyn) + d(Tnyn, p) ≤ d(Tp, T yn) + d(Tyn, Tnyn) + εn

≤ ψ(d(p, yn)) + εn + ε. (2.4)

Using Lemma 1.7 in (2.4) yields

d(yn+1, p)→ 0 as n→∞
That is, since ε > 0 is arbitrary, then limn→∞ yn = p.

Conversely, let limn→∞ yn = p. Then, we have

εn = d(yn+1, Tnyn) ≤ d(yn+1, p) + ψ(d(p, yn)) + ε→ 0 as n→∞,
since ε > 0 is arbitrary. �
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Corollary 2.6 Let (E, d) be a complete metric space and {Tn}∞n=0 a sequence
of operators Tn : E → E. Let {xn}∞n=0 be the Picard iteration process. If the
sequence {Tn}∞n=0 converges uniformly to an operator T : E → E satisfying

d(Tx, T y) ≤ ϕ(d(x, Tx)) + ad(x, y), ∀x, y ∈ E, a ∈ [0, 1),

where ϕ : R+ → R+ is a monotone increasing function such that ϕ(0) = 0.
Suppose also that T has the fixed point p. Then, the Picard iteration process is
T -stable.

Remark 2.7 We remark that this theorem holds if {Tn} converges pointwise
to T since uniform convergence is more general than pointwise convergence.

Corollary 2.8 Let (E, d) be a complete metric space and {Tn}∞n=0 a sequence
of operators Tn : E → E. Let {xn}∞n=0 be the Picard iteration process. If the
sequence {Tn}∞n=0 converges pointwise to an operator T : E → E satisfying

d(Tx, T y) ≤ ϕ(d(x, Tx)) + ψ(d(x, y)), ∀x, y ∈ E,

where ϕ : R+ → R+ is a monotone increasing function such that ϕ(0) = 0 and
ψ : R+ → R+ is a continuous, subadditive comparison function. Suppose also
that T has the fixed point p. Then, the Picard iteration process is T -stable.

Remark 2.9 To the best of our knowledge, this is the first time that stabil-
ity results are being considered using the concepts of uniform and pointwise
convergence of sequences of operators.

Theorem 2.10 Let (E, d) be a complete metric space and Y an arbitrary set.
Suppose that S, T : Y → E are nonselfoperators such that T (Y ) ⊆ S(Y ), S(Y )
a complete subspace of E. Let z be a coincidence point of S and T (that is,
Sz = Tz = p). Suppose that S and T satisfy the contractive condition

d(Tx, T y) ≤ ψ(d(Sx, Sy))
1 +Md(Sx, Tx)

, M ≥ 0, ∀x, y ∈ Y, (2.5)

where ψ : R+ → R+ is a continuous subadditive comparison function. For x0 ∈
Y , let {Sxn}∞n=0 be the Jungck-type iteration process defined by Sxn+1 = Txn,
n = 0, 1, . . . , converging to p. Then, the Jungck-type iteration process is (S, T )-
stable.

Proof We now assume that limn→∞ εn = 0 and establish that limn→∞ Syn = p,
using the contractive condition and triangle inequality. Therefore, we have

d(Syn+1, p) ≤ d(Syn+1, T yn) + d(Tyn, p) ≤ ψ(d(p, Syn)) + εn (2.6)

By using Lemma 1.4 in (2.6), we get limn→∞ d(Syn, p) = 0, that is,

lim
n→∞Syn = p.
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Conversely, let limn→∞ Syn = p. Then, by the contractive condition on S
and T as well as the triangle inequality, we have

εn = d(Syn+1, T yn) ≤ d(Syn+1, p) + d(p, T yn)
≤ d(Syn+1, p) + ψ(d(p, Syn))→ 0 as n→∞. �

Theorem 2.11 Let S and T be operators on an arbitrary set Y with values
in E such that T (Y ) ⊆ S(Y ) and S(Y ) or T (Y ) is a complete subspace of E.
Let z be a coincidence point of S and T (i.e. S(z) = T (z) = p (say)). Let
x0 ∈ Y and let {Sxn}∞n=0 ⊂ E defined by Sxn+1 = Txn, n = 0, 1, · · · , be
the Jungck iteration process converging to p. Suppose that {Syn}∞n=0 ⊂ E and
εn = d(Syn+1, T yn), n = 0, 1, · · · Suppose that S and T satisfy the contractive
condition

d(Tx, T y) ≤ ψ(d(Sx, Sy)) + ϕ(d(Sx, Tx))
1 +Md(Sx, Tx)

, M ≥ 0, ∀x, y ∈ Y, (2.7)

where ψ : R+ → R+ is a continuous subadditive comparison function and ϕ :
R+ → R+ is a monotone increasing function such that ϕ(0) = 0. Then, the
Jungck iteration process is (S, T )-stable.

Proof The proof of this theorem follows a similar argument as in that of
Theorem 2.10. �

Remark 2.12 Theorem 2.10 and others extend some celebrated results of [1,
4, 8, 9, 12] and some results due to the author [5, 6]. Infact, Theorem 2.10 is
also a generalization and extension of Theorem 3.1 of Singh et al [13].

3 Stability results involving two metrics d and ρ on a
nonempty set E

Theorem 3.1 Let E be a nonempty set, d and ρ two metrics on E and T : E →
E a mapping. Suppose that:
(i) T has a fixed point p;
(ii) there exist c > 0, and a monotone increasing function ϕ1 : R+ → R+

with ϕ1(0) = 0 such that

d(Tx, T y) ≤ ϕ1(ρ(x, Tx)) + cρ(x, y), ∀x, y ∈ E;

(iii) (E, d) is a complete metric space;
(iv) T : (E, ρ)→ (E, ρ) satisfies the contractive condition

ρ(Tx, T y) ≤ ϕ2(ρ(x, Tx)) + ψ(ρ(x, y)), ∀x, y ∈ E,
where ψk : R+ → R+, k = 1, 2, . . . , are continuous comparison functions (ψk is
the k-th iterate of ψ) and ϕ2 : R+ → R+, k = 1, 2, . . . , is a monotone increasing
function such that ϕ2(0) = 0.
Let x0 ∈ E and xn+1 = Txn, n = 0, 1, . . . , be the Picard iteration associated

to T . Then, the Picard iteration process with T : (E, d)→ (E, d) is T -stable.
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Proof Let {yn}∞n=0 ⊂ E, εn = d(yn+1, T yn), n = 0, 1, . . . , and suppose that
limn→∞ εn = 0. Then, we shall establish that limn→∞ yn = p, using condi-
tions (i)-(iv) and the triangle inequality: Therefore, using (i), (ii) and triangle
inequality lead to

d(yn+1, p) ≤ d(Tyn, T p) + εn ≤ ϕ1(ρ(p, T p)) + cρ(p, yn) + εn

= cρ(yn, p) + εn. (3.1)

Using (iii), we have that p ∈ E. Condition (iv) shows that T has a unique
fixed point. Also by condition (iv), we get

ρ(yn, p) = ρ(Tyn−1, T p) = ρ(Tp, T yn−1) ≤ ψ(ρ(yn−1, p))
≤ ψ2(ρ(yn−2, p)) ≤ · · · ≤ ψn(ρ(y0, p))→ 0 as n→∞. (3.2)

Using (3.2) in (3.1), we have

d(yn+1, p) ≤ cψn(ρ(y0, p)) + εn. (3.3)

Taking limits of both sides in (3.3) yields

lim
n→∞ d(yn+1, p) ≤ c lim

n→∞ψn(ρ(y0, p)) + lim
n→∞ εn → 0 as n→∞

That is, limn→∞ yn = p.
Conversely, let limn→∞ yn = p. Then, by condition (ii) and (3.2) we have

εn = d(yn+1, T yn) ≤ d(yn+1, p) + d(Tp, T yn)
≤ d(yn+1, p) + cψn(ρ(p, y0))→ 0 as n→∞. �

Corollary 3.2 Let E be a nonempty set, d and ρ two metrics on E and T : E →
E a mapping. Suppose that:
(i) T has a fixed point p;
(ii) there exist c > 0, M ≥ 0 such that

d(Tx, T y) ≤Mρ(x, Tx) + cρ(x, y), ∀x, y ∈ E;

(iii) (E, d) is a complete metric space;
(iv) T : (E, ρ)→ (E, ρ) satisfies the contractive condition

ρ(Tx, T y) ≤ ϕ(ρ(x, Tx)) + ψ(ρ(x, y)), ∀x, y ∈ E,

where ψk : R+ → R+, k = 1, 2, . . . , are continuous comparison functions (ψk

is the k-th iterate of ψ) and ϕ : R+ → R+, k = 1, 2, . . . , monotone increasing
functions such that ϕ(0) = 0.
Let x0 ∈ E and xn+1 = Txn, n = 0, 1, . . . , be the Picard iteration associated

to T . Then, the Picard iteration process with T : (E, d)→ (E, d) is T -stable.
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Theorem 3.3 Let E be a nonempty set and Y an arbitrary set. Let d and ρ
two metrics on Y and S, T : Y → E nonselfmappings such that T (Y ) ⊆ S(Y )
and S(Y ) is a complete subspace of E. Suppose that:
(i) S and T have a coincidence point z (that is Tz = Sz = p);
(ii) there exist c > 0, and a monotone increasing function ϕ1 : R+ → R+

with ϕ1(0) = 0 such that

d(Tx, T y) ≤ ϕ1(ρ(Sx, Tx)) + cρ(Sx, Sy), ∀x, y ∈ Y ;

(iii) (E, d) is a complete metric space;
(iv) T : (Y, ρ)→ (E, ρ) satisfies the contractive condition

ρ(Tx, T y) ≤ ϕ2(ρ(Sx, Tx)) + ψ(ρ(Sx, Sy)), ∀x, y ∈ Y,
where ψk : R+ → R+, k = 1, 2, . . . , are continuous comparison functions (ψk is
the k-th iterate of ψ) and ϕ2 : R+ → R+, k = 1, 2, . . . , is a monotone increasing
function such that ϕ2(0) = 0.
Let x0 ∈ E and xn+1 = Txn, n = 0, 1, . . . , be the Jungck-type iteration

associated to S and T . Then, the Jungck-type iteration process with T : (Y, d)→
(E, d) is (S, T )-stable.

Proof Let {Syn}∞n=0 ⊂ E, εn = d(Syn+1, T yn), n = 0, 1, . . . , and suppose
that limn→∞ εn = 0. Then, we shall establish that limn→∞ Syn = p, using
conditions (i)–(iv) and the triangle inequality: Therefore, using (i), (ii) and
triangle inequality lead to

d(Syn+1, p) ≤ d(Syn+1, T yn) + d(Tyn, p) = d(Tz, T yn) + εn

≤ ϕ1(ρ(Sz, T z)) + cρ(Sz, Syn) + εn = cρ(p, Syn) + εn. (3.4)

Using (iii), we have that p ∈ E. Condition (iv) shows that T has a unique fixed
point. Also by condition (iv), we get

ρ(p, Syn) = ρ(Tz, T yn−1) ≤ ψ(ρ(Syn−1, p))
≤ ψ2(ρ(Syn−2, p)) ≤ · · · ≤ ψn(ρ(Sy0, p))→ 0 as n→∞. (3.5)

Using (3.5) in (3.4), we have

d(Syn+1, p) ≤ cψn(ρ(Sy0, p)) + εn. (3.6)

Taking limits of both sides in (3.6) yields

lim
n→∞ d(Syn+1, p) ≤ c lim

n→∞ψn(ρ(Sy0, p)) + lim
n→∞ εn = 0

That is, limn→∞ Syn = p.
Conversely, let limn→∞ Syn = p. Then, by condition (ii) and (3.5) we have

εn = d(Syn+1, T yn) ≤ d(Syn+1, p) + d(Tz, T yn)
≤ d(Syn+1, p) + cψn(ρ(p, Sy0))→ 0 as n→∞. �
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Remark 3.4 Theorem 3.1 and Theorem 3.3 as well as the corollary generalize
and extend the well-known stability results in the literature. In particular, see
Singh et al [13], Berinde [1], Imoru and Olatinwo [5], Rhoades [10, 11, 12] and
some other references in the reference section of this paper for detail. Indeed,
Theorem 3.1 and Theorem 3.3 are generalizations and extensions of Theorem
3.1 and Theorem 3.4 of Singh et al [13].

Remark 3.5 To the best of our knowledge, this is the first time the stability
of the Picard and Jungck-type iteration processes is being investigated for the
case of two metrics.
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Abstract

Bounded commutative residuated lattice ordered monoids (R�-mon-
oids) are a common generalization of BL-algebras and Heyting algebras,
i.e. algebras of basic fuzzy logic and intuitionistic logic, respectively. In
the paper we develop the theory of filters of bounded commutative R�-
monoids.

Key words: Residuated �-monoid, deductive system, BL-algebra,
MV -algebra, Heyting algebra, filter.
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1 Introduction

BL-algebras have been introduced by P. Hájek as an algebraic counterpart of
the basic fuzzy logic BL [5]. Omitting the requirement of pre-linearity in the
definition of a BL-algebra, one obtains the definition of a bounded commutative
residuated lattice ordered monoid (R�-monoid). Nevertheless, bounded com-
mutative R�-monoids are a generalization not only of BL-algebras but also of
Heyting algebras which are an algebraic counterpart of the intuitionistic propo-
sitional logic. Therefore, bounded commutative R�-monoids could be taken as
an algebraic semantics of a more general logic than Hájek’s fuzzy logic. It is

*The first author was supported by the Council of Czech Government, MSM 6198959214.
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known that every BL-algebra (and consequently every MV -algebra [2], or equiv-
alently, every Wajsberg algebra [4]) is a subdirect product of linearly ordered
BL-algebras. Moreover, a bounded commutative R�-monoid is a subdirect prod-
uct of linearly ordered R�-monoids if and only if it is a BL-algebra [13]. On the
other side, bounded commutative R�-monoids which need not be BL-algebras
can be constructed from BL-algebras by means of other natural operations, e.g.
by means of pasting, i.e. ordinal sums. For example, the pasting of Wajsberg
algebras which are not linearly ordered gives bounded commutative R�-monoids
which are not BL-algebras [8, 9].

In both BL-algebras and bounded commutative R�-monoids, filters coincide
with deductive systems of those algebras and are exactly the kernels of their
congruences. Various types of filters of BL-algebras were studied in [19], [7] and
[11]. Boolean filters of bounded commutative R�-monoids were investigated
in [14].

In this paper we further develop the theory of filters of bounded commutative
R�-monoids and among others, we generalize some results of [7] and [11].

For concepts and results concerning MV -algebras, BL-algebras and Heyting
algebras see for instance [2], [5], [1].

2 Preliminaries

A bounded commutative R�-monoid is an algebra M = (M ; �,∨,∧,→, 0, 1) of
type 〈2, 2, 2, 2, 0, 0〉 satisfying the following conditions:

(R�1) (M ;�, 1) is a commutative monoid.

(R�2) (M ;∨,∧, 0, 1) is a bounded lattice.

(R�3) x� y ≤ z if and only if x ≤ y → z, for any x, y, z ∈M .

(R�4) x� (x→ y) = x ∧ y, for any x, y ∈M .

In the sequel, by an R�-monoid we will mean a bounded commutative R�-
monoid.

On any R�-monoid M let us define a unary operation negation − by x− :=
x→ 0 for any x ∈M .

Bounded commutative R�-monoids are special cases of residuated lattices,
more precisely (see for instance [3]), they are exactly commutative integral gen-
eralized BL-algebras in the sense of [10].

The above mentioned algebras can be characterized in the class of all R�-
monoids as follows: An R�-monoid M is

a) a BL-algebra if and only if M satisfies the identity of pre-linearity
(x→ y) ∨ (y → x) = 1;

b) an MV -algebra if and only if M fulfills the double negation law
x−− = x;

c) a Heyting algebra if and only if the operation “�” is idempotent.
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Lemma 2.1 See [15] and [16]. In any bounded commutative R�-monoid M we
have for any x, y, z ∈M :

(1) 1→ x = x.

(2) x ≤ y ⇐⇒ x→ y = 1.

(3) x� y ≤ x ∧ y.
(4) x ≤ y → x.

(5) (x � y)→ z = x→ (y → z) = y → (x→ z).

(6) (x ∨ y)→ z = (x→ z) ∧ (y → z).

(7) x→ (y ∧ z) = (x→ y) ∧ (x→ z).

(8) x ≤ x−−, x− = x−−−.

(9) x ≤ y =⇒ y− ≤ x−.
(10) (x � y)− = y → x− = y−− → x− = x→ y− = x−− → y−.

(11) x ≤ y =⇒ z → x ≤ z → y, y → z ≤ x→ z.

(12) x→ y ≤ y− → x−.

(13) x ∨ y ≤ ((x→ y)→ y) ∧ ((y → x)→ x).

(14) x→ y ≤ (y → z)→ (x→ z).

(15) x→ y ≤ (z → x)→ (z → y).

A non-empty subset F of an R�-monoid M is called a filter of M if

(F1) x, y ∈ F imply x� y ∈ F ;

(F2) x ∈ F, y ∈M, x ≤ y imply y ∈ F .

A subset D of an R�-monoid M is called a deductive system of M if

(i) 1 ∈ D;

(ii) x ∈ D, x→ y ∈ D imply y ∈ D.

Proposition 2.2 [3]. Let H be a non-empty subset of M . Then H is a filter
of M if and only if H is a deductive system of M .

By [18], filters of commutative R�-monoids are exactly the kernels of their
congruences. If F is a filter of M , then F is the kernel of the unique congruence
Θ(F ) such that 〈x, y〉 ∈ Θ(F ) if and only if (x → y) ∧ (y → x) ∈ F , for any
x, y ∈M . Hence we will consider quotient R�-monoids M/F of R�-monoids M
by their filters F .

A filter F of M is called maximal if F is a proper filter of M and is not a
proper subset of any proper filter of M .
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3 Implicative filters

Let M be an R�-monoid and F a subset of M . Then F is called an implicative
filter of M if

(1) 1 ∈ F ;

(2) x→ (y → z) ∈ F , x→ y ∈ F imply x→ z ∈ F .

Proposition 3.1 Every implicative filter of an R�-monoid M is a filter of M .

Proof Let ∅ �= F ⊆M satisfy conditions (1) and (2) and let x, y ∈M be such
that x, x→ y ∈ F . Then 1→ (x→ y) ∈ F , 1→ x ∈ F , hence y = 1→ y ∈ F .

�

If F is a filter of an R�-monoid M and a ∈M , put

Ma := {x ∈M : a→ x ∈ F}.
Theorem 3.2 Let M be an R�-monoid and F be a filter of M . Then F is an
implicative filter of M if and only if Ma is a filter of M for every a ∈M .
Proof Let F be an implicative filter of M and a ∈M . Then 1 = a→ 1 ∈M ,
thus 1 ∈ Ma. Further, suppose that x, x → y ∈ Ma, i.e. a → x ∈ F and
a → (x → y) ∈ F . Then we get a → y ∈ F , and hence y ∈ Ma. That means,
Ma is a filter of M for arbitrary a ∈M .

Conversely, let Ma be a filter of M for each a ∈M . Suppose that x→ (y →
z) ∈ F and x → y ∈ F . Then y → z ∈ Mx and y ∈ Mx, hence z ∈ Mx and
therefore x→ z ∈ F . That means, F is implicative. �

Theorem 3.3 Let F be a filter of an R�-monoid M . Then the following con-
ditions are equivalent:

(a) F is an implicative filter of M .

(b) y → (y → x) ∈ F implies y → x ∈ F , for any x, y ∈M .
(c) z → (y → x) ∈ F implies (z → y)→ (z → x) ∈ F , for any x, y, z ∈M .
(d) z → (y → (y → x)) ∈ F and z ∈ F imply y → x ∈ F , for any x, y, z ∈M .
(e) x→ (x� x) ∈ F , for any x ∈M .
Proof (a)⇒ (b): Suppose that F is an implicative filter of M , x, y ∈ M and
y → (y → x) ∈ F . Then since y → y = 1 ∈ F , we obtain y → x ∈ F .

(b) ⇒ (c): Let F be a filter of M satisfying the condition (b), x, y, z ∈ M
and z → (y → x) ∈ F . Then z → (z → ((z → y) → x)) = z → ((z → y) →
(z → x)) ≥ z → (y → x) ∈ F , thus z → (z → ((z → y) → x)) ∈ F . From this
we have z → ((z → y)→ x) ∈ F , that means (z → y)→ (z → x) ∈ F .

(c)⇒ (d): Suppose that a filter F satisfies the condition (c). Let z → (y →
(y → x)) ∈ F and z ∈ F . Then also y → (y → x) ∈ F . At the same time,
y → x = (y → y)→ (y → x), thus y → x ∈ F .
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(d)⇒ (a): Let a filter F fulfill the condition (d). Let x→ (y → z) ∈ F and
x → y ∈ F . Then x → (y → z) = y → (x → z) ≤ (x → y) → (x → (x → z)),
hence (x→ y)→ (x→ (x→ z)) ∈ F , and therefore x→ z ∈ F .

(a)⇒ (e): Let F be an implicative filter of M . Then x→ (x → (x � x)) =
(x � x) → (x � x) = 1 ∈ F . Further, x → x = 1 ∈ F , and hence we obtain
x→ (x� x) ∈ F .

(e) ⇒ (a): Let a filter F satisfy the condition (e) and let x→ (y → z) ∈ F
and x→ y ∈ F . Then (x→ (y → z))�(x→ y)�x�x ≤ (y → z)�y ≤ z, hence
(x → (y → z)) � (x → y) ≤ (x � x) → z, and thus (x � x) → z ∈ F . Further,
x → (x � x) ∈ F, (x � x) → x = 1 ∈ F , therefore from (x � x) → z ∈ F , we
obtain x→ z ∈ F . �

Using the proof (a)⇒ (e) in the preceding theorem, we have as an immediate
consequence:

Theorem 3.4 If F is a filter of an R�-monoid M , then F is an implicative
filter if and only if the quotient R�-monoid M/F is a Heyting algebra.

Proposition 3.5 If F1 and F2 are filters of an R�-monoid M , F1 ⊆ F2 and F1

is an implicative filter of M , then F2 is also an implicative filter of M .

Proof Suppose that F1 and F2 are filters of an R�-monoid M , F1 ⊆ F2 and
F1 is implicative. Then, by Theorem 3.3, x→ x� x ∈ F1 ⊆ F2 for any x ∈M ,
and therefore F2 is also implicative. �

Let M be an R�-monoid and F a subset of M . Then F is called a positive
implicative filter of M if

(1) 1 ∈ F ;

(3) x→ ((y → z)→ y) ∈ F and x ∈ F imply y ∈ F , for any x, y, z ∈M .

Proposition 3.6 Every positive implicative filter of an R�-monoidM is a filter
of M .

Proof Let x ∈ F and x→ y ∈ F . Then x→ ((y → 1)→ y) = x→ (1→ y) =
x→ y, hence x→ ((y → 1)→ y) ∈ F , and thus y ∈ F . �

Proposition 3.7 Every positive implicative filter of M is an implicative filter
of M .

Proof Let F be a positive implicative filter of M , x, y, z ∈M , x→ (y → z) ∈
F and x → y ∈ F . We have (x → y)→ (x → (x → z)) ≥ y → (x → z) = x →
(y → z), hence (x→ y)→ (x→ (x→ z)) ∈ F , and thus also x→ (x→ z) ∈ F .

Since ((x → z) → z) → (x → z) ≥ x → (x → z), then we get ((x → z) →
z) → (x → z) ∈ F . Further, 1 → (((x → z) → z) → (x → z)) = ((x → z) →
z) → (x → z), and since 1 → (((x → z) → z) → (x → z)) ∈ F and 1 ∈ F , we
obtain x→ z ∈ F .

Therefore F is an implicative filter. �



98 Jiří RACHŮNEK, Dana ŠALOUNOVÁ

Theorem 3.8 Let F be a filter of an R�-monoid M . Then the following con-
ditions are equivalent:

(a) F is a positive implicative filter of M .

(b) (x→ y)→ x ∈ F implies x ∈ F , for any x, y ∈M .
(c) (x− → x)→ x ∈ F , for any x ∈M .

Proof (a)⇒ (b): Let F be a positive implicative filter of M and (x→ y)→
x ∈ F . Then since 1 → ((x → y) → x) = (x → y)→ x ∈ F and 1 ∈ F , we get
x ∈ F .

(b) ⇒ (a): Let a filter F satisfy the condition (b) and let x → ((y → z) →
y) ∈ F and x ∈ F . Then (y → z)→ y ∈ F , and therefore y ∈ F . Hence F is a
positive implicative filter of M .

(b) ⇒ (c): Let F be a filter of M and x ∈ M . Then (((x− → x) → x) →
0)→ ((x− → x)→ x) = (x− → x)→ ((((x− → x)→ x)→ 0)→ x) ≥ (((x− →
x) → x) → 0)→ x− = ((x− → x) → x) → 0)→ (x → 0) ≥ x→ ((x− → x) →
x) = 1 ∈ F , thus (((x− → x) → x) → 0) → ((x− → x) → x) ∈ F , and hence
(x− → x)→ x ∈ F .

(c) ⇒ (b): Let a filter F satisfy condition (c). Let (x → y) → x ∈ F .
We have (x → y) → x ≤ (x → 0) → x = x− → x, hence x− → x ∈ F . By
the assumption, (x− → x) → x ∈ F , thus x ∈ F . Therefore F satisfies the
condition (b). �

Proposition 3.9 If F1 and F2 are filters of an R�-monoid M , F1 is a positive
implicative filter and F1 ⊆ F2, then F2 is also a positive implicative filter of M .

Proof Let F1 ⊆ F2 and F1 be positive implicative. Then for any x ∈ M we
get (x− → x)→ x ∈ F1, thus (x− → x)→ x ∈ F2. Therefore, by Theorem 3.8,
F2 is a positive implicative filter of M . �

Theorem 3.10 Let M be an R�-monoid. Then the following conditions are
equivalent:

(a) M is a Heyting algebra.

(b) Every filter of M is implicative.

(c) {1} is an implicative filter of M .

Proof (a)⇒ (c): It follows from Theorem 3.4.
(a) ⇒ (b): Let M be an idempotent R�-monoid, F be a filter of M , and

x ∈ M . Then x → (x � x) = x → x = 1 ∈ F , hence by Theorem 3.3, F is an
implicative filter.

(b)⇒ (c): It is obvious. �
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Proposition 3.11 Let F be an implicative filter of an R�-monoid M . Then
the following conditions are equivalent:

(a) F is a positive implicative filter of M .

(b) (x→ y)→ y ∈ F implies (y → x)→ x ∈ F , for any x, y ∈M .

Proof (a)⇒ (b): Let F be a positive implicative filter ofM and (x→ y)→ y ∈
F . Since x ≤ (y → x) → x, we get ((y → x) → x) → y ≤ x → y. Hence (x →
y) → y ≤ (y → x) → ((x → y) → x) = (x → y) → ((y → x) → x) ≤ (((y →
x)→ x)→ y)→ ((y → x)→ x), and thus (((y → x)→ x)→ y)→ ((y → x)→
x) ∈ F . Consequently, also 1→ ((((y → x)→ x)→ y)→ ((y → x)→ x)) ∈ F ,
and since F is a positive implicative filter, we get (y → x)→ x ∈ F .

(b)⇒ (a): Let an implicative filter F satisfy the condition (b) and let x ∈ F
and x→ ((y → z)→ y) ∈ F . Then also (y → z)→ y ∈ F . Further, (y → z)→
y ≤ (y → z)→ ((y → z)→ z), hence (y → z)→ ((y → z)→ z) ∈ F . Since F is
implicative, (y → z)→ z ∈ F . Then, by the assumption, also (z → y)→ y ∈ F .
Further, z ≤ y → z, hence (y → z) → y ≤ z → y, thus z → y ∈ F . We have
shown (z → y)→ y ∈ F , therefore y ∈ F . �

Theorem 3.12 Let M be an R�-monoid. Then the following conditions are
equivalent:

(a) {1} is a positive implicative filter.
(b) Every filter of M is positive implicative.

(c) M(a) := {x ∈ M : a ≤ x} is a positive implicative filter of M , for every
a ∈M .

(d) (x→ y)→ x = x, for any x, y ∈M .
(e) M is a Boolean algebra.

Proof (a)⇒ (b): It follows from Proposition 3.9.
(b) ⇒ (c): Let a ∈ M . Then 1 ∈ M(a). Assume that x, x → y ∈ M(a),

i.e. a → x = 1, a → (x → y) = 1. Since by the assumption, {1} is a positive
implicative filter of M , we obtain a → y = 1, hence y ∈ M(a). That means
M(a) is a filter of M which is also positive implicative.

(c) ⇒ (d): If x, y ∈ M , then (x → y) → x ∈ M((x → y) → x), therefore
(x→ y)→ x ≤ x by Theorem 3.8. Moreover, x ≤ (x→ y)→ x, i.e. (x→ y)→
x = x.

(d)⇒ (a): It follows from Theorem 3.8.
(d) ⇒ (e): Since (x → y) → x = x, we obtain (y → x) → x = (y → x) →

((x → y) → x) ≥ (x → y) → y, and similarly, (x → y) → y ≥ (y → x) → x.
Hence x−− = (x→ 0)→ 0 = (0 → x)→ x = 1 → x = x and therefore by [12],
M is an MV -algebra. Then by [7, Lemma 3.16], furthermore M is a Boolean
algebra.
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(e)⇒ (d): Since M is a Boolean algebra, x− is the lattice complement of x
in M , and so x ∨ x− = 1. This implies, by [7, Lemma 3.16], (x → y) → x = x
for any x, y ∈M . �

Theorem 3.13 If F is a filter of an R�-monoid M , then the following condi-
tions are equivalent:

(a) F is a maximal and positive implicative filter of M .

(b) F is a maximal and implicative filter of M .

(c) If x, y ∈M \ F , then x→ y ∈ F and y → x ∈ F .
(d) M/F is a two-element Boolean algebra.

Proof (a)⇒ (b): It is obvious.
(b) ⇒ (c): Let F be a maximal and implicative filter of M . By Theorem

3.2, My = {a ∈M : y → a ∈ F} is a filter of M . If b ∈ F , then from b ≤ y → b
it follows that y → b ∈ F , thus b ∈ My. Hence F ⊆ My. Since F is a maximal
filter of M and y /∈ F , we haveMy = M . Therefore y → x ∈ F . The assumption
x /∈ F analogously implies x→ y ∈ F .

(c) ⇒ (a): Let a filter F satisfy the condition (c). Suppose that F is not
positive implicative. Then by Theorem 3.8, there are x, y ∈M such that x /∈ F
and (x → y) → x ∈ F . If y ∈ F , then x → y ∈ F , and hence x ∈ F , a
contradiction. If y /∈ F , then by (c), x→ y ∈ F , a contradiction. Hence F is a
positive implicative filter of M . We will prove that F is also a maximal filter of
M . If a /∈ F , then by the preceding part of the proof, F ∪ {a} ⊆ Ma. We will
show that Ma is the least filter of M containing F ∪{a}. Let G be a filter of M
such that F ∪ {a} ⊆ G. If x ∈ Ma, then a → x ∈ F ⊆ G, and since a ∈ G, we
have x ∈ G. Therefore Ma ⊆ G. Consider any element z ∈ M . If z ∈ F , then
z ∈Ma. If z /∈ F , then since also a /∈ F , the assumption (c) gives a→ z ∈Ma.
Hence Ma = M , and therefore F is a maximal filter of M .

(c)⇒ (d): It is obvious. �

A filter F of an R�-monoid M is called

a) Boolean if x ∨ x− ∈ F for every x ∈M ;

b) semi-Boolean if (x ∧ x−)− ∈ F for every x ∈M .

Proposition 3.14 [14, Theorem 3.2]. If F is a filter of an R�-monoid M , then
F is Boolean if and only if M/F is a Boolean algebra.

Proposition 3.15 Every Boolean filter of M is semi-Boolean.

Proof Let x ∈ M . Then x− ≤ (x ∧ x−)− and x ≤ x−− ≤ (x ∧ x−)−, hence
x ∨ x− ≤ (x ∧ x−)−. �

Example 3.16 Let M = {0, a, b, c, 1} be the lattice with the diagram in Fig. 1,
and let � = ∧ and → be defined in the corresponding table in Fig. 1.
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→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1 �

� �

�

�

0

a b

c

1

Fig. 1

Then M = (M ;∨,∧,�,→, 0, 1) is an R�-monoid (which is not a BL-algebra).
The filter F = {1} is semi-Boolean, but it is not Boolean.

Theorem 3.17 a) Let M be an R�-monoid. Then every Boolean filter of M is
positive implicative and every positive implicative filter of M is semi-Boolean.
b) If an R�-monoid M satisfies condition

((x→ x−)→ x−) ∧ ((x− → x)→ x) = x ∨ x−, for any x ∈M, (∗)

then Boolean and positive implicative filters of M coincide.

Proof a) Let M be an R�-monoid, let F be a Boolean filter of M and let x ∈M .
Then by Lemma 2.1, x ∨ x− ≤ ((x → x−) → x−) ∧ ((x− → x) → x), hence
((x → x−) → x−) ∧ ((x− → x) → x) ∈ F , and therefore (x− → x) → x ∈ F .
That means F is positive implicative.

Let now F be an arbitrary positive implicative filter of M and x ∈M . Then
(x−− → x−)→ x− ∈ F and by Lemma 2.1, (x−− → x−)→ x− = (x→ x−)→
x− = ((x→ x−)� x)− = (x ∧ x−)−. Thus F is a semi-Boolean filter.

b) Let an R�-monoid M satisfy condition (∗) and let F be a positive implica-
tive filter of M . Then a fortiori F is also implicative, hence x → (x � x) ∈ F
for every x ∈ M . We have (x → x−) → x− = (x → (x → 0)) → (x → 0) =
((x � x) → 0) → (x → 0) ≥ x → (x � x), hence (x → x−) → x− ∈ F , and
thus also x ∨ x− = ((x→ x−)→ x−) ∧ ((x− → x)→ x) ∈ F . Therefore F is a
Boolean filter. �

As an immediate consequence we get the following theorem.

Theorem 3.18 [11, Theorem 2]. Boolean and positive implicative filters of
any BL-algebra coincide.

Proof IfM is a BL-algebra, then by [5, Lemma 2.3.4(8)], ((x→ y)→ y)∧((y →
x)→ x) = x ∨ y, for every x, y ∈M . �

Let F be a filter of an R�-monoid M . Then F is called an implicative
deductive system if x → (z− → y) ∈ F and y → z ∈ F imply x → z ∈ F , for
any x, y, z ∈M .
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Theorem 3.19 [14, Theorem 3.2]. Let F be a filter of an R�-monoid M . Then
F is an implicative deductive system if and only if F is a Boolean filter.

Remark 3.20 Now we can rephrase Theorem 3.17 in this way. Let M be an
R�-monoid. Then every implicative deductive system of M is a positive im-
plicative filter and every positive implicative filter of M is semi-Boolean. If
M satisfies the condition (∗), then implicative deductive systems and positive
implicative filters of M coincide.

Theorem 3.21 If F is a maximal and (positive) implicative filter of an R�-
monoid M , then F is Boolean.

Proof Let F be a maximal and (positive) implicative filter of M . Then by
Theorem 3.13, M/F is a two element R�-monoid, hence a two element Boolean
algebra. Consequently, by Proposition 3.14, F is a Boolean filter. �

Theorem 3.22 If F is a maximal filter of an R�-monoidM , then the following
conditions are equivalent:

(a) F is a Boolean filter.

(b) F is a positive implicative filter.

(c) F is an implicative filter.

(d) F is an implicative deductive system.

Proof It follows from Theorems 3.17 and 3.21 and from Remark 3.20. �

Let M be an R�-monoid. If F is a proper filter of M , denote

F− := {x ∈M : x ≤ y− for some y ∈ F}.
By [14, Proposition 3.4], F ∪ F− is a subalgebra of M for every proper filter F
of M .

An R�-monoid M is called bipartite if M = F ∪ F− for some maximal filter
F of M .

By [14, Theorem 3.6], M is bipartite if and only if M contains a proper
Boolean filter.

An R�-monoid M is said to be strongly bipartite if M = F ∪ F− for every
maximal filter F of M .

If M is an R�-monoid, denote by B(M) the intersection of all Boolean filters
of M . Obviously B(M) is the least Boolean filter of M .

Further, denote by Rad(M) the radical of M , i.e. the intersection of all
maximal filters of M .

Theorem 3.23 [14, Theorem 3.8]. If M is an R�-monoid, then the following
conditions are equivalent:

(a) M is strongly bipartite.

(b) Every maximal filter of M is Boolean.

(c) B(M) ⊆ Rad(M).
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The following theorem is an immediate consequence of Theorems 3.22 and
3.23.

Theorem 3.24 If M is an R�-monoid, then the following conditions are equiv-
alent:

(a) M is strongly bipartite.

(b) B(M) ⊆ Rad(M).

(c) Every maximal filter of M is Boolean.

(d) Every maximal filter of M is positive implicative.

(e) Every maximal filter of M is implicative.

4 Fantastic filters

Let M be an R�-monoid and F a subset of M . Then F is called a fantastic
filter of M if

(1) 1 ∈ F ;

(4) z → (y → x) ∈ F and z ∈ F imply ((x→ y)→ y)→ x ∈ F ,
for any x, y, z ∈M .

Proposition 4.1 Every fantastic filter of M is a filter of M .

Proof Let F be a fantastic filter of M and x, y ∈ M . If x, x → y ∈ F , then
also x ∈ F and x→ (1→ y) = x→ y ∈ F , and thus by (4), y ∈ F . �

Theorem 4.2 A filter F of an R�-monoid M is fantastic if and only if
(5) y → x ∈ F implies ((x→ y)→ y)→ x ∈ F , for every x, y ∈M .

Proof Let F be a fantastic filter of M , x, y ∈ M and y → x ∈ F . Then
1→ (y → x) = y → x ∈ F and 1 ∈ F , hence ((x→ y)→ y)→ x ∈ F .

Conversely, let a filter F satisfy the condition (5) and let z → (y → x) ∈ F
and z ∈ F . Then y → x ∈ F , therefore also ((x→ y)→ y)→ x ∈ F . �

Theorem 4.3 Every positive implicative filter of an R�-monoid M is a fantas-
tic filter of M .

Proof Suppose F is a positive implicative filter of M and x, y ∈ M are such
that y → x ∈ F . We have x ≤ ((x→ y)→ y)→ x, thus

(((x→ y)→ y)→ x)→ y ≤ x→ y.

Further, ((((x → y) → y) → x) → y) → (((x → y) → y) → x) ≥ (x → y) →
(((x→ y)→ y)→ x) = ((x→ y)→ y)→ ((x→ y)→ x) ≥ y → x.

By the assumption y → x ∈ F , hence also

((((x→ y)→ y)→ x)→ y)→ (((x→ y)→ y)→ x) ∈ F.
Since F is positive implicative, we get ((x→ y)→ y)→ x ∈ F , and hence F is
a fantastic filter. �
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Theorem 4.4 If F is a filter of an R�-monoidM , then the following conditions
are equivalent:

(a) F is a fantastic filter of M .

(b) x−− → x ∈ F , for every x ∈M .
(c) x → u ∈ F and y → u ∈ F imply ((x → y) → y) → u ∈ F , for every

x, y, u ∈M .

Proof (a)⇒ (b): Let F be a fantastic filter of M and x ∈M . Since 0→ x =
1 ∈ F , we obtain from (5) that x−− → x = ((x→ 0)→ 0)→ x ∈ F .

(b)⇒ (c): Suppose that F is a filter of M such that x−− → x ∈ F for every
x ∈ M . Let x, y, u ∈ M , x → u ∈ F and y → u ∈ F . Since x → u ≤ u− → x−

and y → u ≤ u− → y−, we get u− → x− ∈ F and u− → y− ∈ F , and thus
(u− → x−) ∧ (u− → y−) ∈ F .

Moreover,

(u− → x−) ∧ (u− → y−) = u− → (x− ∧ y−)
= u− → (y− � (y− → x−)) = u− → (y− � (y− → (x→ 0))
= u− → (y− � (x→ (y− → 0)) = u− → (y− � (x→ y−−)).

Further,

(u− → (y− � (x→ y−−)))→ (u− → (y− � (x→ y)))
≥ (y− � (x→ y−−))→ (y− � (x→ y)))
≥ (x→ y−−)→ (x→ y) ≥ y−− → y ∈ F,

therefore also u− → (y− � (x→ y)) ∈ F .
Moreover,

u− → (y− � (x→ y)) ≤ (y− � (x→ y))− → u−− = ((x→ y)→ y−−)→ u−−,

hence ((x→ y)→ y−− → u−− ∈ F . Further we have

(((x→ y)→ y−−)→ u−−)→ (((x→ y)→ y)→ u−−)
≥ ((x→ y)→ y)→ ((x→ y)→ y−−) ≥ y → y−− = 1 ∈ F,

thus ((x→ y)→ y)→ u−− ∈ F .
Moreover,

(((x→ y)→ y)→ u−−)→ (((x→ y)→ y)→ u) ≥ u−− → u ∈ F,

therefore also ((x→ y)→ y)→ u ∈ F .
(c)⇒ (a): If F satisfies the condition (c), then for u = x we get that whether

y → x ∈ F then ((x → y) → y) → x ∈ F , for every x, y ∈ M , hence F is a
fantastic filter of M . �
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Theorem 4.5 If F1 and F2 are filters of an R�-monoid M , F1 ⊆ F2 and F1 is
fantastic in M , then F2 is also a fantastic filter of M .

Proof Let F1 and F2 be filters of M , F1 ⊆ F2, and let F1 be fantastic. Then by
Theorem 4.4, x−− → x ∈ F1 ⊆ F2, for every x ∈M , hence F2 is also fantastic.

�

Theorem 4.6 A filter F of an R�-monoid M is fantastic if and only if M/F
is an MV -algebra.

Proof Let F be a filter of M . Then F is fantastic if and only if x−− → x ∈ F
for every x ∈M , which is equivalent to the following conditions in M/F :

x−−/F → x/F = F, x−−/F ≤ x/F and x−−/F = x/F,

for every x/F ∈M/F , and this is equivalent to M/F is an MV -algebra. �

Proposition 4.7 If F is a maximal filter of an R�-monoid M , then F is fan-
tastic.

Proof It follows from [3, Proposition 3.5], where it is proved that M/F is an
MV -algebra for every maximal filter F of M . �

Remark 4.8 The MV -filters of R�-monoids, i.e. filters such that the corre-
sponding quotient R�-monoids are MV -algebras, were investigated in [16], [17]
and [3]. By Theorem 4.6, MV -filters of R�-monoids are exactly their fantastic
filters. If M is an R�-monoid, denote by D(M) := {x ∈ M : x−− = 1} the set
of all dense elements in M . Then D(M) is a proper filter of M and a filter F of
M is an MV -filter if and only if D(M) ⊆ F . Therefore we get as a consequence
the following proposition.

Proposition 4.9 A filter F of an R�-monoid M is fantastic if and only if
D(M) ⊆ F .
Proposition 4.10 Let M be an R�-monoid. Then the following conditions are
equivalent:

(1) M is an MV -algebra.

(2) Every filter of M is fantastic.

(3) {1} is a fantastic filter of M .
Proof (1)⇒ (2): Let M be an MV -algebra and F be a filter of M . Since the
class of MV -algebras is a subvariety of the variety of R�-monoids, the quotient
R�-monoid M/F is also an MV -algebra. Therefore by Theorem 4.6, F is a
fantastic filter.

(2)⇒ (3): It is obvious.
(3) ⇒ (1): Let {1} be a fantastic filter of M . Then M ∼= M/{1} is an

MV -algebra. �
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Theorem 4.11 If F is a filter of an R�-monoid M , then the following condi-
tions are equivalent.

(a) F is a Boolean filter.

(b) F is an implicative and fantastic filter.

Proof By Proposition 3.14, a filter F is Boolean if and only ifM/F is a Boolean
algebra. Moreover, an R�-monoid M/F is a Boolean algebra if and only if M/F
is an MV -algebra and (x/F ) � (x/F ) = x/F for every x/F ∈ M/F . This is
equivalent to (x/F )−− = x/F and (x/F ) � (x/F ) = x/F , and it holds, by
Theorems 4.6 and 3.4, if and only if F is a fantastic and implicative filter of M .

�

We have characterized filters of R�-monoids such that the corresponding
quotient R�-monoids are Heyting algebras, Boolean algebras and MV -algebras,
respectively. (See e.g. Theorem 3.4, Proposition 3.14 and Theorem 4.6.) Now
we will complete it for the case when the quotient R�-monoid is a BL-algebra.

A filter F of an R�-monoid M is called a BL-filter of M if

(x→ y) ∨ (y → x) ∈ F,

for every x, y ∈M .

Theorem 4.12 A filter F of an R�-monoid M is a BL-filter of M if and only
if M/F is a BL-algebra.

Proof We know that an R�-monoid is a BL-algebra if and only if it satisfies
the identity of pre-linearity.

Let M be an R�-monoid and F be a filter of M . If x, y ∈M , then

(x/F → y/F ) ∨ (y/F → x/F ) = ((x→ y) ∨ (y → x))/F.

Hence (x/F → y/F )∨ (y/F → x/F ) = F if and only if (x→ y)∨ (y → x) ∈ F .
�
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Abstract

The paper investigates singular nonlinear problems arising in hydro-
dynamics. In particular, it deals with the problem on the half–line of the
form

(p(t)u′(t))′ = p(t)f(u(t)),

u′(0) = 0, u(∞) = L.

The existence of a strictly increasing solution (a homoclinic solution) of
this problem is proved by the dynamical systems approach and the lower
and upper functions method.

Key words: Singular ordinary differential equation of the second
order, lower and upper functions, time singularities, unbounded do-
main, homoclinic solution.

2000 Mathematics Subject Classification: 34B16, 34B40

1 Introduction

In the Cahn–Hilliard theory used in hydrodynamics to study the behaviour of
nonhomogenous fluids the following system of PDE’s was derived

ρt + div(ρv) = 0,
dv

dt
+∇(μ(ρ)− γ$ρ) = 0

*Supported by the Council of Czech Government MSM 6 198 959 214.
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with the density ρ and the velocity v of the fluid, μ is its chemical potential,
γ is a constant. In the simplest model, this system can be reduced into the
boundary value problem for the ODE of the second order (see [5] or [7])

(tku′)′ = 4λ2tk(u + 1)u(u− ξ), t ∈ (0,∞),
u′(0) = 0, u(∞) = ξ,

where k ∈ N, ξ ∈ (0, 1), λ ∈ (0,∞) are parameters. The function u(t) ≡ ξ is
a solution of this problem and it corresponds to the case of homogenous fluid
(without bubbles). But only the existence of a strictly increasing solution of
this problem and the solution itself has a great physical significance. We call it
a homoclinic solution. We refer to [1] and [2], where an equivalent problem was
investigated. The numerical treatment was done in papers [5], [7].

Here, we study the generalized problem

(p(t)u′(t))′ = p(t)f(u(t)), (1)

u′(0) = 0, u(∞) = L, (2)

where L > 0.

2 Autonomous equation

The investigation of autonomous equations corresponding to (1) turned out to
be quite useful, because some solutions of the perturbed autonomous equation
(14) can serve as upper functions to (1).

Let h : R→ R and x1, x2, x3 ∈ R be such that x1 < x2 < x3 and

h is lipschitzian on [x1, x3], (3)

h(xi) = 0 for i = 1, 2, 3, (4)

there exists δ > 0 such that h ∈ C1((x2 − δ, x2))
and limx→x−

2
h′(x) = h′−(x2) < 0,

}
(5)

(x− x2)h(x) < 0 for x ∈ (x1, x3) \ {x2}, (6)

H(x1) > H(x3), (7)

where

H(x) = −
∫ x

x2

h(z) dz for x ∈ R.

Moreover we will assume that{
h(x) = 0 for x ≤ x1,
h(x) = x− x3 for x ≥ x3.

(8)

Let us consider equation
u′′ = h(u) (9)



Singular problems on the half-line 111

and the initial condition
u(0) = B, u′(0) = 0 (10)

for B ∈ (x1, x2). Equation (9) is equivalent with the gradient system

u′1 = u2, u
′
2 = h(u1). (11)

An energy function of the system (11) has the form

E(u1, u2) =
u2

2

2
+H(u1), u1, u2 ∈ R.

Lemma 1 Let (3), (4), (6), (7) be satisfied. The function H has following
properties

1. H(x) > 0 for x ∈ [x1, x2) ∪ (x2, x3],

2. H is decreasing on (x1, x2) and increasing on (x2, x3),

3. there exists unique B̄ ∈ (x1, x2) such that

H(B̄) = H(x3),

4. if (8) is satisfied, then{
H(x) = H(x1) for x ≤ x1,
H(x) = H(x3)− (x− x3)2/2 for x ≥ x3.

Proof The first two properties follow from the definition of H and (6). The
third property is a consequence of (6) and (7). The fourth one can be obtained
by simple computation. �

Lemma 2 Let (3), (4), (6)–(8) be satisfied. Let (v1, v2) be a solution of problem
(11),

u1(0) = B, u2(0) = 0, (12)

where B ∈ (x1, B̄), B̄ is from Lemma 1. Then there exists b > 0 such that

v1(b) = x3

and
0 < v2(t) ≤

√
2H(x1)

for t ∈ (0, b].

Proof It is well known that the level sets of the energy function E consist of
the orbits of the second-order conservative system (11), in particular, the orbit
γ((B, 0)) of system (11) passing the point (B, 0) in the phase plane is a subset
of

{(u1, u2) ∈ R2 : u2 = ±
√

2(H(B)−H(u1)) ∧H(u1) ≤ H(B)}.
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From the properties of the function H , we can see that this set can be expressed
in the form

{(u1, u2) ∈ R2 : u2 = ±
√

2(H(B)−H(u1)) ∧ u1 ≥ B}.
This set contains no equilibrium point and hence it is the orbit γ((B, 0)). Con-
sider the function

u2 = Φ(u1) =
√

2(H(B)−H(u1)) for u1 ≥ B.
Simple computation yields

0 < Φ(u1) ≤ Φ(x2) for u1 ∈ (B, x3].

Fig. 1. The escape orbit.

Therefore the orbit γ((B, 0)) belonging to the solution (v1, v2) of (11), (12)
has the form on the Figure 1. The direction of the flow on γ((B, 0)) is determined
by the equalities

v′1(0) = v2(0) = 0 and v′2(0) = h(v1(0)) > 0,

see Fig. 1.
Hence there exists b > 0 such that

(v1(b), v2(b)) = (x3,Φ(x3)) = (x3,
√

2(H(B)−H(x3)))

and
0 < v2(t) ≤ Φ(x2) ≤

√
2H(x1) for t ∈ (0, b].

The proof is complete. �

As an immediate consequence of Lemma 2 we get Lemma 3.

Lemma 3 (On escape solution) Let (3), (4), (6)–(8) be satisfied and u be a
solution of problem (9), (10) with B ∈ (x1, B̄). Then there exists b > 0 such
that

u(b) = x3, u′(t) > 0 for t ∈ (0, b]. (13)
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Choose ε > 0 and consider the perturbed equation

u′′ = h(u)− ε. (14)

Lemma 4 (On the perturbed equation) Let (3)–(8) be satisfied. There exists
ε0 > 0 such that for ε ∈ (0, ε0) the function h− ε has roots xi(ε) for i = 1, 2, 3,
such that

h− ε is lipschitzian on [x1(ε), x3(ε)], (15)

h(xi(ε)) = ε for i = 1, 2, 3, (16)

there exists δ > 0 such that h− ε ∈ C1((x2(ε)− δ, x2(ε)))
and limx→x2(ε)−(h− ε)′(x) = (h− ε)′−(x2(ε)) < 0,

}
(17)

(x− x2(ε))(h(x) − ε) < 0 for x ∈ (x1(ε), x3(ε)) \ {x2(ε)}, (18)

Hε(x1(ε)) > Hε(x3(ε)), (19)

where

Hε(x) = −
∫ x

x2(ε)

(h(z)− ε) dz

for x ∈ R.

Proof From (4), (5), (6) and the Implicit function theorem, it follows that
there exists ε̄0 > 0 and a continuous function x2 : [0, ε̄0)→ (x1, x2] such that

h(x2(ε)) = ε for ε ∈ [0, ε̄0), x2(ε) is decreasing, x2(0) = x2. (20)

We define
x1(ε) = sup{x ∈ [x1, x2(ε̄0)] : h(x) ≤ ε} (21)

for ε ∈ (0, ε̄0). From the continuity of the function h, the definition of x1(ε) and
the supremum it follows that

x1(ε) ∈ [x1, x2(ε̄0)) for ε ∈ (0, ε̄0)

and
h(x1(ε)) = ε, ε ∈ (0, ε̄0). (22)

We will prove that
lim
ε→0+

x1(ε) = x1, (23)

by contradiction. If (23) does not hold, then there exists a decreasing sequence
{εn}, εn → 0 such that x1(εn) → x̄1 ∈ (x1, x2(ε̄0)] as n → ∞. From (20) it
follows that

h(x1(εn)) = εn → 0.

From the continuity of h and (4), (6), we get a contradiction.
We put

x3(ε) = x3 + ε, ε ∈ (0, ε̄0).
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Then, for ε ∈ (0, ε̄0), relations (15)–(18) are satisfied. For ε ∈ (0, ε̄0), x ∈
[x1, x1 + ε0] it is valid

Hε(x) = −
∫ x

x2(ε)

(h(z)− ε) dz = −
∫ x

x2(ε)

h(z) dz + ε(x− x2(ε))

= H(x) +
∫ x2(ε)

x2

h(z) dz + ε(x− x2(ε)).

Then

|Hε(x)−H(x)| ≤ |x2(ε)− x2|max{|h(z)| : z ∈ [x1, x3 + ε̄0]}+ ε|x3 + ε̄0 − x1|
for ε ∈ (0, ε̄0) and x ∈ [x1, x3 + ε̄0]. Since the terms on the right-hand side of
the inequality converges to zero as ε→ 0+ independently on x, we can write

Hε(x) ⇒ H(x) on [x1, x3 + ε̄0] as ε→ 0 + .

From this fact and the relations

lim
ε→0+

xi(ε) = xi for i = 1, 3,

it follows that
lim
ε→0+

Hε(xi(ε)) = H(xi) for i = 1, 3.

From these facts and (7) it follows that there exists ε0 ∈ (0, ε̄0) such that (19)
is valid for ε ∈ (0, ε0), together with (15)–(18), as well. �

Lemma 5 Let (3)–(8) be satisfied. Let ε ∈ (0, ε0), where ε0 is from Lemma 4.
Then there exist B ∈ (x1, x2) and b > 0 such that the corresponding solution u
of problem (14), (10) satisfies (13) and

0 ≤ u′(t) ≤
√

2H(x1) for t ∈ [0, b]. (24)

Proof Let ε0 be from Lemma 4 and ε ∈ (0, ε0) be arbitrary. Then relations
(15)–(19) hold. From Lemma 1 (with Hε in place of H) it follows that there
exists the unique B̄(ε) ∈ (x1(ε), x2(ε)) such that Hε(B̄(ε)) = Hε(x3(ε)). Let
B(ε) ∈ (x1(ε), B̄(ε)) and u be the solution of problem (14), (10) with B = B(ε).
According to Lemma 3 there exists b(ε) > 0 such that

u(b(ε)) = x3(ε) and u′ > 0 on (0, b(ε)]. (25)

In particular, u(t) ∈ (x1(ε), x3(ε)] for every t ∈ [0, b(ε)]. Multiplying the per-
turbed equation (14) by u′ and integrating it over interval (0, t) for t ∈ [0, b(ε)],
we get

u′2(t)
2
− u′2(0)

2
= −Hε(u(t)) +Hε(u(0)),

that is
u′(t) =

√
2(Hε(B(ε))−Hε(u(t)))
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for t ∈ [0, b(ε)]. SinceHε(x1(ε)) is the maximum of the functionHε in [x1(ε), x3(ε)]
and Hε is nonnegative, we get

u′(t) ≤
√

2Hε(x1(ε))

for t ∈ [0, b(ε)]. In view of the fact

Hε(x1(ε)) =
∫ x2(ε)

x1(ε)

(h(z)− ε) dz ≤
∫ x2(ε)

x1(ε)

h(z) dz ≤
∫ x2

x1

h(z) dz = H(x1)

and (25), it follows that
0 ≤ u′(t) ≤

√
2H(x1)

for t ∈ [0, b(ε)]. By B(ε) < x3 < x3(ε) and (25), there exists b ∈ (0, b(ε)) such
that (13) and (24) are valid. �

3 Nonautonomous equation

Let us consider equation (1), where

f is locally lipschitzian on R, (26)

there exist L0 < 0 < L such that f(L0) = f(0) = f(L) = 0, (27)

there exists δ > 0 such that f ∈ C1((−δ, 0))
and limx→0− f ′(x) = f ′−(0) < 0,

}
(28)

xf(x) < 0 for x ∈ (L0, L) \ {0}, (29)

F (L0) > F (L), (30)

where

F (x) = −
∫ x

0

f(z) dz, x ∈ R.

Further we assume that

p ∈ C2((0,∞)) ∩ C([0,∞)), (31)

p(0) = 0, p′(t) > 0 for t ∈ (0,∞), (32)

lim
t→∞

p′(t)
p(t)

= 0, (33)

lim
t→∞

p′′(t)
p(t)

= 0. (34)

Moreover, in some lemmas, we will assume that

f(x) = 0 for x ∈ (−∞, L0] ∪ [L,∞). (35)

If (35) is valid, then {
F (x) = F (L0) for x ≤ L0,
F (x) = F (L) for x ≥ L.

The following classical result for non–singular initial value problems will be
useful in the proofs.
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Lemma 6 Let (26), (31), (32), (35) be satisfied, a > 0, B0, B1 ∈ R. Then
there exists the unique solution on [a,∞) of the initial value problem (1),

u(a) = B0, u
′(a) = B1. (36)

Proof It is well known that the problem (1), (36) is equivalent to the IVP{
u′1 = u2

p(t) , u
′
2 = p(t)f(u1),

u1(a) = B0, u2(a) = B1.

From (26), (31), (32) it follows the unique solvability of this problem and of the
problem (1), (36), as well. �

We will study the singular initial value problem (1),

u(0) = B, u′(0) = 0 (37)

with B ∈ (L0, 0).

Definition 7 Let [a, c) ⊂ [0,∞). A function u ∈ C1([a, c))∩C2((a, c)) satisfy-
ing equation (1) on [a, c) and fulfilling conditions (37) is a solution of problem
(1), (37) on [a, c).

First we state several lemmas.

Lemma 8 Let us assume that (26)–(29), (31)–(34) be satisfied. Let u be a
solution of the initial value problem (1),

u(a) = B, u′(a) = 0 (38)

on [a,∞), where a ≥ 0 and B ∈ (L0, 0). Then there exists θ > a such that

u(θ) = 0 and u′(t) > 0 for t ∈ (a, θ]. (39)

Moreover, for every b > θ satisfying

u(b) ∈ (0, L) and u′(t) > 0 for t ∈ [θ, b), (40)

there exist α ∈ (a, θ), β ∈ (θ, b) such that

p2(b)u′2(b) = 2[p2(α)F (B) − p2(β)F (u(b))]. (41)

Proof Let u be a solution of problem (1), (38), where a ≥ 0 and B ∈ (L0, 0).
From (1) and (29) it follows that there exists ξ > a such that u(t) ∈ (L0, 0) and
u′(t) > 0 for t ∈ (a, ξ). Let us assume that ξ =∞. Then there exists l ∈ (B, 0]
such that

lim
t→∞u(t) = l. (42)

From (1) and (38), it follows that

u′2(t)
2

+
∫ t

a

p′(s)
p(s)

u′2(s) ds = F (B)− F (u(t)). (43)



Singular problems on the half-line 117

Since the right–hand side of the equation (43) has a finite nonnegative limit

F (B)− F (l) as t→∞ and the function
∫ t
a
p′(s)
p(s) u

′2(s) ds is positive and mono-

tone, it follows that there exists finite nonnegative limit limt→∞ u′2(t)/2. Since
u′ > 0 on (0,∞), there exists nonnegative limt→∞ u′(t). If lim

t→∞u′(t) > 0, then

limt→∞ u(t) =∞, which contradicts (42). Consequently,

lim
t→∞u′(t) = 0. (44)

From (1) it follows that

u′′(t) = −p
′(t)
p(t)

u′(t) + f(u(t)) for t ∈ (0,∞).

This, together with (42), (44), (26) and (33) implies

lim
t→∞u′′(t) = f(l).

Using (44), (27) and (29) we can check that l = 0.
We define a function

v(t) =
√
p(t)u(t) for t ∈ [0,∞).

By virtue of (31) and (32) we see that v is well defined, negative and there exist
finite derivatives

v′(t) =
p′(t)u(t)
2
√
p(t)

+
√
p(t)u′(t)

and

v′′(t) = v(t)
[
1
2
p′′(t)
p(t)

− 1
4

(
p′(t)
p(t)

)2

+
f(u(t))
u(t)

]
for t > a. In view of (33), (34), from the fact that limt→∞ u(t) = 0, u is negative
and from (28), it follows that there exist ω > 0 and R > 0 such that

1
2
p′′(t)
p(t)

− 1
4

(
p′(t)
p(t)

)2

+
f(u(t))
u(t)

< −ω for t ≥ R.

Then
v′′(t) > −ωv(t) > 0 for t ≥ R. (45)

Thus, v′ is increasing on [R,∞) and has the limit

lim
t→∞ v′(t) = V.

If V > 0, then limt→∞ v(t) = +∞, which contradicts the negativity of v. If
V ≤ 0, then v′(t) < 0 for every t ∈ (R,∞) and therefore

0 > v(R) ≥ v(t) for t ≥ R.
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In view of (45) we can see that

0 < −ωv(R) ≤ −ωv(t) < v′′(t) for t ≥ R.
We get limt→∞ v′(t) = ∞, which implies limt→∞ v(t) = ∞, again. These con-
tradictions imply the existence of θ > a such that u(θ) = 0 and u′(t) > 0 for
t ∈ (a, θ). Let us assume that u′(θ) = 0. Since u(θ) = 0 we get from Lemma 6,
(1) and (27) that u(t) = 0 for t ∈ (0,∞), which is a contradiction. Thus (39)
holds.

Let us consider b > θ such that (40) is satisfied. Multiplying equation (1)
by pu′ and integrating it over (a, θ) and (θ, b) we get

(pu′)2(θ)− (pu′)2(a) = 2
∫ θ

a

p2(s)f(u(s))u′(s) ds,

(pu′)2(b)− (pu′)2(θ) = 2
∫ b

θ

p2(s)f(u(s))u′(s) ds.

Using the Mean value theorem, we get α ∈ (a, θ) and β ∈ (θ, b) such that

(pu′)2(θ) = 2p2(α)
∫ θ

a

f(u(s))u′(s) ds,

(pu′)2(b)− (pu′)2(θ) = 2p2(β)
∫ b

θ

f(u(s))u′(s) ds

and substituing τ = u(s) we get

(pu′)2(θ) = 2p2(α)(F (u(a)) − F (u(θ))),

(pu′)2(b)− (pu′)2(θ) = 2p2(β)(F (u(θ)) − F (u(b))).

From these two equations, using the fact that F (u(θ)) = 0, we have (41). �

Lemma 9 Let us assume that (26)–(34) be satisfied. Let u be a solution of the
initial value problem (1), (37) on [0,∞) and let b > 0, L̄ ∈ (0, L) be such that

u(b) = L̄, u′(b) = 0. (46)

Then there exists θ > b such that

u(θ) = 0 and u′(t) < 0 for t ∈ (b, θ]. (47)

Moreover, for every c > θ satisfying

u(c) ∈ (L0, 0) and u′(t) < 0 for t ∈ (θ, c), (48)

there exist α ∈ (b, θ) and β ∈ (θ, c) such that

(pu′)2(c) = 2[p2(α)F (L̄)− p2(β)F (u(c))]. (49)
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Proof First of all we will prove the existence of θ satisfying (47). By (29) and
(46) there exists b1 > b such that f(u(t)) < 0 for t ∈ (b, b1). Thus p(t)u′(t) and
u′(t) are decreasing and negative on (b, b1) and u(t) is decreasing and positive
on (b, b1). Assume that θ > b satisfying (47) does not exist. Then b1 =∞ and
lim
t→∞u(t) ∈ [0, L̄). On the other hand, lim

t→∞ u′(t) < 0, which gives lim
t→∞u(t) =

−∞.
Let us consider c > θ such that (48) is satisfied. Multiplying equation (1) by
pu′ and integrating it over (b, θ) and (θ, c) we get α ∈ (b, θ) and β ∈ (θ, c) such
that

(pu′)2(θ)− (pu′)2(b) = 2p2(α)(F (u(b)) − F (u(θ))),

(pu′)2(c)− (pu′)2(θ) = 2p2(β)(F (u(θ)) − F (u(c))).

From these two equations we get (49). �

Lemma 10 (On three types of solutions) Let (26)–(35) be satisfied, B ∈ (L0, 0).
Then there exists a unique solution u of problem (1), (37) and it is defined on
[0,∞). There are just three types of solutions:

• an escape solution if there exists b > 0 such that u(b) = L and u′ > 0 on
(0, b],

• a homoclinic solution if u′ > 0 on (0,∞) and limt→∞ u(t) = L,

• an oscillatory solution if u has infinitely many roots and u(t) ∈ (B,L) for
t ∈ (0,∞).

Moreover, for t ∈ (0,∞) it is valid

|u′(t)| ≤ max
L0≤x≤L

|f(x)| · t, |u(t)| ≤ L0 + max
L0≤x≤L

|f(x)| · t
2

2
.

Proof Step 1. (On the existence of a solution on some neighbourhood of
t = 0) From (26) and (35) it follows that there exists L̄ > 0 such that

|f(x1)− f(x2)| ≤ L̄|x1 − x2| (50)

for x1, x2 ∈ R. Let us take η > 0 such that

L̄η2

2
< 1. (51)

Consider the Banach space C([0, η]) with the maximum norm ‖ · ‖∞ and using
(32), define an operator F : C([0, η])→ C([0, η])

(Fu)(t) = B +
∫ t

0

1
p(s)

∫ s

0

p(τ)f(u(τ)) dτ ds.
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From (50), (32) it follows that for u1, u2 ∈ C([0, η]), t ∈ [0, η]

|(Fu1)(t)− (Fu2)(t)| ≤
∣∣∣∣∫ t

0

1
p(s)

∫ s

0

p(τ)(f(u1(τ)) − f(u2(τ))) dτ ds
∣∣∣∣

≤ L̄‖u1 − u2‖∞
∫ t

0

1
p(s)

∫ s

0

p(τ) dτ ds

≤ L̄‖u1 − u2‖∞
∫ t

0

∫ s

0

dτ ds ≤ L̄η2

2
‖u1 − u2‖∞.

Inequality (51) implies that F is a contraction. From the Banach fixed point
theorem it follows that there exists a unique fixed point u of the operator F .
Then

u(t) = B +
∫ t

0

1
p(s)

∫ s

0

p(τ)f(u(τ)) dτ ds for t ∈ [0, η].

We have u(0) = B and deriving the equality we get

u′(t) =
1
p(t)

∫ t

0

p(s)f(u(s)) ds, for t ∈ (0, η). (52)

From (52), (26), (35) and (32) we have

|u′(t)| ≤ max
L0≤x≤L

|f(x)| 1
p(t)

∫ t

0

p(s) ds ≤ max
L0≤x≤L

|f(x)| · t, for t ∈ (0, η).

This fact implies u′(0) = 0. Moreover, multiplying equation (52) by p(t) and
deriving it we get (1). So, the fixed point u is a solution of problem (1), (37).
Analogously, every solution of (1), (37) defined on [0, η] is a fixed point of the
operator F . We conclude that there exists a unique solution of problem (1),
(37).

Step 2. (Global solution) From Lemma 6 it follows, that the solution u can be
extended onto every interval, where it is bounded. Lemma 8 gives θ > 0 such
that

u(θ) = 0 and u′(t) > 0 for (0, θ]. (53)

If u is defined on [0, ω), where ω ∈ (θ,∞], then

u′(t) =
p(θ)
p(t)

u′(θ) +
1
p(t)

∫ t

θ

p(s)f(u(s)) ds

for t ∈ (θ, ω). From (29), (53) and the last equation we get three possibilities:
Case A. There exists b > θ such that

u(b) = L and u′(t) > 0 for t ∈ [θ, b).

Case B. For t ∈ (θ,∞) it is valid u(t) ∈ (0, L) and u′(t) > 0.
Case C. There exists b > θ such that

u′(b) = 0, u(b) ∈ (0, L) and u′(t) > 0 for t ∈ (θ, b). (54)
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Let us consider Case A. Since ũ ≡ L is the solution of the equation (1) and it
satisfies ũ(b) = L, ũ′(b) = 0, then from Lemma 6 we get

u′(b) > 0.

It follows that there exists δ > 0 such that

u′(t) > 0 and u(t) > L for t ∈ (b, b+ δ).

In view of (35) the solution u satisfies

(p(t)u′(t))′ = 0 for t ∈ (b, b+ δ)

and consequently

u′(t) =
p(b)u′(b)
p(t)

> 0 and u(t) = L+ p(b)u′(b)
∫ t

b

ds
p(s)

,

for t ∈ (b, b + δ). From (31) and (32) it follows that u can be extended onto
[0,∞). This solution is an escape solution.
Let us consider Case B. The monotonicity of u implies the existence of L̃ ∈
(0, L] such that

lim
t→∞u(t) = L̃. (55)

We will prove that L̃ = L. Since f(u(t)) < 0 for t > θ, from (1) it follows,
that pu′ is decreasing on (θ,∞). The inequality u′(t) > 0 for t ∈ (θ,∞) implies
that u′′ < 0 and hence u′ is decreasing on (θ,∞). That yields the existence of
limt→∞ u′. Since u is bounded, necessarily

lim
t→∞u′(t) = 0.

From (1) it follows that

u′′(t) = −p
′(t)
p(t)

u′(t) + f(u(t))

for t ∈ (0,∞). In view of (33) we get

lim
t→∞u′′(t) = f(L̃).

According to (27) and (29) we get L̃ = L. This solution satisfies the conditions
(2) and so it is a homoclinic solution.

Let us consider Case C. From the second part of Lemma 8 we get α ∈ (0, θ)
and β ∈ (θ, b) such that (41) holds. In view of (54) we get

F (u(b)) =
(
p(α)
p(β)

)2

F (B). (56)
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Using Lemma 9 we get the existence of θ1 > b such that u(θ1) = 0 and u′(t) < 0
for t ∈ (b, θ1]. Let us suppose that there exists b̄1 ∈ (θ1,∞) such that

u(b̄1) = B and u′(t) < 0, for t ∈ [θ1, b̄1).

Using the second part of Lemma 9, we get ᾱ1 ∈ (b, θ1) and β̄1 ∈ (θ1, b̄1) such
that

(pu′)2(b̄1) = 2[p2(ᾱ1)F (u(b))− p2(β̄1)F (B)],

and together with (56) we obtain

(pu′)2(b̄1) = 2F (B)
[
p2(ᾱ1)

(
p(α)
p(β)

)2

− p2(β̄1)
]

= 2F (B)p2(β̄1)
[(

p(ᾱ1)p(α)
p(β̄1)p(β)

)2

− 1
]
< 0.

This is a contradiction. Hence, by Lemma 8, there exists b1 > θ1 such that

u(b1) ∈ (B, 0), u′(b1) = 0 and u′(t) < 0 for t ∈ (θ1, b1).

From the second part of Lemma 9 we get α1 ∈ (b, θ1) and β1 ∈ (θ1, b1) such
that

0 = 2[p2(α1)F (u(b))− p2(β1)F (u(b1))].

By (56), we get

F (u(b1)) =
(
p(α1)
p(β1)

)2

F (u(b)) =
(
p(α1)p(α)
p(β1)p(β)

)2

F (B). (57)

Using Lemma 8 we get θ2 > b1 such that u(θ2) = 0 and u′(t) > 0 for t ∈ (b1, θ2].
Let us suppose that there exists b̄2 ∈ (θ2,∞) such that

u(b̄2) = u(b) and u′(t) > 0 for t ∈ [θ2, b̄2).

By virtue of the second part of Lemma 8, we can find ᾱ2 ∈ (b1, θ2) and β̄2 ∈
(θ2, b̄2) such that

(pu′)2(b̄2) = 2[p2(ᾱ2)F (u(b1))− p2(β̄2)F (u(b))],

and together with (57) we obtain

(pu′)2(b̄2) = 2F (u(b))p2(β̄2)
[(

p(ᾱ2)p(α1)
p(β̄2)p(β1)

)2

− 1
]
< 0

a contradiction. Hence there exists b2 > θ2 such that

u(b2) ∈ (0, u(b1)), u′(b2) = 0 and u′(t) < 0 for (θ2, b2).

Repeating this procedure we get a sequence {θn}∞n=1 of roots of the solution u
and a sequence {bn}∞n=1 of roots of the derivative u′ such that {|u(bn)|}∞n=1 is
decreasing. This solution corresponds to an oscillatory solution.
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Step 3. (Estimations) Let u be a solution of problem (1), (37) with B ∈ (L0, 0).
Then from (1) it follows that

u′(t) =
1
p(t)

∫ t

0

p(s)f(u(s)) ds, for t ∈ (0,∞). (58)

Then, in view of (26) and (35)

|u′(t)| ≤ max
L0≤x≤L

|f(x)| ·
∫ t

0

ds = max
L0≤x≤L

|f(x)| · t for t ∈ (0,∞).

Integrating (58) we get

|u(t)| ≤ |u(0)|+
∣∣∣∣∫ t

0

1
p(s)

∫ s

0

p(τ)f(u(τ)) dτ ds
∣∣∣∣ ≤ B + max

L0≤x≤L
|f(x)| · t

2

2
.

The proof is complete. �

Lemma 11 (On oscillatory solutions) Let (26)–(34) be satisfied, B ∈ (L0, 0)
be such that

F (B) < F (L). (59)

Then the corresponding solution of problem (1), (37) is oscillatory.

Proof Let u be a solution of problem (1), (37) with B ∈ (L0, 0) satisfying (59).
Step 1. Let us assume that u is an escape solution. Then there exist b > 0,
θ ∈ (0, b) such that

u(θ) = 0, u(b) = L and u′(t) > 0 for t ∈ (0, b].

From Lemma 8 we get α ∈ (0, θ), β ∈ (θ, b) such that (41) holds. Then

p2(b)u′2(b) = 2F (L)p2(β)
[(

p(α)
p(β)

)2
F (B)
F (L)

− 1
]
< 0.

This contradicts the fact that u′(b) > 0.

Step 2. Let us assume that u is a homoclinic solution. Let θ > 0 be the root of
u and b > θ be arbitrary. Then, by Lemma 8, there exist α ∈ (0, θ), β ∈ (θ, b)
such that (41) holds. From (41), the fact (pu′)2(b) > 0 and (32) we get

F (B) >
(
p(β)
p(α)

)2

F (u(b)) > F (u(b)).

Letting b→∞ we get F (B) ≥ F (L), which contradicts (59). �

Actually, the homoclinic solution is the desired strictly increasing solution
of the problem (1), (2). In order to prove the existence of such solution we need
the lower and upper functions method for the singular mixed problem

(p(t)u′)′ = p(t)f(u), u′(a) = 0, u(b) = L, (60)

where a, b ∈ R, a ≥ 0, b > a.
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Definition 12 A function σ ∈ C([a, b]) is called a lower function of problem
(60), if there exists a finite set Σ ⊂ (a, b) such that σ ∈ C2((a, b] \ Σ), σ′(τ+),
σ′(τ−) ∈ R for τ ∈ Σ,

(p(t)σ′(t))′ ≥ p(t)f(σ(t)) for t ∈ (a, b] \ Σ,

σ′(a+) ≥ 0, σ(b) ≤ L, σ′(τ−) < σ′(τ+) for τ ∈ Σ.

If all inequalities are reversed, then σ is called an upper function of problem
(60).

Note that σ′(a+) need not be bounded if a = 0.

Theorem 13 Let p satisfy (31), (32), f ∈ C(R), σ1 and σ2 be a lower function
and an upper function of problem (60) and let σ1(t) ≤ σ2(t) for t ∈ [a, b]. Then
problem (60) has a solution u ∈ C1([a, b]) ∩ C2((a, b]) such that σ1(t) ≤ u(t) ≤
σ2(t) for t ∈ [a, b].

Proof See [8] Theorem 2.3 for a = 0. For a > 0 problem (60) is regular and
therefore we can use a simplified form of the proof in [8]. �

The next assertion is based on Lemma 4 and Theorem 13.

Lemma 14 (On escape solutions) Let (26)–(35) be satisfied. There exist B∗ ∈
(L0, 0) and c∗ ∈ (0,∞) such that a solution u∗ of problem (1), (37) with B = B∗
satisfies the condition

u∗(c∗) = L, u′∗(t) > 0 on (0, c∗].

Proof Let us put

f̃(x) =
{
f(x) for x ≤ L,
x− L for x ≥ L. (61)

Let ε0 ∈ R be from Lemma 4 for L0, 0, L, f̃ , F̃ in place of x1, x2, x3, h, H ,
respectively. Here, F̃ (x) = − ∫ x

0
f̃(z) dz, x ∈ R. The assumptions of Lemma 4

are satisfied due to (26)–(30), (61). Consider the perturbed equation

u′′ = f̃(u)− ε (62)

with ε ∈ (0, ε0). From Lemma 5 it follows that there exists BL ∈ (L0, 0) such
that for the corresponding solution uL of problem (62), (37) with B = BL, there
exists b > 0 such that uL(b) = L and

0 < u′L(t) ≤
√

2F̃ (L0) for t ∈ [0, b]. (63)

From (33) it follows that there exists a > 0 such that

p′(t)
p(t)

<
ε√

2F̃ (L0)
for t > a.
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Put v(t) = uL(t−a) for t ∈ [a, a+ b]. Then v satisfies equation (62) on [a, a+ b]
and fulfils the initial conditions

v(a) = BL, v′(a) = 0.

Moreover, v(a+ b) = L, f̃(v(t)) = f(v(t)) and

0 <
p′(t)
p(t)

v′(t) <
ε√

2F (L0)

√
2F (L0) = ε

for t ∈ [a, a+ b]. Therefore

v′′(t) = f(v(t)) − ε < f(v(t))− p′(t)
p(t)

v′(t)

for t ∈ (a, a+ b]. We can see that v is an upper function of the problem

u′′ +
p′(t)
p(t)

u′ = f(u), u′(a) = 0, u(a+ b) = L. (64)

Since L0 is a lower function of problem (64), by Theorem 13 and Lemma 6 there
exists a solution u0 of (64) such that

L0 < u0(t) ≤ v(t) for t ∈ [a, a+ b]. (65)

By (63), (64), (65) we have v′(a+ b) > 0, u0(a+ b) = v(a+ b) and u0(t) ≤ v(t)
for t ∈ [a, a+ b]. Therefore

u′0(a+ b) > 0. (66)

Since u′′0(a) = f(u0(a)) > 0 there exists a minimal a0 ∈ [0, a) such that u′0(t) < 0
for t ∈ (a0, a) and u0(t) < 0 for t ∈ (a0, a]. There are two possibilities.

(i) a0 > 0, u0(a0) = 0,
(ii) a0 = 0, u0(t) ≤ 0 for t ∈ [0, a].
Assume that (i) holds. Then we put

β(t) =
{

0 for t ∈ [0, a0],
u0(t) for t ∈ (a0, a+ b].

Assume that (ii) holds. Then u′′0(t) > 0 for t ∈ [0, a] and

lim
t→0+

u′0(t) < 0

and we put
β(t) = u0(t) for t ∈ [0, a+ b].

Denote c∗ = a+ b. In both cases (i) and (ii) the function β is an upper function
of the problem

u′′ +
p′(t)
p(t)

u′ = f(u), u′(0) = 0, u(c∗) = L. (67)
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Since the constant L0 is a lower function of problem (67), then, by Theorem 13
and Lemma 6, there exists a solution u∗ of the problem (67) such that

L0 < u∗(t) ≤ β(t) for t ∈ [0, c∗]. (68)

We put B∗ = u∗(0). Then u∗ is a solution of (1), (37) with B = B∗. Finally, by
(64) and (66) we have

β(c∗) = L, β′(c∗) > 0.

This, together with (68) gives u′∗(c∗) > 0. Hence, by Lemma 10, u′∗(t) > 0 for
t ∈ (0, c∗]. �

Theorem 15 (On homoclinic solutions) Let (26)–(34) be satisfied. Then there
exists at least one strictly increasing solution of problem (1), (2).

Proof First, we will assume that (35) is satisfied. Let us define

M = {B0 ∈ (L0, 0): each solution of (1), (37) with B ∈ [B0, 0) is oscillatory},
and B̃ = infM. Lemma 11 guarantees that M �= ∅ and from Lemma 14 it
follows that B̃ > L0. We will prove that there exists Bhom ∈ (L0, B̃] such
that the corresponding solution of the problem (1), (37) with B = Bhom is a
homoclinic solution. Assume that Bhom does not exist.
Case A. Let ũ be an oscillatory solution of (1), (37) with B = B̃. Then,
according to the definition of B̃, we can find a sequence {Bn} ⊂ (L0, B̃) such
that limn→∞Bn = B̃ and the corresponding solutions un of (1), (37) with
B = Bn are escape solutions. Let θ1 be the second zero of ũ, that is, θ1 fulfils

ũ(θ1) = 0, ũ′(θ1) < 0.

From Lemma 10 we can see that

|un(t)| ≤ L0 +
θ21
2

max
L0≤x≤L

|f(x)|, |u′n(t)| ≤ θ1 · max
L0≤x≤L

|f(x)|

for t ∈ [0, θ1], n ∈ N. Hence the sequence {un} is bounded and equicontinuous
on [0, θ1]. Therefore we can choose a subsequence {um}, which is uniformly
convergent on [0, θ1] to a function v ∈ C([0, θ1]). Obviously,

um(t) = Bm +
∫ t

0

1
p(s)

∫ s

0

p(τ)f(um(τ)) dτ ds

for t ∈ [0, θ1], m ∈ N, and consequently

v(t) = B̃ +
∫ t

0

1
p(s)

∫ s

0

p(τ)f(v(τ)) dτ ds

for t ∈ [0, θ1]. We can check that v is a solution of problem (1), (37) and
therefore

v = ũ on [0, θ1].
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Since um are increasing, it follows that v is nondecreasing on [0, θ1]. This
contradicts the fact that v′(θ1) < 0.
Case B. Let ũ be an escape solution of (1), (37) with B = B̃. Then there exists
b > 0 such that

ũ(b) = L, ũ′(t) > 0 for t ∈ (0,∞). (69)

From the definition of B̃ we get a sequence {Bn} ⊂ (B̃, 0) such that limn→∞Bn =
B̃ and the corresponding solutions un of (1), (37), with B = Bn, are oscillatory.
Therefore

L0 ≤ un(t) ≤ L, |u′n(t)| ≤ t · max
L0≤x≤L

|f(x)| for t ∈ [0,∞), n ∈ N,

and there exist bn > 0 such that un(bn) = Ln ∈ (0, L), u′n(bn) = 0 for n ∈ N.
Then there exist θn > bn such that

un(θn) = 0, u′n(θn) < 0, n ∈ N. (70)

The sequence {un} is bounded and equicontinuous on every [0,K] ⊂ [0,∞) and
so we can choose a subsequence {um} which is uniformly convergent on [0,K]
to a function w ∈ C([0,K]). As in Case A we conclude that w = ũ on [0,K].

Now, we have two possibilities.
(i) Let limm→∞ θm = θ0 <∞. Put K = max{θ0, b}+1. By (70), each um is

decreasing at a neighbourhood of θm and hence ũ is nonincreasing at θ0, which
contradicts (69).

(ii) Let limm→∞ θm = ∞. Put K = b + 1. Since um(b + 1) < L for m ∈ N,
it follows that ũ(b+ 1) ≤ L, which is a contradiction.
We have proved that the function ũ can be neither an escape solution nor an
oscillatory solution. Lemma 10 yields that ũ is a homoclinic solution of problem
(1), (2). Since ũ(t) ∈ [L0, L] for t ∈ [0,∞) we see that assumption (35) can be
omitted. �

Acknowledgements The authors were supported by the Council of Czech
Government MSM 6198959214.

References

[1] Berestycki, H., Lions, P. L., Peletier, L. A.: An ODE approach to the existence of positive
solutions for semilinear problems in R

N . Indiana University Mathematics Journal 30, 1
(1981), 141–157.

[2] Bonheure, D., Gomes, J. M., Sanchez, L.: Positive solutions of a second–order singular
ordinary differential equation. Nonlinear Analysis 61 (2005), 1383–1399.

[3] Dell’Isola, F., Gouin, H., Rotoli, G.: Nucleation of spherical shell-like interfaces by
second gradient theory: numerical simulations. Eur. J. Mech B/Fluids 15 (1996), 545–
568.

[4] Gouin, H., Rotoli, G.: An analytical approximation of density profile and surface tension
of microscopic bubbles for Van der Waals fluids. Mech. Research Communic. 24 (1997),
255–260.

[5] Kitzhofer, G., Koch, O., Lima, P., Weinmüller, E.: Efficient numerical solution of the
density profile equation in hydrodynamics. J. Sci. Comput. 32, 3 (2007), 411–424.



128 Irena RACHŮNKOVÁ, Jan TOMEČEK

[6] Koch, O., Kofler, P., Weinmüller, E.: Initial value problems for systems of ordinary first
and second order differential equations with a singularity of the first kind. Analysis 21
(2001), 373–389.

[7] Lima, P. M., Chemetov, N. V., Konyukhova, N. B., Sukov, A. I.: Analytical–numerical
investigation of bubble-type solutions of nonlinear singular problems. J. Comp. Appl.
Math. 189 (2006), 260–273.

[8] Rachůnková, I., Koch, O., Pulverer, G., Weinmüller, E.: On a singular boundary value
problem arising in the theory of shallow membrane caps. J. Math. Anal. Appl. 332
(2007), 532–541.



Acta Univ. Palacki. Olomuc., Fac. rer. nat.,
Mathematica 48 (2009) 129–137

Integral Presentations of Deviations of
de la Vallee Poussin Right-Angled Sums

Vladimir I. RUKASOV, Olga G. ROVENSKA

Department of Mathematical Analysis, Slavyansk State Pedagogical University,
Batyuka 19, Slavyansk, Ukraine
e-mail: o.rovenskaya@mail.ru

(Received January 10, 2009)

Abstract

We investigate approximation properties of de la Vallee Poussin right-
angled sums on the classes of periodic functions of several variables with
a high smoothness. We obtain integral presentations of deviations of de
la Vallee Poussin sums on the classes Cmα

β,∞.
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1 Introduction

Considering [1] we define ψ-integral classes of periodic functions of several vari-
ables in the following way.

Let Rm be an Euclidean space with elements 
x = (x1, x2, . . . , xm), and let
Tm =

∏m
i=1[−π;π] be an m-dimensional cube with the side 2π,

Nm =
{

x ∈ Rm | xi ∈ N, i = 1, 2, . . . ,m

}
,

Nm
∗ =

{

x ∈ Rm | xi ∈ N∗ = N ∪ {0}, i = 1, 2, . . . ,m

}
,

Nm
i =

{

x ∈ Rm | xi ∈ N, xj ∈ N∗, i �= j

}
,

Em =
{

x ∈ Rm | xi ∈ {0; 1}, i = 1, 2

}
.

We denote by L(Tm) the set of summable on a cube Tm functions f(
x) =
f(x1, x2, . . . , xm) which are 2π-periodic on every variable.

129
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Let f ∈ L(Tm). Then for every pair of points 
s ∈ Em, 
k ∈ Nm
∗ we have a

corresponding value

ask(f) =
1
πm

∫
Tm

f(
x)
m∏
i=1

cos
(
kixi − siπ

2

)
dxi. (1)

Values ask(f), 
s ∈ Em, 
k ∈ Nm
∗ are the Fourier coefficients of the function f(
x)

[1, p. 546].
For every vector 
k ∈ Nm

∗ we have the major harmonic of the function f(
x)

Ak(f ; 
x) =
∑
s∈Em

ask(f)
m∏
i=1

cos
(
kixi − siπ

2

)
(2)

and on the variable xi conjugated harmonic

Aei

k
(f ; 
x) =

∑
s∈Em

ask(f)
∏

j∈m\{i}
cos

(
kjxj − sjπ

2

)
cos

(
kixi − (si + 1)π

2

)
.

Using [1, p. 545] we define Fourier series of the function f(
x) by the following
relation

S[f ] =
∑
k∈Nm∗

1

2q(k)
Ak(f, 
x), (3)

where q(
k) is a number of zero coordinates of the vector 
k.
Let f ∈ L(Tm) and systems of numbers ψij(k), Ψij(k), i = 1, 2, . . . ,m;

j = 1, 2, k ∈ N∗ be given.
Let us put

ψi(k) =
√
ψ2
i1(k) + ψ2

i2(k),Ψi(k) =
√

Ψ2
i1(k) + Ψ2

i2(k)

and consider the following conditions be fulfilled: ψi(k) �= 0, Ψi(k) �= 0, k ∈ N∗,
ψi1(0) = 1, Ψi1(0) = 1, ψi2(0) = 0, Ψi2(0) = 0, i = 1, 2, . . . ,m.

Furthermore, let∑
k∈Nm

i

1

2q(k)ψ
2

i (ki)
[ψi1(ki)Ak(f, 
x)− ψi2(ki)Aei

k
(f, 
x)] (4)

be the Fourier series of some function of L(Tm). It will be denoted by

fψi(
x) =
∂ψif(
x)
∂xi

and called ψi-derivative of the function f with respect to the xi, i ∈ m.
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Let m = {1, 2, . . . ,m}. For a fixed r-elemental set μ(r) ⊂ m, μ(r) =
{i1, i2, . . . , ir}, we define a function fΨμ(
x) by

fΨμ(
x) =
∂Ψir ∂Ψir−1 . . . ∂Ψi1 f(
x)
∂xir∂xir−1 . . . ∂xi1

and call it mixed Ψμ-derivative with respect to variables xi, i ∈ μ(r).
Let a set of functions ψij , Ψij , i = 1, 2, . . . ,m; j = 1, 2 be given. The set

of continuous functions f ∈ L(Tm) having the essentially bounded Ψμ- and
ψi-derivatives, i.e.

ess sup
∣∣fΨμ(
x)

∣∣ ≤ 1, ess sup
∣∣fψi(
x)

∣∣ ≤ 1, i = 1, 2, . . . ,m; μ ⊂ m; 
x ∈ Tm
(5)

will be denoted by the symbol Cmψ∞ .
If for the sets of functions ψij(k) and Ψij(k), i = 1, 2, . . . ,m; j = 1, 2, the

functions ψi(k), Ψi(k) and numbers βi, β∗
i , i = 1, 2, . . . ,m, fulfil

ψi1(k) = ψi(k) cos
βiπ

2
; ψi2(k) = ψi(k) sin

βiπ

2
;

Ψi1(k) = Ψi(k) cos
β∗
i π

2
, Ψi2(k) = Ψi(k) sin

β∗
i π

2
, i = 1, 2, . . . ,m,

then the class Cmψ∞ is the class of (ψ, β)-differentiable periodic functions of m
variables (see [2]) and it is denoted by Cmψβ,∞. For m = 2 these classes are
the classes of (ψ, β)-differentiable periodic functions of two variables which are
defined in [3] (see also [1]). In the case when the conditions Ψ1(k) = k−r,
Ψ2(k) = k−s, ψ1(k) = k−r1 , ψ2(k) = k−s1 , β1 = r, β∗

1 = s, β2 = r1, β∗
2 = s1

for the r > 0, s > 0, r1 ≥ r, s1 ≥ s are also fulfilled the classes C2ψ
β,∞ and

W r,s
r1,s1 are equal(see for example [4]). In [4] (see [5], too) there is proved the

asymptotic equality of upper bounds of deviations of Fourier right-angled sums
Sn(f, 
x) (taking at the classes W r,s

r1,s1) for ni →∞, i = 1, 2:

E(W r,s
r1,s1 ;Sn) =

4 lnn1

π2nr11
+

4 lnn2

π2ns12
+O(1)

(
lnn1 lnn2

nr1n
s
2

+
1
nr11

+
1
ns12

)
.

Let us put Gn,p =
∏m
i=1[ni − pi;ni − 1] for 
n ∈ Nm, 
p ∈ Nm, pi < ni,

i = 1, 2, . . . ,m,. Then trigonometric polynomials of the type

Vn,p(f ; 
x) =
1∏m
i=1 pi

∑
k∈G�n,�p

Sk(f ; 
x), (6)

(where Sk(f ; 
x) are partial sums of Fourier series defined (2), 
n ∈ Nm, pi ∈ N,
pi < ni, i = 1, 2, . . . ,m) are called Vallee Poussin right-angled sums.

In this work the problems of approximation of classes Cmψβ,∞ by polynomials
Vn,p(f ; 
x) are investigated. The functions which determine these classes are
defined in the following way:

ψi(x) = e−αix, Ψi(x) = e−α
∗
i x, αi > 0, α∗

i > 0, i = 1, 2, . . . ,m.
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We denote such classes by Cmαβ,∞ (analagously to the classes of functions of
a single variable).

It is proved by S. M. Nikol’skii in [6] (see also [7], [8]) that for upper bounds
of the deviations of Fourier sums on the corresponding classes Cαβ,∞ functions
of one variabl we obtain the following asymptotic equality for n→∞:

E (
Cαβ,∞;Sn

)
=

8qn

π2
K(q) +O(1)

qn

n
, q = e−α, (7)

where

K(q) =

π
2∫

0

du√
1− q2 sin2 u

is the total elliptic integral of the first kind.
Asymptotic equalities for upper bounds of the deviations of de la Vallee

Poussin sums on the classes Cαβ,∞ may be found in the [9], [10] (see also [11],
[12, p. 217]):

E (
Cαβ,∞;Vn,p

)
=

4qn−p+1

πp(1 − q2) +O(1)
(

qn−p+1

p(n− p)(1− q)3 +
qn

p(1− q2)
)
, 1<p<n.

(8)

The 2-dimensional and m-dimensional analogies of equality (7) for the classes
Cmαβ,∞ are in the works [13], [14].

2 Main Results

Let Λ = {Λ1,Λ2, . . . ,Λm} be a fixed set of infinite triangle numeric matrices,
Λi = {λ(ni)

ki
}, i = 1, 2, . . . ,m, λ(ni)

0 = 1, λ(ni)
ki

= 0 for ki ≥ ni.
Further let λ(n)

k
=

∏m
i=1 λ

(ni)
ki

and let Gn =
∏m
i=1[0;ni−1] be an right-angled

parallelepiped corresponding to the vector 
n ∈ Nm.
For every function with Fourier series (1) we have trigonometric polynomial

Un(f ; 
x; Λ) =
∑
k∈G�n

2−q(k)λ(n)
k
Ak(f ; 
x).

Values δn(f ; 
x; Λ) = f(
x)−Un(f ; 
x; Λ) are the deviations of such polynomials
of the function f(
x).

In this work there are found the integral presentations of the deviations

δn,p(f, 
x) = f(
x)− Vn,p(f, 
x)

of sums Vn,p(f, 
x) from function f(
x) out of classes Cmαβ,∞.
The following theorem is the main result of this work.
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Theorem 1 If αi > 0, α∗
i > 0, qi = e−αi , Qi = e−α

∗
i , βi ∈ R, β∗

i ∈ R, pi ∈ N ,
1 < pi < ni; i = 1, 2, . . . ,m,
then for every function f ∈ Cmαβ,∞ the following equality is fulfilled

δn,p(f, 
x) =
m∑
i=1

qni−pi+1
i

piπ

π∫
−π

fψi

βi
(
x+ ti
ei)b

βi

ni−pi
(ti)dti

−
m∑
i=1

qni+1
i

piπ

π∫
−π

fψi

βi
(
x+ ti
ei)bβi

ni
(ti)dti

+ O(1)
m∑
r=2

∑
μ(r)∈m

∏
j∈μ(r)

Q
nj−pj+1
j

∫
T r

∣∣∣Bβ�
j

nj−pj
(tj)

∣∣∣ dtj , (9)

where

bβi
ni

(ti) =
(q2i cos ti − 2qi + cos ti)
(1 − 2qi cos ti + q2i )2

cos
(
niti +

βiπ

2

)
+

(q2i sin ti − sin ti)
(1− 2qi cos ti + q2i )2

sin
(
niti +

βiπ

2

)
,

B
β�

i
ni (ti) =

(Q2
i cos ti − 2Qi + cos ti)

(1− 2Qi cos ti +Q2
i )2

cos
(
niti +

β�i π

2

)
+

(Q2
i sin ti − sin ti)

(1− 2Qi cos ti +Q2
i )2

sin
(
niti +

β�i π

2

)
.

Proof It is clear that

δn,p(f ; 
x) =
1∏m
i=1 pi

∑
k∈G�n,�p

ρk(f ; 
x) =
1∏m
i=1 pi

m∑
i=1

ni−1∑
ki=ni−pi

ρk(f ; 
x), (10)

where
ρk(f ; 
x) = f(
x)− Sk(f ; 
x), 
k = (k1; k2; . . . ; km).

Let us investigate ρk(f ; 
x). Using theorem 1 in [13] for f ∈ Cmαβ,∞ we have

ρn(f, 
x) =
m∑
i=1

1
π

∫ π

−π
fψi

βi
(
x + ti
ei)

∞∑
k=ni+1

exp(−αik) cos
(
kti +

βiπ

2

)
dti

+
m∑
r=2

(−1)r+1
∑

μ(r)∈m

1
πr

∫
T r

f
Ψμ

β�
μ

(

x+

∑
i∈μ(r)

ti
ei

)

×
∏

j∈μ(r)

∞∑
kj=nj+1

exp(−α�i kj) cos
(
kjtj +

β�j π

2

)
dtj .
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Denote qi = exp(−αi), Qi = exp(−α�i ). Using [15, p. 123–124] we obtain

∞∑
k=ni+1

exp(−αik) cos
(
kti +

βiπ

2

)

= qni

i

[
qi cos ti − q2i

1− 2qi cos ti + q2i
cos

(
niti+

βiπ

2

)
− qi sin ti

1− 2qi cos ti + q2i
sin

(
niti+

βiπ

2

)]
.

If

hβi
ni

(ti) =
(qi cos ti − q2i ) cos

(
niti + βiπ

2

)
− qi sin ti sin

(
niti + βiπ

2

)
1− 2qi cos ti + q2i

,

H
β�

i
ni (ti) =

(Qi cos ti −Q2
i ) cos

(
niti + βiπ

2

)
−Qi sin ti sin

(
niti + βiπ

2

)
1− 2Qi cos ti +Q2

i

then

ρn(f, 
x) =
m∑
i=1

1
π

∫ π

−π
fψi

βi
(
x+ ti
ei)qni

i h
βi
ni

(ti)dti

+
m∑
r=2

(−1)r+1
∑

μ(r)∈m

1
πr

∫
T r

f
Ψμ

β�
μ

(

x+

∑
i∈μ(r)

ti
ei

) ∏
j∈μ(r)

Q
nj

j H
β�

j
nj (tj) dtj .

According to (10) we obtain

δn,p(f, 
x) =
m∑
i=1

1
piπ

ni−1∑
ki=ni−pi

qki

i

π∫
−π

fψi

βi
(
x+ ti
ei)h

βi

ki
(ti)dti

+
m∑
r=2

(−1)r+1
∑

μ(r)∈m

1
πr

∫
T r

f
Ψμ

β�
μ

(

x+

∑
i∈μ(r)

ti
ei

)

×
∏

j∈μ(r)

1
pj

nj−1∑
νj=nj−pj

Q
νj

j H
β�

j
νj (tj) dtj . (11)

Let us use [11, p. 232–234]. Applying elementary transformations we obtain

ni−1∑
ki=ni−pi

qki

i h
βi

ki
(t) =

ni−1∑
ki=ni−pi

qki+1
i

[
(cos(ki + 1)t− qi cos kit) cos

βiπ

2

− (sin(ki + 1)t− qi sin kit) sin
βiπ

2

]
(1− 2qi cos t+ q2i )

−1

df=
Σi,1(t) cos βiπ

2 − Σi,2(t) sin βiπ
2

1− 2qi cos t+ q2i
. (12)
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Let us investigate Σi,1(t) and Σi,2(t). We may write

Σ1(t) =
n−1∑

k=n−p
qk+1(cos(k + 1)t− q cos kt) =

1
2

[ n∑
k=0

(qeit)k −
n−p∑
k=0

(qeit)k
]

+
1
2

[ n∑
k=0

(qe−it)k −
n−p∑
k=0

(qe−it)k
]
− q2

2

[ n−1∑
k=0

(qeit)k −
n−p−1∑
k=0

(qeit)k
]

− q2

2

[ n−1∑
k=0

(qe−it)k −
n−p−1∑
k=0

(qe−it)k
]

=
1
2

[
(qeit)n+1 − 1
qeit − 1

− (qeit)n−p+1 − 1
qeit − 1

]
+

1
2

[
(qe−it)n+1 − 1
qe−it − 1

− (qe−it)n−p+1 − 1
qe−it − 1

]

− q2

2

[
(qeit)n − 1
qeit − 1

− (qeit)n−p − 1
qeit − 1

]
− q2

2

[
(qe−it)n − 1
qe−it − 1

− (qe−it)n−p − 1
qe−it − 1

]
.

According to [15, p. 124] we denote

Γ(t) = (1− 2q cos t+ q2)−1. (13)

Now we have

Σ1(t) =
(
qn+2 cosnt−qn+1 cos(n+1)t−qn−p+2 cos(n−p)t+qn−p+1 cos(n−p+1)t

−q2(qn+1 cos(n−1)t−qn cosnt−qn−p+1 cos(n−p−1)t+qn−p cos(n−p)t))Γ(t)

=
(
2qn+2 cosnt−2qn−p+2 cos(n−p)t−qn+1 cos(n+1)t+qn−p+1 cos(n−p+1)t

− qn+3 cos(n− 1)t+ qn−p+3 cos(n− p− 1)t
)
Γ(t)

=
(
(2qn+2 cosnt− qn+1 cos(n+ 1)t− qn+3 cos(n− 1)t)− (2qn−p+2 cos(n− p)t

− qn−p+1 cos(n− p+ 1)t− qn−p+3 cos(n− p− 1)t)
)
Γ(t). (14)

Doing elementary transformation of the term in brackets on the right part
of equality (14) we have

2qn+2 cosnt− qn+1 cos(n+ 1)t− qn+3 cos(n− 1)t

= qn+1
(
(2q − cos t− q2 cos t) cosnt+ (sin t− q2 sin t) sinnt

)
, (15)

2qn−p+2 cos(n− p)t− qn−p+1 cos(n− p+ 1)t− qn−p+3 cos(n− p− 1)t

= qn−p+1
(
(2q− cos t− q2 cos t) cos(n− p)t+ (sin t− q2 sin t) sin(n− p)t). (16)
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Comparing (13)–(16) we obtain

Σ1(t) =
[
qn+1

(
(2q − cos t− q2 cos t) cosnt+ (sin t− q2 sin t) sinnt

)
− qn−p+1

(
(2q − cos t− q2 cos t) cos(n− p)t

+ (sin t− q2 sin t) sin(n− p)t)](1− 2q cos t+ q2)−1. (17)

Analogously, we may find

Σ2(t) =
[
qn+1

(
(q2 sin t− sin t) cosnt+ (2q − cos t− q2 cos t) sinnt

)
− qn−p+1

(
(q2 sin t− sin t) cos(n− p)t

+ (2q − cos t− q2 cos t) sin(n− p)t)](1 − 2q cos t+ q2)−1. (18)

Respecting the last relation we may the equality (12) write in the following way

1
pi

ni−1∑
ki=ni−pi

qki

i h
βi

ki
(ti) =

qni−pi+1
i

pi

[
(q2i cos ti− 2qi+cos ti) cos

(
(ni− pi)ti+ βiπ

2

)

+ (q2i sin ti − sin ti) sin
(

(ni − pi)ti +
βiπ

2

)]
(1− 2qi cos ti + q2i )

−2

− qni+1
i

pi

[
(q2i cos ti − 2qi + cos ti) cos

(
niti +

βiπ

2

)
+ (q2i sin ti − sin ti) sin

(
niti +

βiπ

2

)]
(1 − 2qi cos ti + q2i )

−2. (19)

Analogously,

1
pi

ni−1∑
ki=ni−pi

Qki

i H
β�

i

ki
(ti) =

=
Qni−pi+1
i

pi

[
(Q2

i cos ti − 2Qi + cos ti) cos
(

(ni − pi)ti +
β�i π

2

)
+ (Q2

i sin ti − sin ti) sin
(

(ni − pi)ti +
β�i π

2

)]
(1− 2Qi cos ti +Q2

i )
−2

− Qni+1
i

pi

[
(Q2

i cos ti − 2Qi + cos ti) cos
(
niti +

β�i π

2

)
+ (Q2

i sin ti − sin ti) sin
(
niti +

β�i π

2

)]
(1− 2Qi cos ti +Q2

i )
−2. (20)

Considering the condition

ess sup
x∈Tm

|fΨμ(
x)| ≤ 1, μ ⊂ m, f ∈ Cmαβ,∞

and equalities (11), (19), (20) we have the coretness the theorem. �
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3 Conclusion

Using the relation (9) we can obtain an asymptotic equality for upper bounds of
the deviations of the de la Vallee Poussin right-angled sums taken over classes
of periodic functions of several variables with a high smoothness.
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Abstract

In this paper, weak and strong convergence of finite step iteration
sequences to a common fixed point for a pair of a finite family of non-
expansive mappings and a finite family of asymptotically nonexpansive
mappings in a nonempty closed convex subset of uniformly convex Ba-
nach spaces are presented.
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1 Introduction

The class of asymptotically nonexpansive mappings which is an important gen-
eralization of that of nonexpansive mappings was introduced by Goebel and
Kirk [6]. Iteration processes for nonexpansive and asymptotically nonexpansive
mappings in Banach spaces including Mann [11] and Ishikawa [8] iteration pro-
cesses have been studied extensively by many authors (see [2, 7, 14, 15, 16, 17]).

Recently, Xu and Noor [19] introduced and studied a three-step scheme to
approximate fixed points of asymptotically nonexpansive mappings in Banach
space. Cho et al. [3] extended the work of Xu and Noor [19] to the three-step
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iterative scheme with errors in a Banach space and gave weak and strong con-
vergence theorems for asymptotically nonexpansive mappings. Chidume and
Ali [2] considered the multi-step scheme for a finite family of asymptotically
nonexpansive mappings and gave weak convergence theorems for this scheme
in a uniformly convex Banach space whose the dual space has the Kadec–Klee
property. They also proved a strong convergence theorem under some appro-
priate conditions on a finite family of asymptotically nonexpansive mappings.
Liu et al. (see [9] and [10]) established a new method with respect to a pair
of nonexpansive and asymptotically nonexpansive mappings. The results in [9]
and [10] generalize, improve and unify many known results due to many authors.
Moreover, they also gave an example to demonstrate that their results are sub-
stantial generalizations and many previous known results are not applicable in
this case.

Inspired by the above works, in this paper, a multi-step iteration scheme for
a finite family of nonexpansive and asymptotically nonexpansive mappings is
introduced and strong and weak convergence theorems of this scheme to com-
mon fixed point of nonexpansive and asymptotically nonexpansive mappings are
proved. The weak convergence theorem is proved in a uniformly convex Banach
space whose dual has the Kadec–Klee property. It is worth mentioning that
there are uniformly convex Banach spaces, which have neither a Fréchet differ-
entiable norm nor Opial property; however, their dual does have the Kadec–Klee
property (see [5, Example 3.1]). Hence our results are different from [9] and [10]
and the proofs are of independent interest.

2 Preliminaries

Let K be a nonempty subset of a real Banach space E and T : K → K be a
mapping with the fixed point set F (T ), i.e., F (T ) = {x ∈ K : x = Tx}. In this
paper, we write xn → x (resp. xn ⇀ x) if xn converges strongly (resp. weakly)
to x.

Definition 1 A mapping T : K → K is said to be

1. asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with
limn→∞ kn = 1 such that ‖T nx − T ny‖ ≤ kn‖x− y‖ for all x, y ∈ K and
n ≥ 1;

2. nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ K;

3. Lipschitzian (with a Lipschitz constant L) if ‖Tx − Ty‖ ≤ L‖x − y‖ for
all x, y ∈ K;

4. demi-closed at a point p ∈ K if whenever {xn} is a sequence in K which
converges weakly to a point x ∈ K and {Txn} converges strongly to p, it
follows that Tx = p.
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Definition 2 [4] A norm on a Banach space E is uniformly convex (or simply,
E is uniformly convex) if for all {xn}, {yn} ⊂ {z ∈ E : ‖z‖ = 1} such that∥∥xn+yn

2

∥∥→ 1, we have ‖xn − yn‖ → 0.

Let K be a nonempty subset of a Banach space E. Let S1, S2, . . . , SN : K →
K be N nonexpansive mappings, T1, T2, . . . , TN : K → K be N asymptotically
nonexpansive mappings. Then the sequence {xn} defined by

x1 ∈ K,

x
(0)
n = xn,

x
(1)
n = a

(1)
n T n1 x

(0)
n + (1− a(1)

n )S1xn,

x
(2)
n = a

(2)
n T n2 x

(1)
n + (1− a(2)

n )S2xn,
...

x
(N−1)
n = a

(N−1)
n T nN−1x

(N−2)
n + (1− a(N−1)

n )SN−1xn,

x
(N)
n = a

(N)
n T nNx

(N−1)
n + (1− a(N)

n )SNxn,
xn+1 = x

(N)
n , n ≥ 1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1)

where {a(i)
n }∞n=1 ⊂ [0, 1], i = 1, 2, . . . , N . An example of such iterations can be

found in [9] and [10].
The purpose of this paper is to study the weak and strong convergences of

finite-step iteration sequence {xn} defined by (1) to a common fixed point of
a finite family of nonexpansive mappings and a finite family of asymptotically
nonexpansive mappings in a uniformly convex Banach space.

The following lemmas are our main tool for proving the results.

Lemma 1 ([7]) Let E be a uniformly convex Banach space and K be a nonempty
closed convex subset of E. If T : K → K is an asymptotically nonexpansive
mapping, then I − T is demiclosed at zero.

Lemma 2 Let E be a uniformly convex Banach space, {xn} and {yn} be se-
quences in E. Suppose that there is δ > 0 such that δ ≤ tn ≤ 1 − δ for all
n ∈ N. If lim supn→∞ ‖xn‖ ≤ a, lim supn→∞ ‖yn‖ ≤ a and limn→∞ ‖tnxn +
(1 − tn)yn‖ = a for some a ≥ 0, then limn→∞ ‖xn − yn‖ = 0. Moreover,
limn→∞ ‖xn‖ = limn→∞ ‖yn‖ = a.

Proof The first assertion follows from [15]. It suffices to prove that

lim inf
n→∞ ‖xn‖ ≥ a.

In fact, this follows since

a = lim
n→∞ ‖tnxn + (1 − tn)yn‖ = lim

n→∞ ‖xn + (1− tn)(yn − xn)‖.

This finishes the proof. �
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Lemma 3 ([13]) Let {an} and {bn} be sequences of nonnegative numbers sat-
isfying the inequality an+1 ≤ (1 + bn)an, for all n ≥ 1. If

∑∞
n=1 bn < ∞, then

limn→∞ an exists. In particular, if {an} has a subsequence which converges to
zero, then limn→∞ an = 0.

Lemma 4 ([5]) Let E be a reflexive Banach space such that its dual E∗ has the
Kadec–Klee property. Let {xn} be a bounded sequence in E and p, q ∈ ωw(xn),
where ωw(xn) denotes the set of all weak cluster points of the sequence {xn}.
Suppose that limn→∞ ‖txn + (1− t)p− q‖ exists for all t ∈ [0, 1]. Then p = q.

Lemma 5 ([5]) Let K be a convex subset of a uniformly convex Banach space
E. Then there exists a strictly continuous convex function φ : R+ → R+ with
φ(0) = 0 such that for each Lipschitzian mapping T : K → K with a Lipschitz
constant L,

‖tTx+ (1− t)Ty − T (tx+ (1− t)y)‖ ≤ Lφ−1(‖x− y‖ − 1
L
‖Tx− Ty‖)

for all x, y ∈ K and all 0 < t < 1.

Proposition 1 ([20]) Let K be a nonempty subset of a Banach space E and
T1, T2 . . . , TN : K → K be N asymptotically nonexpansive mappings. Then
there exists a sequence {kn} ⊂ [1,∞) such that limn→∞ kn = 1 and

‖T ni x− T ni y‖ ≤ kn‖x− y‖ (2)

for all x, y ∈ K, n ≥ 1 and i = 1, 2, . . . , N .

From now on, we will assume that N asymptotically nonexpansive mappings
T1, T2, . . . , TN : K → K share the same sequence {kn} ⊂ [1,∞) as mentioned in
the preceding proposition.

3 Technical Lemmas

Lemma 6 Let K be a nonempty convex subset of a real Banach space E. Let
S1, S2, . . . , SN : K → K be nonexpansive mappings, T1, T2, . . . , TN : K → K be
asymptotically nonexpansive mappings with the sequence {kn} and suppose that
F =

⋂N
i=1 F (Si) ∩ F (Ti) �= ∅. If

∞∑
n=1

(kn − 1) <∞, (3)

then limn→∞ ‖xn−q‖ exists for any q ∈ F , where {xn} is defined by the iterative
scheme (1).

Proof Let q ∈ F . It follows from (1) that

‖x(1)
n − q‖ ≤ a(1)

n ‖T n1 xn − q‖+ (1− a(1)
n )‖S1xn − q‖

≤ a(1)
n kn‖xn − q‖+ (1 − a(1)

n )‖xn − q‖
≤ a(1)

n kn‖xn − q‖+ (1 − a(1)
n )kn‖xn − q‖

= kn‖xn − q‖ (4)
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and from (4), we have

‖x(2)
n − q‖ ≤ a(2)

n ‖T n2 x(1)
n − q‖+ (1− a(2)

n )‖S2xn − q‖
≤ a(2)

n kn‖x(1)
n − q‖+ (1 − a(2)

n )‖xn − q‖
≤ a(2)

n k2
n‖xn − q‖+ (1 − a(2)

n )k2
n‖xn − q‖

= k2
n‖xn − q‖. (5)

Continuing the above process, we get

‖x(i)
n − q‖ ≤ kin‖xn − q‖ for all n ≥ 1, i = 1, 2, . . . , N. (6)

In particular,

‖xn+1 − q‖ = ‖x(N)
n − q‖ ≤ kNn ‖xn − q‖ = (1 + (kNn − 1))‖xn − q‖.

Notice that (3) holds (if and) only if

∞∑
n=1

(kNn − 1) <∞. (7)

By Lemma 3, we have limn→∞ ‖xn − q‖ exists. This completes the proof. �

Lemma 7 Under the assumptions of Lemma 6 and suppose that there is δ > 0
such that

δ ≤ a(i)
n ≤ 1− δ for all n ≥ 1, i = 1, 2, . . . , N. (8)

If {xn} is defined by the iterative scheme (1), then
lim
n→∞ ‖Sixn − T

n
i x

(i−1)
n ‖ = 0 for all i = 1, 2, . . . , N. (9)

Proof Let q ∈ F . By Lemma 6, we have

d = lim
n→∞ ‖xn − q‖ exists. (10)

It follows from (6), (10) and limn→∞ kn = 1 that

lim sup
n→∞

‖x(N−1)
n − q‖ ≤ d, (11)

and so

lim sup
n→∞

‖T nNx(N−1)
n − q‖ ≤ d.

Also,

lim sup
n→∞

‖SNxn − q‖ ≤ d.
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Further, from (10) and (1) we have

d = lim
n→∞ ‖x

(N)
n − q‖ = lim

n→∞ ‖a
(N)
n (T nNx

(N−1)
n − q) + (1 − a(N)

n )(SNxn − q)‖.

Then, by Lemma 2, we get

lim
n→∞ ‖SNxn − T

n
Nx

(N−1)
n ‖ = lim

n→∞ ‖(SNxn − q)− (T nNx
(N−1)
n − q)‖ = 0,

and

lim
n→∞ ‖T

n
Nx

(N−1)
n − q‖ = d.

Therefore,

d = lim inf
n→∞ ‖T

n
Nx

(N−1)
n − q‖ ≤ lim inf

n→∞ kn‖x(N−1)
n − q‖

= lim inf
n→∞ ‖x

(N−1)
n − q‖ ≤ lim sup

n→∞
‖x(N−1)

n − q‖ ≤ d.

Hence,

lim
n→∞ ‖x

(N−1)
n − q‖ = d.

It follows from (6), (10) and limn→∞ kn = 1 that

lim sup
n→∞

‖x(N−2)
n − q‖ ≤ d, (12)

and so

lim sup
n→∞

‖T nN−1x
(N−2)
n − q‖ ≤ d.

Also,

lim sup
n→∞

‖SN−1xn − q‖ ≤ d.

Further, from (10) and (1) we have

d = lim
n→∞ ‖x

(N−1)
n −q‖ = lim

n→∞ ‖a
(N−1)
n (T nN−1x

(N−2)
n −q)+(1−a(N−1)

n )(SN−1xn−q)‖.

Applying Lemma 2, we have

lim
n→∞ ‖SN−1xn − T nN−1x

(N−2)
n ‖ = lim

n→∞ ‖(SN−1xn − q)− (T nN−1x
(N−2)
n − q)‖ = 0.

Continuing this in an obvious manner, we get (9) and this completes the proof.
�

Lemma 8 Under the assumptions of Lemma 6 and suppose that (8) holds. If
{xn} is defined by the iterative scheme (1) and

lim
n→∞ ‖xn − Sixn‖ = 0 for all i = 1, 2, . . . , N, (13)

then limn→∞ ‖xn − Tixn‖ = 0 for all i = 1, 2, . . . , N .
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Proof By Lemma 7, we have

lim
n→∞ ‖Sixn − T

n
i x

(i−1)
n ‖ = 0, for all i = 1, 2, . . . , N. (14)

It follows from (13) that,

lim
n→∞ ‖xn − T

n
i x

(i−1)
n ‖ = 0, for all i = 1, 2, . . . , N. (15)

Next, from (1) we have

‖xn − xn+1‖ ≤ a(N)
n ‖xn − T nNx(N−1)

n ‖+ (1− a(N)
n )‖xn − SNxn‖.

From (13) and (15), we have

lim
n→∞ ‖xn − xn+1‖ = 0. (16)

Thus, we can estimate, using (1),

‖xn − T ni xn‖ ≤ ‖xn − T ni x(i−1)
n ‖+ ‖T ni x(i−1)

n − T ni xn‖
≤ ‖xn − T ni x(i−1)

n ‖+ kn‖x(i−1)
n − xn‖

≤ ‖xn − T ni x(i−1)
n ‖+ kna

(i−1)
n ‖T ni−1x

(i−2)
n − xn‖

+ kn(1 − a(i−1)
n )‖Si−1xn − xn‖.

Hence,

lim
n→∞ ‖xn − T

n
i xn‖ = 0, for all i = 1, 2, . . . , N. (17)

It then follows from (16) and (17) that

‖xn − Tixn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − T n+1
i xn+1‖+ ‖T n+1

i xn+1 − T n+1
i xn‖

+ ‖T n+1
i xn − Tixn‖

≤ ‖xn − xn+1‖+ ‖xn+1 − T n+1
i xn+1‖+ kn+1‖xn+1 − xn‖

+ k1‖T ni xn − xn‖
≤ (1 + kn+1)‖xn − xn+1‖+ ‖xn+1 − T n+1

i xn+1‖+ k1‖T ni xn − xn‖
for i = 1, 2, . . . , N . This implies that

lim
n→∞ ‖xn − Tixn‖ = 0, for all i = 1, 2, . . . , N.

This completes the proof. �

Lemma 9 Under the assumptions of Lemma 6 and suppose that (8) holds and
that

‖x− Tiy‖ ≤ ‖Six− Tiy‖ for all x, y ∈ K and i = 1, 2, . . . , N. (18)

If the sequence {xn} is defined by the iterative scheme (1), then
lim
n→∞ ‖xn − Sixn‖ = lim

n→∞ ‖xn − Tixn‖ = 0,

for all i = 1, 2, . . . , N .
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Proof We shall show that

lim
n→∞ ‖xn − Sixn‖ = 0, for all i = 1, 2, . . . , N. (19)

By Lemma 7, we have

lim
n→∞ ‖Sixn − T

n
i x

(i−1)
n ‖ = 0, for all i = 1, 2, . . . , N. (20)

It follows from (18) that

lim
n→∞ ‖xn − T

n
i x

(i−1)
n ‖ = 0, for all i = 1, 2, . . . , N. (21)

Thus (19) follows. And Lemma 8 guarantees the second equality. �

4 Strong convergence theorems

A finite family {T1, . . . , TN} of mappings of K with

F =
N⋂
i=1

F (Ti) �= ∅

is said to satisfy condition (B) [2] if there exists a nondecreasing function
f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > r for all r ∈ (0,∞) such that
for all x ∈ K

max
1≤i≤N

‖x− Tix‖ ≥ f(d(x, F )),

where d(x, F ) = inf{‖x− p‖ : p ∈ F}.
Theorem 1 Let K be a nonempty closed convex subset of a uniformly con-
vex Banach space E. Let S1, S2, . . . , SN : K → K be nonexpansive mappings,
T1, T2, . . . , TN : K → K be asymptotically nonexpansive mappings with the se-
quence {kn} and suppose that F =

⋂N
i=1 F (Si) ∩ F (Ti) �= ∅. Suppose that the

family {S1, S2, . . . , SN , T1, T2, . . . , TN} satisfies condition (B) and (3), (8), (18)
hold. Then the sequence {xn} defined by (1) converges strongly to a common
fixed point of S1, S2, . . . , SN , T1, T2, . . . , TN .

Proof We have

‖xn+1 − q‖ = ‖x(N)
n − q‖ ≤ (1 + (kNn − 1))‖xn − q‖ for all q ∈ F .

Consequently,
d(xn+1, F ) ≤ (1 + (kNn − 1))d(xn, F ).

Applying Lemma 3 to the above inequality, we obtain that limn→∞ d(xn, F )
exists. Also, by Lemma 9,

lim
n→∞ ‖xn − Sixn‖ = lim

n→∞ ‖xn − Tixn‖ = 0 for all i = 1, 2, . . . , N. (22)
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Since {S1, S2, . . . , SN , T1, T2, . . . , TN} satisfies condition (B), we conclude that

lim
n→∞ d(xn, F ) = 0.

We now prove that {xn} is a Cauchy sequence in K. Let ε > 0. Then there
exists a positive integer n0 such that d(xn0 , F ) < ε

4 . Find p ∈ F such that
‖xn0 − p‖ < ε

4 . By Lemma 6, we see that limn→∞ ‖xn − p‖ exists and so
{xn − p} is bounded. Then there is a constant M > 0 such that

‖xn − p‖ ≤M for all n ≥ 1.

We now choose a positive integer n1 such that

∞∑
j=n1

(kNj − 1) <
ε

4M
.

Moreover, we have

‖xn+1 − p‖ ≤ ‖xn − p‖+M(kNn − 1).

This implies that

‖xn+m − p‖ ≤ ‖xn+m−1 − p‖+M(kNn+m−1 − 1)

≤ ‖xn+m−2 − p‖+M(kNn+m−2 − 1) +M(kNn+m−1 − 1)

≤ ‖xn − p‖+M

n+m−1∑
j=n

(kNj − 1) (23)

for all n,m ≥ 1. From (23) it follows that, for all n > n1 and m ≥ 1,

‖xn+m − xn‖ ≤ ‖xn+m − p‖+ ‖xn − p‖

≤ 2‖xn1 − p‖+M

n+m−1∑
j=n1

(kNj − 1) +M

n−1∑
j=n1

(kNj − 1)

≤ 2‖xn1 − p‖+ 2M
n+m−1∑
j=n1

(kNj − 1)

≤ 2‖xn1 − p‖+ 2M
∞∑

j=n1

(kNj − 1)

< 2
ε

4
+ 2M

ε

4M
= ε.

Hence {xn} is a Cauchy sequence in K. In virtue of the completeness of K, we
assume that xn → p′ ∈ K as n→∞. By the continuities of Si and Ti and (22),
we have Sip′ = p′ = Tip

′ for all i = 1, 2, . . . , N , so p′ ∈ F . This completes the
proof. �
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5 Weak convergence theorems

Lemma 10 Under the assumptions of Lemma 6 and suppose that (8) holds.
Let {xn} be the sequence defined by (1). Then for all u, v ∈ F , the limit
limn→∞ ‖txn + (1− t)u− v‖ exists for all t ∈ [0, 1].

Proof Since {xn} is bounded, there exists R > 0 such that {xn} ⊂ C :=
BR(0)∩K. Then C is a nonempty closed convex bounded subset of E. Basically,
we shall follow the idea of [17]. Let

an(t) = ‖txn + (1− t)u− v‖, where t ∈ [0, 1].

Then an(0) = ‖u − v‖, and from Lemma 6, limn→∞ an(1) = limn→∞ ‖xn − v‖
exists. We now assume that t ∈ (0, 1). Define Un : C → C by

x(1) = a(1)
n T n1 x+ (1 − a(1)

n )S1x, x ∈ K
x(2) = a(2)

n T n2 x
(1) + (1 − a(2)

n )S2x,

x(3) = a(3)
n T n3 x

(2) + (1 − a(3)
n )S3x,

...

x(N−1) = a(N−1)
n T nN−1x

(N−2) + (1− a(N−1)
n )SN−1x,

Unx = a(N)
n T nNx

(N−1) + (1− a(N)
n )SNx.

Then
‖Unx− Uny‖ ≤ kNn ‖x− y‖.

Set

Wn,m = Un+m−1 ◦ Un+m−2 ◦ · · · ◦ Un, m ≥ 1,
bn,m = ‖Wn,m(txn + (1 − t)u)− (tWn,mxn + (1− t)Wn,mu)‖.

Then observing that Wn,mxn = xn+m, we get

an+m(t) = ‖txn+m + (1− t)u − v‖
≤ bn,m + ‖Wn,m(txn + (1− t)u)− v‖

≤ bn,m +

⎛⎝n+m−1∏
j=n

kNj

⎞⎠ an(t)

≤ bn,m + Lnan(t),

where Ln =
∏∞
j=n k

N
j . By Lemma 5 we have

bn,m ≤ Lnφ−1(‖xn − u‖ − L−1
n ‖Wn,mxn − u‖)

≤ Lnφ−1(‖xn − u‖ − ‖xn+m − u‖+ (1 − L−1
n )d),
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where φ : [0,∞)→ [0,∞) is a strictly increasing continuous function depending
only on the diameter of K and φ(0) = 0. Since limn→∞ Ln = 1, it follows from
Lemma 6 that limn,m→∞ bn,m = 0. Therefore,

lim sup
m→∞

am(t) ≤ lim
n,m→∞ bn,m + lim inf

n→∞ Lnan(t) = lim inf
n→∞ an(t).

This completes the proof. �

Recall that a Banach space E has the Kadec–Klee property if for every
sequence {xn} in E, xn ⇀ x and ‖xn‖ → ‖x‖ it follows that ‖xn − x‖ → 0.

Theorem 2 Let K be a nonempty closed convex subset of a uniformly con-
vex Banach space E such that its dual E∗ has the Kadec–Klee property. Let
S1, S2, . . . , SN : K → K be nonexpansive mappings, T1, T2, . . . , TN : K → K be
asymptotically nonexpansive mappings with the sequence {kn} and suppose that

F =
N⋂
i=1

F (Si) ∩ F (Ti) �= ∅.

If (3), (8) and (18) hold, then the sequence {xn} defined by (1) converges weakly
to a common fixed point of S1, S2, . . . , SN , T1, T2, . . . , TN .

Proof Let q ∈ F . Then by Lemma 6, limn→∞ ‖xn−q‖ exists. Since E is reflex-
ive and {xn} is bounded sequence in K, there exists a subsequence {xnj} of {xn}
which converges weakly to some p ∈ K. Moreover limj→∞ ‖xnj − Sixnj‖ = 0
and limj→∞ ‖xnj − Tixnj‖ = 0 for all i = 1, 2, . . . , N , by Lemma 9. From
Lemma 1, we have that (I − Si)p = (I − Ti)p = 0 for all i = 1, 2, . . . , N . Thus,
p ∈ F .

Now, we show that {xn} converges weakly to p. Suppose that {xnk
} is

another subsequence of {xn} which converges weakly to some p′ ∈ K. By
the same method as above, we have p′ ∈ F and so p, p′ ∈ ωw(xn). Then by
Lemma 10,

lim
n→∞ ‖txn + (1− t)p− p′‖

exists for all t ∈ [0, 1]. Now, Lemma 4 guarantees that p = p′. As a result, the
whole sequence {xn} converges weakly to p. This completes the proof. �

6 Some analogues and corollaries

With a little effort, we have the following analogues to Theorems 1 and 2.

Theorem 3 Let K be a nonempty closed convex subset of a uniformly con-
vex Banach space E. Let S1, S2, . . . , SN : K → K be nonexpansive mappings,



150 Kittipong SITTHIKUL, Satit SAEJUNG

T1, T2, . . . , TN : K → K be asymptotically nonexpansive mappings with the se-
quence {kn} and suppose that

⋂N
i=1 F (Si) ∩ F (Ti) �= ∅. Let {xn} be the se-

quence defined by

x1 ∈ K,

x
(0)
n = xn,

x
(1)
n = a

(1)
n T n1 x

(0)
n + b

(1)
n S1xn + c

(1)
n u

(1)
n ,

x
(2)
n = a

(2)
n T n2 x

(1)
n + b

(2)
n S2xn + c

(2)
n u

(2)
n ,

...

x
(N−1)
n = a

(N−1)
n T nN−1x

(N−2)
n + b

(N−1)
n SN−1xn + c

(N−1)
n u

(N−1)
n ,

x
(N)
n = a

(N)
n T nNx

(N−1)
n + b

(N)
n SNxn + c

(N)
n u

(N)
n ,

xn+1 = x
(N)
n , n ≥ 1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(24)

where {u(i)
n } are bounded sequences in K and {a(i)

n }∞n=1, {b(i)n }∞n=1, {c(i)n }∞n=1 ⊂
[0, 1] such that a(i)

n + b
(i)
n + c

(i)
n = 1 for all i = 1, 2, . . . , N .

Suppose that
∑∞

n=1 c
(i)
n <∞ for all i = 1, 2, . . . , N ,

(i)
∑∞

n=1(kn − 1) <∞,
(ii) there is δ > 0 such that δ ≤ a(i)

n ≤ 1− δ for all n ≥ 1, i = 1, 2, . . . , N,

(iii) ‖x− Tiy‖ ≤ ‖Six− Tiy‖ for all x, y ∈ K and i = 1, 2, . . . , N .

(a) If the family {S1, S2, . . . , SN , T1, T2, . . . , TN} satisfies condition (B), then
{xn} converges strongly to a common fixed point of S1, S2, . . . , SN , T1, T2, . . . , TN .
(b) If the dual E∗ has the Kadec–Klee property, then {xn} converges weakly

to a common fixed point of S1, S2, . . . , SN , T1, T2, . . . , TN .

Remark
1. If, moreover S1 = S2 = · · · = SN = S, then by Lemma 7

lim
n→∞ ‖Sxn − Tix

(i−1)
n ‖ = 0 for all i = 1, 2, . . . , N.

The assumption (iii) in Theorem 3 can be weakened by assuming that there
is i0 ∈ {1, 2, . . . , N} such that

‖x− Ti0y‖ ≤ ‖Sx− Ti0y‖ for all x, y ∈ K.

2. If, moreover S1 = S2 = · · · = SN = I, then Theorems 2.3 and 2.9 of [18]
become a corollary of Theorem 3.

3. Theorem 3 is not only an extension of [9] and [10] but also obtained under
the different assumptions.

Theorem 4 Let K be a nonempty closed convex subset of a uniformly convex
Banach space E. Let S1, S2, . . . , SN , T1, T2, . . . , TN : K → K be nonexpansive
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mappings and suppose that
⋂N
i=1 F (Si) ∩ F (Ti) �= ∅. Let {xn} be the sequence

defined by

x1 ∈ K,

x
(0)
n = xn,

x
(1)
n = a

(1)
n T1x

(0)
n + b

(1)
n S1xn + c

(1)
n u

(1)
n ,

x
(2)
n = a

(2)
n T2x

(1)
n + b

(2)
n S2xn + c

(2)
n u

(2)
n ,

...

x
(N−1)
n = a

(N−1)
n TN−1x

(N−2)
n + b

(N−1)
n SN−1xn + c

(N−1)
n u

(N−1)
n ,

x
(N)
n = a

(N)
n TNx

(N−1)
n + b

(N)
n SNxn + c

(N)
n u

(N)
n ,

xn+1 = x
(N)
n , n ≥ 1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(25)

where {u(i)
n } are bounded sequences in K and {a(i)

n }∞n=1, {b(i)n }∞n=1, {c(i)n }∞n=1 ⊂
[0, 1] such that a(i)

n + b
(i)
n + c

(i)
n = 1 for all i = 1, 2, . . . , N .

Suppose that
∑∞

n=1 c
(i)
n <∞ for all i = 1, 2, . . . , N ,

(i) there is δ > 0 such that δ ≤ a(i)
n ≤ 1− δ for all n ≥ 1, i = 1, 2, . . . , N,

(ii) ‖x− Tiy‖ ≤ ‖Six− Tiy‖ for all x, y ∈ K and i = 1, 2, . . . , N .

(a) If the family {S1, S2, . . . , SN , T1, T2, . . . , TN} satisfies condition (B), then
{xn} converges strongly to a common fixed point of S1, S2, . . . , SN , T1, T2, . . . , TN .
(b) If the dual E∗ has the Kadec–Klee property, then {xn} converges weakly

to a common fixed point of S1, S2, . . . , SN , T1, T2, . . . , TN .
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Abstract

A concept of equivalence preserving upper and lower bounds in a poset
P is introduced. If P is a lattice, this concept coincides with the notion
of lattice congruence.

Key words: Ordered set, morphism, LU compatible equivalence.

2000 Mathematics Subject Classification: 06A06, 06B10

There are various concepts of a congruence relation in ordered sets. All of
them define a congruence as an equivalence relation whose classes are convex
subsets. However, this concept is too weak, namely the quotient set by such
an equivalence need not be an ordered set. Hence, in the definitions additional
conditions are usually required. We can mention e.g. the approaches by M. Koli-
biar [2, 3], I. Chajda, V. Snášel [1], J. Lihová, A. Haviar [4] and R. Halaš [5],
[6]. A natural assumption for a congruence on an ordered set is that if this
set is a lattice then the notion of a congruence has to coincide with the lattice
one. The aim of our paper is to introduce a concept of LU compatible equiva-
lence in an ordered set satisfying all the foregoing assumptions which, moreover,
corresponds to the concept of morphism preserving upper and lower bounds.

Let A �= ∅ be a set and let ≤ be a partial order on A. For a subset B ⊆ A,
we denote the set of all lower or upper bounds of B in A with respect to ≤ by
LA(B) or UA(B), respectively, i.e.:

LA(B) = {x ∈ A; x ≤ a for all a ∈ B}
UA(B) = {x ∈ A; a ≤ x for all a ∈ B}.

153
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If there is no danger of misunderstanding, the subscript A will be omitted
and we will write U(B) or L(B) only.

We adopt the notation U(B,C) = U(B ∪ C) and L(B,C) = L(B ∪ C).
If B = {b1, b2, . . . , bn} is finite, we will write briefly U(B) = U(b1, b2, . . . , bn),
dually for L(B).

Remark that if B ⊆ C ⊆ A then U(B) ⊇ U(C) and L(B) ⊇ L(C).

Definition 1 [1] An equivalence Θ on an ordered set P is called a congruence
if either Θ = P × P or it satisfies:

(i) [a]Θ is a convex subset of P for all a ∈ P ;

(ii) for every x, y ∈ [a]Θ there exist u, v ∈ [a]Θ such that u ≤ x ≤ v and
u ≤ y ≤ v;

(iii) if u ≤ x, u ≤ y and u Θ x then there exists v ∈ P with x ≤ v, y ≤ v and
y Θ v; if x ≤ v, y ≤ v and v Θ y then there exists u ∈ P with u ≤ x,
u ≤ y and u Θ x.

Of course, the identity relation on P is a congruence on P .
It was already shown in [1] that the quotient set by a congruence is an

ordered set again.

Proposition 1 [1] Let P be an ordered set and Θ be a congruence on P . Then
the quotient relation defined on P/Θ by setting [a]Θ ≤/Θ [b]Θ iff there exist
x ∈ [a]Θ, y ∈ [b]Θ with x ≤ y is an order on P/Θ.

In the following, for any A ⊆ P denote [A]Θ = {[a]Θ; a ∈ A}.

Corollary 1 [1] Let P be an ordered set and Θ be an equivalence on P . Then
Θ is a congruence on P if and only if

(1) P/Θ is an ordered set (with the order ≤/Θ);
(2) [LP (x, y)]Θ = LP/Θ([x]Θ, [y]Θ) and [UP (x, y)]Θ = UP/Θ([x]Θ, [y]Θ)

for every x, y of P .

Definition 2 Let (P,≤) be a an ordered set. An equivalence Θ on P is called
LU − compatible if it satisfies the condition (2) of Corollary 1.

Lemma 1 If Θ is an LU compatible equivalence then the following holds:

(1) each block is directed,

(2) the condition (iii) of definition 1 is satisfied,

(3) ≤/Θ is transitive.
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Proof (1) Let a, b ∈ [x]Θ. Then [a]Θ = [x]Θ = [b]Θ whence

[L(a, b)]Θ = L([a]Θ, [b]Θ) = L([x]Θ) �= ∅.
(2) Let u ≤ x, u ≤ y and u Θ x, i.e. [y]Θ = [v]Θ for some v ∈ U(x, y). Since

Θ is an LU-compatible equivalence, we have

[U(x, y)]Θ = U([x]Θ, [y]Θ) = U([u]Θ, [y]Θ) = [U(u, y)]Θ = [U(y)]Θ.

This shows the first part of (iii) of Definition 1. The rest can be shown analo-
gously.

(3) The proof is analogous to that used in [1]. �

Theorem 1 Let (P,≤) be a an ordered set and Θ be an LU compatible equiv-
alence. Then (P/Θ,≤/Θ) is an ordered set if and only if each block of Θ is
convex.

Proof It is easy to show that ≤/Θ is reflexive. The transitivity of ≤/Θ follows
directly from Lemma 1.

We show that ≤/Θ is antisymmetric. Let [x]Θ ≤/Θ [y]Θ and [y]Θ ≤/Θ [x]Θ.
Then there exist x′, x′′ ∈ [x]Θ and y′, y′′ ∈ [y]Θ such that x′ ≥ y′ and x′′ ≤ y′′.
From Lemma 1 there exist ȳ ∈ [y]Θ and x̄ ∈ [x]Θ such that y′, y′′ ≤ ȳ, x̄ ≤ x′′

and x̄ ≤ y′. We have x̄ ≤ y′ ≤ x′. Applying convexity we conclude [x]Θ = [y]Θ.
Conversely, let (P/Θ,≤/Θ) be a an ordered set and assume x ≤ y ≤ z

with [x]Θ = [z]Θ. Then [x]Θ ≤/Θ [y]Θ, [y]Θ ≤/Θ [z]Θ = [x]Θ, thus due to
antisymmetry of ≤/Θ we have [x]Θ = [y]Θ. �

Theorem 2 Let (P,≤) be a ordered set and let Θ be an LU compatible equiv-
alence. If every equivalence class of Θ has the least element, then (P/Θ,≤/Θ)
is an ordered set.

Proof It is easy to see that ≤/Θ is reflexive, transitivity of ≤/Θ follows directly
by Lemma 1.

To prove its antisymmetry, denote by 0x the least element of an arbitrary
block [x]Θ. Let [x]Θ ≤/Θ [y]Θ and [y]Θ ≤/Θ [x]Θ. Then there exist x′, x′′ ∈ [x]Θ
and y′, y′′ ∈ [y]Θ such that x′ ≥ y′ and x′′ ≤ y′′.

x̄

0x

x′′

x′

0y

y′

y′′[x]Θ
[y]Θ

�
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Now 0x ≤ y′′ and 0y ≤ y′′, hence by Lemma 1 there exists x̄ ∈ [x]Θ with x̄ ≤ 0x
and x̄ ≤ 0y. Since 0x is the least element of [x]Θ, we have x̄ = 0x. This shows
0x ≤ 0y. Analogously we prove 0y ≤ 0x, consequently 0x = 0y, which finally
yields [x]Θ = [y]Θ. �
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Abstract

We contribute to the reverse of the Fundamental Theorem of Rieman-
nian geometry: if a symmetric linear connection on a manifold is given,
find non-degenerate metrics compatible with the connection (locally or
globally) if there are any. The problem is not easy in general. For nowhere
flat 2-manifolds, we formulate necessary and sufficient metrizability con-
ditions. In the favourable case, we describe all compatible metrics in
terms of the Ricci tensor. We propose an application in the calculus of
variations.

Key words:Manifold, linear connection, metric connection, pseudo-
Riemannian geometry.
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1 Preliminaries—affine differential geometry

Recall briefly some well-known facts from affine and metric differential geometry.
Let M be an n-dimensional smooth manifold (“smooth” always means of the
class C∞), TxM the tangent space at x ∈ M , and let π : TM →M denote the
tangent vector bundle of M . F(M) = C∞(M) denotes the ring of all smooth
functions on M , X (M) the C∞(M)-module of all smooth vector fields on M
(which can be viewed as sections of the projection π), and Λ(M) the exterior
algebra over M . π1 : J1TM → M is the first jet prolongation of the tangent

*Supported by the Research and Development Council of the Czech Government MSM 6
198 959 214.
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vector bundle π : TM →M , that is, the fibred manifold of 1-jets in J1(M,TM)
which may be represented by local sections of the projection π. We have also
a canonical projection π1

0 : J1TM → TM = J0TM . Given an n-dimensional
smooth manifold M , a (generalized) connection1 on TM is a (smooth) section
Γ: TM → J1TM of π1

0 . A section Γ of π1
0 which is linear as a fibred morphism

of vector bundles is called a linear connection on TM , [10], [8]. Any linear
connection Γ on TM induces the so-called covariant derivative on M , and vice
versa. Recall that a covariant derivative on M is a mapping (X,Y ) �→ ∇XY ,
∇ : X (M)×X (M)→ X (M), such that

∇X(Y + Z) = ∇XY +∇XZ, ∇X(fY ) = f∇XY + (Xf)Y,

∇fX+gY Z = f∇XZ + g∇Y Z
(1)

for any vector fields X,Y, Z on M and functions f, g ∈ F(M) on M ; often,
under a linear connection on M we mean just ∇. To emphasise that ∇ arises
from a linear connection Γ we can write ∇Γ. In what follows, (M,∇) will denote
a manifold with linear2 connection in the above sense.

If (U,ϕ), U ⊂ M open, ϕ = (x1, . . . , xn) is a local chart on M denote
by (xi, vi) the induced adapted coordinates on V = π−1(U) ⊂ TM and by
(xi, vi, vij) the corresponding fibre coordinates on (π1

0)−1(V ) ⊂ J1TM . A con-
nection Γ on TM can be locally given by functions vij ◦ Γ = Γij(x, v) called
components of Γ. A connection is linear if and only if its components are just
linear functions in vk, that is, there exist functions Γijk of coordinates on U ⊂M
such that Γij(x, v) = Γijk(x)v

k holds.
If (xi) are local coordinates on U ⊂ M , we can introduce components

(Christoffel symbols) of ∇ relative to the chart under consideration directly
as the functions Γkij(x) given on U by3 ∇i ∂

∂xj := ∇ ∂

∂xi

∂
∂xj = Γkij

∂
∂xk . Note that

the linear connection Γ (or ∇, respectively) is fully determined by components
Γkij provided they satisfy the well-known transformation law on overlappings of
neighborhoods, [9, I, Ch. 3, Th. 7.2, Th. 7.3]; recall that Γkij are not components
of a tensor.

Covariant derivation extends to tensor fields, [9, I]: if F is of type (r, s) then
∇XF is of the same type, and ∇F is of type (r, s+ 1).

The torsion of a manifold (M,∇) with linear connection is a type (0, 2)
tensor field T given by T (X,Y ) = ∇XY − ∇YX − [X,Y ] for X,Y ∈ X (M).
Here [ , ] is the Lie bracket, [X,Y ]f = X(Y f) − Y (Xf) for f ∈ F(M); T is
skew-symmetric. The curvature of (M,∇) is a type (0, 3) tensor field R defined
by R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z = ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z.

The map R(Xx, Yx) : TxM → TxM is linear and skew-symmetric, R(Y,X) =
−R(X,Y ). A connection ∇ is called torsion-free (torsion-less, or symmetric) if

1In the sense of Ehresmann
2Many authors still use the term “affine connection” instead, from historical reasons; note

that affine connection or affine manifold may have a different meaning: each tangent space
TxM is considered as an affine space, and TM → M as an affine bundle, similarly for mor-
phisms etc., [9, I, Ch. 3].
3As usually, 〈 d

dx1 , . . . ,
d

dxn 〉 is a basis of coordinate vector fields.
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T ≡ 0 (in local coordinates, Γijk = Γikj), and flat if T ≡ 0 and R ≡ 0. ∇ is flat
if and only if around any point, there are local coordinates such that Γijk = 0
holds. We introduce the Ricci tensor Ric of type (0, 2) as a trace of a linear
map, namely Ric(Y, Z) = Tr{X �→ R(X,Y )Z} (the other possibility differs
up to a sign). Components of torsion T = T ijk

∂
∂xi ⊗ dxj ⊗ dxk, of curvature

R = Rihjk
∂
∂xi ⊗ dxj ⊗ dxk ⊗ dxh and of Ricci tensor Ric = Rjkdxj ⊗ dxk in

terms of components of connection are T ijk = Γijk − Γijk,

Rihjk =
∂Γikh
∂xj

− ∂Γijh
∂xk

+
∑
s

(
ΓijsΓ

s
kh − ΓiksΓ

s
jh

)
, (2)

Rjk =
∑

i
Rikij =

∑
i

(
∂Γijk
∂xi

− ∂Γiik
∂xj

)
+

∑
i,s

(
ΓiisΓ

s
jk − ΓijsΓ

s
ik

)
. (3)

Due to the co-called first Bianchi Identity (Ri[hjk] = 0)

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0 (4)

and antisymmetry of the curvature we get

Rjk −Rkj =
∑
i

(
Rikij +Rijki

)
= Riikj = Tr Rkj =

∑
s

∂Γssj
∂xk

− ∂Γssk
∂xj

. (5)

Hence in general, the Ricci tensor is not necessarily symmetric, even for a sym-
metric connection. We can see the following:

Lemma 1 The Ricci tensor satisfies [14, p. 14]

Ric(Z, Y )− Ric(Y, Z) = TrR(Y, Z).

In general, the functions ψi =
∑

s Γsis (“traces”) that appear in (5) do not
transform as components of a tensor (1-form) since Γijk do not, either. Never-
theless, they play the following role:

Lemma 2 (Local necessary and sufficient condition for symmetry of Ric) The
following conditions are equivalent for (M,∇):
(i) The Ricci tensor Ric is symmetric on M .
(ii) The curvature tensor R is trace-less, TrR = 0.
(iii) In each coordinate neighborhood the components of connection satisfy

∂Γsis
∂xj

− ∂Γsjs
∂xi

= 0, i, j = 1, . . . , n. (6)

The equations (6) in fact tell that there is a function fU on U such that

ψi =
∑

s Γsis = dfU

dxi , i = 1, . . . , n; ψi is a “gradient vector”. That is, if we
introduce a one-form on a coordinate nbd U by ψU =

∑
i ψidxi = Γsisdx

i then
(6) is a necessary and sufficient condition for ψU be closed on U , dψU = 0.
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Recall that an exterior q-form ω on M is a totally antisymmetric type (0, q)
field; ω is closed if dω = 0, and exact if ω = dα for some (q − 1)-form α. Since
d2 = 0, exact forms are obviously closed, but not vice versa. The so-called
Poincaré lemma guarantees that any closed form is locally exact. Obviously, a
form α from the above formula is not determined by ω uniquely (in fact, there
are many (q − 1)-forms with the same differential).

Symmetry of the Ricci tensor is closely related to the concept of parallel
volume element. We say that (M,∇), dimM = n, is locally equiaffine, or
volume preserving if locally, around each point x ∈ M , there exists a non-
vanishing and covariantly constant n-form ω; ∇ω = 0. If this is the case, ω is
called a (local) volume element. The following holds, [14]:

Lemma 3 (M,∇) with T ≡ 0 is locally equiaffine if and only if the Ricci tensor
is symmetric.

(M,∇) with T ≡ 0 is called equiaffine if it admits a parallel volume element.
If M is simply connected and (M,∇) is locally equiaffine then it is equiaffine
[14, p. 15]. Hence a symmetric linear connection with a trace-less curvature
tensor (equivalently, with symmetric Ric) on a simply connected manifold is
equiaffine.

1.1 Parallelism and recurrency

If c : I →M , t �→ c(t) is a curve, let ζ(t) = (c(t), c′(t)) denote the corresponding
tangent vector field along the curve c; c′(t) = dc

dt . Let Y be a vector field
along c. Then the covariant derivative ∇ζY along c is defined; in terms of local
coordinates, if Y = Y k(t)( ∂

∂xk )c(t) then

∇ζY =
∑
k

⎛⎝dY k

dt
+

∑
i,j

Γkij(c(t))
dci

dt
Y j

⎞⎠ ∂

∂xk
.

A regular4 differentiable curve t �→ c(t) is an unparametrized geodesic5, [13],
or pregeodesic, [14], if there is a real function φ(t) : I → R along c such that
∇ζζ = φζ. Equations of (pre)geodesics read x′′i + Γijkx

′jx′k = φx′i. If the
tangent vector field is parallel along the curve, ∇ζζ = 0, we speak on canonically
parametrized geodesics; the so-called canonical affine parameter s is determined
uniquely up to affine transformations s �→ as+b with a �= 0. In local coordinates,
canonically parametrized geodesics are described by the well-known system of
differential equations

ẍi + Γijkẋ
j ẋk = 0, j, k = 1, . . . , n. (7)

Connections with the same “symmetric part” ∇s, ∇s(X,Y ) = 1
2 (∇(X,Y )+

∇(Y,X)), have the same geodesics, and pregeodesics, too.

4in the sense that ċ(s) = dc
ds

�= 0 for all s ∈ I
5to emphasize that the particular parametrization is unrelevant for actual considerations
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A diffeomorphism f : (M,∇) → (M̂, ∇̂) is called a geodesic mapping if all
geodesics of (M,∇) are mapped into unparametrized geodesics of (M̂, ∇̂).

A non-vanishing tensor field F on (M,∇) is called parallel, or covariantly
constant (with respect to ∇) if ∇F = 0; equivalently6, ∇XF = 0 for any
X ∈ X (M). A non-vanishing tensor field F on M is recurrent if there is a
one-form ω such that

∇F = ω ⊗ F. (8)

Lemma 4 Let a type (r, s) tensor field F on (M,∇) be recurrent; ∇F = ω⊗F
for some 1-form. Let F be non-vanishing on M . Then the 1-form ω is closed.

Proof Recurrency means that for arbitrary vector fields Y1, . . . , Ys and one-
forms ω1, . . . , ωr on M ,

(∇X F )(Y1, . . . , Ys, ω
1, . . . , ωr) = ω(X) · F (Y1, . . . , Ys, ω

1, . . . , ωr).

In local coordinates about any point p ∈ M , let ω = ωk dx
k, and ∇k = ∇ ∂

∂xk
.

It follows that ∇kF i1...irj1...js
= ωk ·F i1...irj1...js

for any k = 1, . . . , n; n = dimM . Let the

component F i1...irj1...js
(for fixed indices) be non-zero at p, and due to continuity,

in some nbd U of p (from continuity again, the component is either positive,
or negative around the point). Then the components of the 1-form can be
expressed in U as

ωk =
1

F i1...irj1...js

· ∇k F i1...irj1...js
= ∇k (ln |F i1...irj1...js

|) =
∂

∂xk
(ln |F i1...irj1...js

|), k = 1, . . . , n.

That is, about any point p ∈ M , ω = d(ln |F i1...irj1...js
|); i.e. ω is locally exact, and

dω = d(df) = 0. �

Lemma 5 Let F be a type (r, s) tensor field on (M,∇). Let α ∈ F(M) be a
non-vanishing real function; α(x) �= 0 for x ∈M . Then the following conditions
are equivalent:

• α⊗ F is parallel with respect to ∇,
• ∇F = d(− ln |α|)⊗ F .

Proof Since∇(α⊗F ) = (∇α)⊗F+α⊗(∇F ) and α �= 0, we have: ∇(α⊗F ) = 0
iff ∇F = −( 1

α · ∇α) ⊗ F = −d(ln |α|) ⊗ F . Hence α ⊗ F is parallel if and only
if ∇F = df ⊗ F where f = − ln |α|. �

Lemma 6 If a tensor field F of type (r, s) on (M,∇) is recurrent, ∇F = ω⊗F ,
and the 1-form is exact, ω = df , then e−f ⊗ F is parallel w.r.t. ∇.
Proof If ∇F = df ⊗ F denote α = e−f . Then f = − lnα, and ∇(α ⊗ F ) =
dα⊗F+α·d(− lnα)⊗F = dα⊗F+α·(− 1

α )·dα⊗F = 0. Hence α⊗F = e−f⊗F
is parallel. �

6In more geometric language, the condition tells that the field is preserved under parallel
transport along all curves in M .
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1.2 Compatible metrics

Recall that a pseudo-Riemannian metric on a smooth manifold M is a (smooth)
type (0, 2) tensor field on M such that in any point x ∈ M , the corresponding
bilinear form gx defined on TxM is symmetric and non-degenerate; (M, g) is
called a pseudo-Riemannian manifold. If gx is moreover positive definite for all
x ∈M , (M, g) is called the Riemannian space. A linear connection ∇ (may be
non-symmetric in general) on (M, g) is compatible with g if g is parallel with
respect to ∇, ∇g = 0.

The Fundamental Theorem of Riemannian geometry states that any pseudo-
Riemannian manifold (M, g) admits a unique linear connection ∇̃, called the
Riemannian (or Levi-Civita) connection, or metric connection, of (M, g), char-
acterized by the pair of conditions T ≡ 0, ∇̃g = 0 (the parallel transport
with respect to ∇̃ along any curve preserves the scalar product of tangent
vectors defined by g). On (M, g), components Γijk of the Levi-Civita connec-
tion are related to components gij of the metric by the well-known formula

Γ�ik = 1
2g
�j

(
∂gij

∂xk + ∂gjk

∂xi − ∂gki

∂xj

)
.

On the other hand, given a manifold equipped with a linear connection,
(M,∇), we might be interested in metrics the given connection is compatible
with. If∇ is torsion-free, it means to find a metric g on M such that∇ is just the
Levi-Civita connection of (M, g). We say that a manifold (M,∇) is metrizable,
or locally metrizable, respectively, if there exists a metric (or exists locally,
respectively) compatible with the connection (metrization problem, MP).

Essentially the same problem can be formulated in a bit more general set-
ting as follows, [13] (the answer is formulated in Corollary 1): If (M,∇) is given
find all geodesic mappings (i.e. diffeomorphisms which map geodesics onto un-
parametrized geodesics) of (M,∇) onto (all possible) pseudo-Riemannian man-
ifolds (M̄, g) (due to diffeomorphisms, we can in fact suppose M̄ = M).

In local coordinates, the formula ∇g = 0 reads7

∂gij
∂xk

= gsjΓsik + gisΓsjk. (9)

In principle, to answer the question on (local) metrizability of a connection
means to solve the system8 (9). Employing the curvature, necessary integrability
conditions for metrizability can be given in the form of an infinite system of
linear equations in 1

2n(n+1) functions gij (with coefficients which are functions
in Γ′s and their partial derivatives), [7]; the coordinate-free form reads

g(R(X,Y )Z,W ) + g(Z,R(X,Y )W ) = 0, (10)

g(∇rR(X,Y ;Z1; . . . ;Zr)(Z),W ) + g(Z,∇rR(X,Y ;Z1; . . . ;Zr)(W )) = 0 (11)

for all X,Y, Z,W,Z1, . . . , Zr ∈ X (M), 1 ≤ r < ∞. Flat connections are locally
metrizable9. If (10) has at least a 1-dimensional solution space containing a

7In components, gij;k =: ∇g( ∂
∂xi ,

∂
∂xj ; ∂

∂xk ) =
∂gij

∂xk − gsjΓs
ik − gisΓs

jk .
8Which can be done directly in simple cases.
9For the detailed theory of flat affine manifolds, cf. [9, I], flat Riemannian manifolds are

discussed e.g. in [23].
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non-degenerate metric and any solution of (10) satisfies also (11) for r = 1 then
(M,∇) is metrizable, [7].

Corollary 1 If there exist 1
2n(n + 1) (differentiable) functions gij which solve

the system
gsjR

s
ik� + gisR

s
jk� = 0 (12)

and satisfy gij = gji, det(gij) �= 0, and any solution of (12) solves the system

gsjR
s
ik�;m + gisR

s
jk�;m = 0 (13)

then (locally) there exist geodesic mappings of (M,∇) onto pseudo-Riemannian
spaces.

On a (pseudo-)Riemannian manifold (M, g) with the metric tensor g besides
the curvature tensor R in type (1, 3), we can consider the type (0, 4) tensor
R̃(X,Y, Z,W ) = g(R(X,Y )Z,W ), usually also called curvature tensor; the re-
lations R̃(X,Y, Z,W ) = R̃(Z,W,X, Y ) = −R̃(Y,X,Z,W ) = −R̃(X,Y,W,Z)
hold. In a coordinate system (U,ϕ = (xi)) based at a point x ∈ M , compo-
nents R�ijk of R and Rhijk of R̃ = Rhijkdx

j ⊗ dxk ⊗ dxi ⊗ dxh are related by
Rhijk = ghsR

s
ijk , and g�hRhijk = R�ijk

10.

Lemma 7 The Ricci tensor of the Levi-Civita connection of a (pseudo-)Rieman-
nian manifold (M, g) is always symmetric, [6, p. 331].

The sectional curvature of a two-space P given by the linearly independent
tangent vectors X,Y ∈ TxM is given by

K(X ∧ Y ) =
g(R(X,Y )Y,X)

g(X,X)g(Y, Y )− g(X,Y )2
=
R̃(X,Y, Y,X)
||X ∧ Y ||2 (14)

where ||X∧Y || is the area of a parallelogram determined by X and Y , [3, p. 94],
[6, p. 327] etc. The sectional curvature determines the whole curvature tensor
R̃, [8, p. 137].

On (M, g), the Ricci tensor in type (1, 1) is introduced with components
Rij = gisRsj , and the scalar curvature � as its trace, � = Tr Ric = Rss = gijRij .

A Riemannian manifold (M, g) is called isotropic at a point x ∈ M if the
curvature is the same constant, K(x), on every (two-plane) section, and isotropic
if it is isotropic at every point, [1]. If x is an isotropic point of (M, g) then the
following formula holds at x in any local coordinates around x:

Rhijk = K(x)(ghjgik − ghigjk). (15)

A two-dimensional manifold is (trivially) isotropic, therefore it satisfies (15).
Pseudo-Riemannian manifolds with symmetric Ricci tensor for which the

Ricci tensor is proportional to the metric tensor, Ric = λg, are called Einstein
spaces, [12, p. 263], [15], [17]. In the Loretzian case, they are important in

10As already mentioned, Rhijk = Rjkhi = −Rihjk = −Rhikj .
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Einstein’s theory of general relativity (the Einstein’s field equation is a dynam-
ical equation which describes how matter changes the geometry of spacetime;
in vacuum, it is given by the condition Ric = 0). The factor of proportionality
can be calculated11, λ = 1

n�, hence for Einstein spaces,

Ric =
1
n
�g. (16)

Particularly, all two-dimensional pseudo-Riemannian manifolds are Einstein spaces
as we check below, cf. [12, p. 263], [15, p. 101].

2 Metrizability of 2-manifolds

Let us pay attention to existence of compatible metrics in the simplest case n =
dimM = 2. Let (x1, x2) denote local coordinates on a coordinate neighborhood
U of a manifold M2. In dimension two, the curvature is simply given by Rhijk =
K(x)(ghjgik − ghigjk) [8, p. 137], and the function K(x) is called the Gauss
curvature. The Riemann curvature R in type (1, 3) and the Ricci tensor Ric are
related by [12], [15]

Rihjk = δijRkh − δikRjh. (17)

As far as Rihjj = 0 and Rihij = Rjh holds for j �= i, the curvature tensor
of a linear connection ∇ on M2 is completely determined by its Ricci tensor;
explicitely,

R11 = −R2
112 = R2

121, R21 = −R1
121 = R1

112,

R12 = −R2
212 = R2

221, R22 = −R1
221 = R1

212.
(18)

Particularly, R = 0 if and only if Ric = 0, and recurrency is also inherited:

Lemma 8 For (M2,∇), Ric is recurrent if and only if R is recurrent.

Proof Let Ric be recurrent, ∇Ric = ω⊗Ric. In local coordinates, if ω = ωjdx
j

then ∇�Rihjk = δij∇�Rkh − δik∇�Rjh = δijω�Rkh − δikω�Rjh = ω�R
i
hjk, hence

∇R = ω ⊗R. Vice versa, if ∇R = ω ⊗R holds then ∇�Rjk = ω�R
i
kij = ω�Rjk,

and ∇Ric = ω ⊗ Ric. �

On (M2, g), non-zero components of type (0, 4) curvature R̃ are (up to a
sign) equal just R1212, and (15) reads ([15, p. 62], [8, p. 137])

Rhijk = K(ghjgik − ghkgij) (19)

where K = K(x) is the Gauss curvature, K = R1212
det(gij)

.

Lemma 9 The curvature tensor of a two-dimensional pseudo-Riemannian mani-
fold (M2, g) satisfies

Rihjk = K(δikghj − δijghk), (20)

and the Ricci tensor is proportional to the metric tensor,

Ric = K · g =
1
2
� · g. (21)

11In fact, � = Rijgij = λgijgij = nλ.
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Proof We can either use the fact that M2 is trivially isotropic, [1, p. 374],
and (16) holds, or proceed by direct evaluation: Rthij = Rshijδ

t
s = Rshijgskg

kt =
Rhijkg

kt = K(ghjgik − ghkgij)gkt = K(δtighj − δthgij). It follows immediately
for the Ricci tensor that Rhj = ΣiRihij = K ·Σi(δiighj − δihgij) = K · ghj , hence
Ric = Kg, and � = Rhjg

hj = 2K. �

Corollary 2 (M2, g) is always an Einstein space. For a nowhere flat (M2, g),
the Ricci tensor is symmetric and non-degenerate.

Note that according to [9, I, p. 280], any non-flat Riemannian 2-manifold
has a recurrent curvature provided its sectional curvature does not vanish. We
can check:

Lemma 10 The Ricci tensor of a nowhere flat pseudo-Riemannian manifold
(M2, g) is recurrent, and the corresponding 1-form is exact12.

Proof R �= 0 is equivalent with K(x) �= 0 on M (from continuity, K is either
positive, or negative). Since by (21), g = α(x) · Ric with α(x) = 1

K(x) �= 0,
and ∇g = 0, we get easily that α(x) · Ric is parallel. According to Lemma 5,
∇Ric = d(− ln |α|)⊗ Ric holds. �

It follows from the above discussion on pseudo-Riemannian manifolds that
two conditions are necessary for local metrizability of a (symmetric) connection
on a 2-manifold: the Ricci tensor must be symmetric, and must be also recurrent,
with the corresponding 1-form being closed; Ric may be degenerate only in the
case R = 0, and then Ric = 0 holds. Furthermore, for global metrizability, the
1-form from the recurrency condition must be even exact. A flat connection
is always (globally) metrizable, with 1

2n(n+ 1)-parameter solution space; even
the signature can be prescribed. So let us pay attention to the situation when
the curvature tensor (or equivalently, the Ricci tensor) is non-zero in one point
x0 ∈M , and due to continuity, in some neighborhood of x0

13.

Theorem 1 (Existence of local metrics on two-manifolds) Let a 2-dimensio-
nal manifold (M2,∇) with a symmetric linear connection be given such that
the Ricci tensor is regular, |Rij | �= 0, symmetric, Rij = Rji, and recurrent,
∇Ric = �⊗ Ric for some 1-form �. Then locally, there is a metric compatible
with the connection.

Proof Let x0 ∈ M . |Rij | �= 0 implies existence of a pair (i, j) of indices such
that Rij �= 0 about14 x0. Recurrency together with regularity guarantee that
d� = 0 (Lemma 4). Hence about x0, there is a function f such that � = df .
Consequently, e−f ·Ric is parallel about x0. Therefore g = e−f · Ric is a local
metric on a nbd of x0 compatible with ∇. �

12and consequently closed
13The subset of non-flat points is open.
14Under “about x” we mean on some neighborhood of x.
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Of course, the function f from the proof is not unique. Any function f̃ with
the same differential, df̃ = df , also gives a metric; such a function differs up to
a constant, f̃ = f + a, a ∈ R.

If R is nowhere zero, a similar proof quarantees existence of global metriz-
ability of a nowhere flat affine manifold:

Proposition 1 Let (M2,∇) be a two-dimensional manifold with a symmetric
linear connection. If the Ricci tensor of ∇ is regular, symmetric, and recurrent,
∇Ric = � ⊗ Ric, and the 1-form � is exact, i.e. � = df for some function
f ∈ F(M), then g = e−f ·Ric is a (global) metric tensor compatible with ∇.

Theorem 2 (Global metrizability of no-where flat connections on 2-manifolds)
A nowhere flat symmetric linear connection on M2 is metrizable if and only if
its Ricci tensor is regular, symmetric, recurrent, and the corresponding 1-form
is exact. If this is the case, and ∇Ric = df⊗Ric holds for some smooth function
f ∈ F(M), then all global metrics compatible with ∇ form a 1-parameter family
described by the formula

gb = exp(−f + b) ·Ric, b ∈ R, (22)

that is, any of them arises from the Ricci tensor as a multiple by a smooth
function. Moreover, any two compatible metrics differ up to a scalar multiple.

Proof The main statement has been already proved - the “if” part in Theorem
1 and Proposition 1, and the “only if” part in Corollary 2 and Lemma 10. As
to the rest, let g = e−f · Ric, g̃ = e−f̃ · Ric be two compatible metrics, then
f̃ − f = a, Ric = ef̃g, and g = eag̃. We get g̃ = e−f−a ·Ric; i.e. (22) holds. �

As an immediate consequence of Theorem 2 we obtain:

Corollary 3 Two pseudo-Riemannian metrics g1, g2 compatible with the same
nowhere flat (symmetric) linear connection on M2 are homothetic.

Unicity of g declared in [18, p. 532] must be understood in this way.

For positive-definite metrics, this result is a special case of the Theorem 1
of O. Kowalski from [11, p.131] (recall that two metrics g1, g2 on a manifold are
called conformally equivalent if there is a function κ on M such that g2 = κg1,
[23, p. 99]): Let g, g′ be two Riemann metrics on a smooth manifold M with
the same Riemann curvature tensor R. Then g, g′ are conformally equivalent
on the closure of the set of all regular points of R.

3 Application in the calculus of variations

Let us mention the relationship of our problem to the Calculus of Variations.
The so-called Inverse Problem (IP) of the calculus of variations is: if a system
ẍi = f i(t, xk, ẋk), i, k = 1, . . . , n of second order differential equations (SODEs)
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is given, find—sufficiently differentiable—Lagrangian functions L(t, xk, ẋk) and
a multiplier matrix gij(t, xk, ẋk) such that

gij(ẍi − f i) ≡ d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
.

Given a system of second order ODEs of a particular type

ẍi + Γijk(x)ẋ
j ẋk = 0, k = 1, . . . , n, (23)

that is, second derivatives can be expressed as quadratic forms in first deriva-
tives, we can use the above theory for deciding whether the system (23) is
derivable from a Lagrangian. In fact, provided det(gij) �= 0, the system (23) is
equivalent to the system

gmi(ẍi + Γijk(x)ẋ
j ẋk) = 0, i,m = 1, . . . , n. (24)

Another speaking, MP can be viewed as a particular case of IP, where f i =
−Γijk(x)ẋ

j ẋk (that is, f i are quadratic forms in components of velocities, with
coefficients depending only on components of positions) in the particular case
when the multipliers are time- and velocities-independent. We can assume that
the coefficients in (23), the functions Γkrs(x), are components of a symmetric
linear connection ∇ on some neighborhood U ⊂ Rn. If ∇ is (locally) metrizable,
and gij(x) (with det(gij(x)) �= 0 at any x ∈ U) are components of some non-
degenerate metric g compatible with ∇ on U , then (23) and (24) are equivalent,
hence the functions gik(x) can be taken as the desired variational multipliers.
One of particular Lagrangians comming from MP (and solving IP) is

L = T =
1
2
gij(x)ẋiẋj , (25)

the kinetic energy. There might exist multipliers of a more general form
gik(t, x, ẋ), depending on “time, positions and velocities”, which might bring
more complicated Lagrangians, [5].

4 Examples

Example 1 ([7, p. 122]) On R2 with coordinates x = (x1, x2), assume the
system of ODEs

(ẍ1)2 + (x1 − x2)(ẋ1)2 = 0, (ẍ2)2 + (x1 − x2)(ẋ2)2 = 0. (26)

Curves c(s) : I → R2 (parametrized by arcs length), which are solutions of the
system, represent the family of geodesics of a (symmetric) linear connection
∇ with components Γ1

11 = Γ2
22 = x1 − x2, Γijk = 0 otherwise. We ask if the

(torsion-free linear) connection is metrizable, i.e. we wish to find type (0, 2)
symmetric tensor field g with ∇g = 0. The corresponding system

∂1g11 = (x1 − x2)g11, ∂1g12 = 0, ∂1g22 = 0,
∂2g11 = 0, ∂2g12 = (x1 − x2)g12, ∂2g22 = (x1 − x2)g22
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can be solved directly, but the only solution is trivial, gij = 0 for all i, j. Or, ar-
gumentation using the Ricci (or curvature) tensor can be used: R11 = R2

121 = 0,
R12 = R1

112 = 1, R21 = R2
221 = −1, R22 = R1

212 = 0, hence the Ricci tensor is
not symmetric, our linear connection is not metrizable (even locally).

It appears that in this particular case, the quickest and most comfortable
way is to use the criterion from Lemma 2 (iii): we check that ψ1 = ψ2 = x1−x2,
∂1ψ2 = 1 while ∂2ψ1 = −1.

Example 2 The system of equations

ẍ1 = −(ẋ1)2 − (ẋ2)2, ẍ2 = −4ẋ1ẋ2 (27)

corresponds to a torsion-free linear connection on R2 with components

Γ1
11 = Γ1

22 = 1, Γ1
12 = Γ1

21 = 0, Γ2
11 = Γ2

22 = 0, Γ2
12 = Γ2

21 = 2.

Now our “quick” criterion fails, the connection determined by (27) has symmet-

ric Ricci tensor: ψ1 = 3, ψ2 = 0, Ric = (Rhk) =
(−2 0

0 −1

)
. But the connection

is not metrizable, either, since Ricci is not recurrent: system of linear equations
for functions α1(x), α2(x) such that Rij;k = αkRij

4 = R11;1 = α1R11 = −2α1, 0 = R11;2 = α2R11 = −2α2,

4 = R22;1 = α1R22 = −α1, 4 = R22;2 = α2R22 = −α2 etc.

is inconsistent in our case. The connection is a non-metrizable one. There are
no time- and velocities-independent multipliers gij .

Example 3 ([2]) The system

ẍ1 = 0, ẍ2 = −2ẋ1ẋ2 (28)

defines on R2 (or on R × S1, or on the torus T2 = S1 × S1) a symmetric linear
connection ∇ with Christoffel symbols Γ2

12 = Γ2
21 = 1, Γkij = 0 otherwise.

We can easily check that Ric is symmetric, since ψ1 = Γ1
11 + Γ2

12 = 1, and
ψ2 = Γ1

21 + Γ2
22 = 0. But it is degenerate, evaluation of the components brings

(Rij) =
(−1 0

0 0

)
. Therefore ∇ is not metrizable (even locally). If we try to

solve directly the system corresponding to ∇g = 0,

∂1g11 = 0, ∂1g12 = g12, ∂1g22 = 2g22,
∂2g11 = 2g12, ∂2g12 = g22, ∂2g22 = 0,

we get a similar answer, G = (gij) =
(
a 0
0 0

)
.

Example 4 ([2]) Equations

ẍ1 = −(ẋ1)2, ẍ2 = −(ẋ2)2 (29)
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determine on M2 = R2 a symmetric linear connection ∇X1X1 = X1 = 0,
∇X2X2 = X2, ∇XiXj = 0 otherwise, Xi = ∂

∂xi , with Christoffels

Γ1
11 = Γ2

22 = 1, Γkij = 0 otherwise.

The curvature tensor R vanishes, equivalently, Ric = 0, the connection ∇ is
flat, hence (locally) metrizable, and the system (29) is variational. To find out
components of the metric, or another speaking, variational multipliers gij , we
can solve the system of PDEs

∂1g11 = 2g11, ∂1g12 = g12, ∂1g22 = 0,
∂2g11 = 0, ∂2g12 = g12, ∂2g22 = 2g22.

Given x0 ∈ M , a non-singular 2 × 2 matrix (g0
ij) and initial data gij(x0) = g0

ij

the solution is g11 = g0
11e

2x1
, g12 = g0

12e
x1+x2

, g22 = g0
22e

2x2
, hence we get a

(global) metric on R2 and the corresponding Lagrangian,

gij = g0
ij · ex

i+xj

, L =
1
2
g0
ije

xi+xj

ẋiẋj

(remark that direct search for solution of the corresponding system of PDEs
need not be easy in most cases). The Ricci tensor brings the same answer.

Note that if we introduce essentially the same connection on the “infinite
cylindr” S1 × R, or on the torus T2 = S1 × S1, such a connection is not
globally metrizable. Indeed, consider the (continuous, even smooth) function
f(t) = |X1(γ(t))|, t ∈ (0, 1), the length of the (smooth and globally defined)
coordinate vector field X1 along the “flow line” (which is the circle without one
point): it satisfies f ′ = 2f ; the metric behaves “exponentially”. We must ex-
pect problems with successful “taping” of the metric on the overlap of coordinate
neighborhoods.

Another example of C∞-connection which is metrizable locally but not glob-
ally is given in [16], cf. [22].

Example 5 For the system

ẍ1 + ẋ1ẋ2 = 0, ẍ2 − 1
2

exp(x2)(ẋ1)2 = 0, (30)

non-zero components are Γ1
12 = Γ1

21 = 1
2 , Γ2

11 = − 1
2e
x2

. The Ricci tensor

with components Ric = − 1
4e
x2
dx1 ⊗ dx1 − 1

4dx
2 ⊗ dx2 is covariant constant,

∇Ric = 0, therefore recurrent with vanishing (and consequently exact) 1-form
ω = 0 = d (const) entirely on R2. All (global) compatible metrics on R2 form a
one-parameter family

gb = exp (x2 + b) dx1 ⊗ dx1 + exp (b) dx2 ⊗ dx2, b ∈ R, (31)

which yields Lagrangians L = 1
2e
x2+b(ẋ1)2 + 1

2e
b(ẋ2)2.
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Abstract
Biology and medicine are not the only fields that present problems

unsolvable through a linear models approach. One way to overcome this
obstacle is to use nonlinear methods, even though these are not as thor-
oughly explored. Another possibility is to linearize and transform the
originally nonlinear task to make it accessible to linear methods. In this
aricle I investigate an easy and quick criterion to verify suitability of lin-
earization of nonlinear problems via Taylor series expansion so that linear
models with type II constraints could be used.

Key words: Linear models with constraints, compartmental anal-
ysis, nonlinear models, linearization via a Taylor series.
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h(A) rank of the matrix A
MA a matrix MA = I−PA

PA a projector on the spaceM(A) in Euclidean norm
M(A) range space of the matrix A
Rk k-dimensional linear vector space
χ2
f (0; 1− α) (1 − α)-quantile of the random variable with χ2

f (0) distribution
X− generalized inverse of the matrix X
X+ Moore-Penrose g-inverse of the matrix X
(X)−m(Σ) minimum Σ-norm (seminorm) g-inverse of the matrix X
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2 Linearization via a Taylor series

Let us consider a general nonlinear model

Y ∼n (f (β1) ,Σ), β1 ∈ Rk1 , β2 ∈ Rk2 ,

where the parameter β2 occurs only in a constraint g (β1,β2) = 0, the function

f : V → Rn, V =
{(

β1

β2

)
: g(β1,β2) = 0

}
,

has continuous second derivatives, and g(·) is a q-dimensional function with
continuous second derivatives.

If we know approximate values β0
1, β0

2 of the parameters β1, β2 we can
linearize functions f(·) and g(·) via Taylor series

f(β1) = f
(
β0

1

)
+ F

(
β0

1

)
δβ1 +

1
2
κ(δβ1) + . . . ,

where

F
(
β0

1

)
= ∂f(β1)/∂β′

1|β1=β0
1
, κ(δβ1) = (δβ′

1F1δβ1, , . . . , δβ
′
1Fnδβ1)

′,

Fi = ∂2fi(β1)/∂β1∂β′
1|β1=β0

1
, i = 1, . . . , n,

and

g (β1,β2) = b + B1δβ1 + B2δβ2 +
1
2
ω(δβ1, δβ2) + . . . ,

where

b = g(β0
1,β

0
2), B1 =

∂g (β1,β2)
∂β1

∣∣∣β1=β0
1

β2=β0
2

, B2 =
∂g (β1,β2)

∂β2

∣∣∣β1=β0
1

β2=β0
2

and

{ω(δβ1, δβ2)}i = (δβ′
1, δβ

′
2)

(
A, B
B′, D

)(
δβ1

δβ2

)
,

A = ∂2gi (β1,β2) /∂β1∂β′
1

∣∣∣
β1=β0

1,β2=β0
2

,

B = ∂2gi (β1,β2) /∂β1∂β′
2

∣∣∣
β1=β0

1,β2=β0
2

,

D = ∂2gi (β1,β2) /∂β2∂β′
2

∣∣∣
β1=β0

1,β2=β0
2

,

i = 1, . . . , q, δβ1 = β1 − β0
1, δβ2 = β2 − β0

1.

After ommitting terms of the second and higher orders we get a linearized
model

Y − f
(
β0

1

) ∼n (F
(
β0

1

)
δβ1,Σ),

(
δβ1

δβ2

)
∈

{(
u
v

)
: b + B1u + B2v = 0

}
.
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If h
(
F

(
β0

1

))
= k1 < n, h (B1,B2) = q < k1 + k2, h (B2) = k2 < q, and Σ is

a positive definite matrix we say that the model is regular. It is a linear model
with type II constraints.

Let us denote shortly f0 = f
(
β0

1

)
, F = F

(
β0

1

)
.

Lemma 2.1 The best linear unbiased estimators (BLUE) of the parameters
δβ1, δβ2 in the regular linearized model

Y − f0 ∼n (Fδβ1,Σ), b + B1δβ1 + B2δβ2 = 0,

are ̂̂
δβ1 = δ̂β1 −C−1B′

1

(
MB2B1C−1B′

1MB2

)+
(
b + B1δ̂β1

)
, (1)̂̂

δβ2 = −
[
(B′

2)
−
m(B1C−1B′

1)

]′ (
b + B1δ̂β1

)
, (2)

and their variance matrices are

var

(̂̂
δβ1

)
=

(
MB′

1MB2
CMB′

1MB2

)+

, (3)

var

(̂̂
δβ2

)
=

[
B′

2

(
B1C−1B′

1 + B2B′
2

)−1
B2

]−1

− I, (4)

where δ̂β1 = C−1F′Σ−1(Y − f0) and C = F′Σ−1F.

Proof First we find a constrained extreme of the function

(Y − f0 − Fδβ1)
′ Σ−1 (Y − f0 − Fδβ1)

with a constraint b+B1δβ1 +B2δβ2 = 0. Derivatives of the Lagrange function

Φ (δβ1, δβ2) = (Y− f0 − Fδβ1)
′ Σ−1(Y− f0− Fδβ1)−2λ′(b +B1δβ1 + B2δβ2)

are

∂Φ (δβ1, δβ2)
∂δβ1

= −2F′Σ−1 (Y − f0) + 2F′Σ−1Fδβ1 − 2B′
1λ,

∂Φ (δβ1, δβ2)
∂δβ1

= −2B′
2λ.

We put both derivatives equal to a null vector and solve the ensuing system of
equations. By first calculating an estimator of δβ1 from the first equation for
the model without constraints, i.e. for λ = 0, we obtain

δ̂β1 = C−1F′Σ−1(Y − f0),

where C = F′Σ−1F, and therefore
̂̂
δβ1 = δ̂β1 +C−1B′

1λ. After substituting in
the model the constraints b + B1δβ1 + B2δβ2 = 0 we solve, together with the
second equation, a system(

B1C−1B′
1, B2

B′
2, 0

)(
λ̂̂
δβ2

)
=

(
−

(
b + B1δ̂β1

)
0

)
.
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Using the Pandora-box matrix ([2, Lemma A.7.23]) in its special form ([2,
Lemma A.7.24]) we obtain a solution(

λ̂̂
δβ2

)
=

(
1 2
3 4

)(
−

(
b + B1δ̂β1

)
0

)
,

where

1 =
(
MB2B1C−1B′

1MB2

)+
,

2 = (B1C−1B′
1 + B2B′

2)
−B2

[
B′

2(B1C−1B′
1 + B2B′

2)
−B2

]−
,

3 = 2
′
,

4 =
[
B′

2(B1C−1B′
1 + B2B′

2)
−B2

]− − I,

and since ([2, Lemma A.7.9])

(B′
2)

−
m(B1C−1B′

1) = (B1C−1B′
1 + B2B′

2)
−B2

[
B′

2(B1C−1B′
1 + B2B′

2)
−B2

]−
we can write

λ = − (
MB2B1C−1B′

1MB2

)+
(
b + B1δ̂β1

)
,̂̂

δβ2 = −
[
(B′

2)
−
m(B1C−1B′

1)

]′ (
b + B1δ̂β1

)
,̂̂

δβ1 = δ̂β1 + C−1B′
1λ = δ̂β1 −C−1B′

1

(
MB2B1C−1B′

1MB2

)+
(
b + B1δ̂β1

)
.

Variance matrices can be obtained as

var

⎡⎣⎛⎝ ̂̂
δβ1̂̂
δβ2

⎞⎠⎤⎦ =

⎛⎝ I−C−1B′
1

(
MB2B1C−1B′

1MB2

)+
B1

−
[
(B′

2)
−
m(B1C−1B′

1)

]′
B1

⎞⎠ var(δ̂β1)×

×
(
I−B′

1

(
MB2B1C−1B′

1MB2

)+
B1C−1,−B′

1(B
′
2)

−
m(B1C−1B′

1)

)
.

Since var(δ̂β1) = C−1 and using [2, Lemmas A.8.4 and A.8.5]

var

(̂̂
δβ1

)
=

[
I−C−1B′

1

(
MB2B1C−1B′

1MB2

)+
B1

]
C−1

×
[
I−B′

1

(
MB2B1C−1B′

1MB2

)+
B1C−1

]
= C−1 − 2C−1B′

1

(
MB2B1C−1B′

1MB2

)+
B1C−1 + C−1B′

1

× (
MB2B1C−1B′

1MB2

)+
B1C−1B′

1

(
MB2B1C−1B′

1MB2

)+
B1C−1

= C−1 −C−1B′
1

(
MB2B1C−1B′

1MB2

)+
B1C−1

= C−1 −C−1B′
1MB2

(
MB2B1C−1B′

1MB2

)+
MB2B1C−1

=
(
MB′

1MB2
CMB′

1MB2

)+

,
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and similarly, when we denote H = B′
2

(
B1C−1B′

1 + B2B′
2

)−
B2,

var

(̂̂
δβ2

)
=

[
(B′

2)
−
m(B1C−1B′

1)

]′
B1C−1B′

1(B
′
2)

−
m(B1C−1B′

1)

= H−B′
2

(
B1C−1B′

1 + B2B′
2

)−1
B1C−1B′

1

(
B1C−1B′

1 + B2B′
2

)−1
B2H−

= H−B′
2

(
B1C−1B′

1 + B2B′
2

)−1 (
B1C−1B′

1 + B2B′
2 −B2B′

2

)
× (

B1C−1B′
1 + B2B′

2

)−1
B2H−

= H−1HH−1 −H−1HHH−1

=
[
B′

2

(
B1C−1B′

1 + B2B′
2

)−1
B2

]−1

− I,

because the matrix
(
B1C−1B′

1 + B2B′
2

)
can be expressed as multiplication of

regular matrices (due to a model regularity)

B1C−1B′
1 + B2B′

2 = (B1,B2)
(

C−1 ,0
0 , I

)(
B′

1

B′
2

)
,

and since we can use common inverse matrices instead of g-inverse matrices(
B1C−1B′

1 + B2B′
2

)−
and

[
B′

2

(
B1C−1B′

1 + B2B′
2

)−
B2

]−
. �

Remark 2.1 Since (see [2, Lemmas A.7.24 and A.7.9])(
MB2B1C−1B′

1MB2

)+
=

(
B1C−1B′

1 + B2B′
2

)−1− (
B1C−1B′

1 + B2B′
2

)−1

×B2

[
B′

2

(
B1C−1B′

1 + B2B′
2

)−1
B2

]−1

B′
2

(
B1C−1B′

1 + B2B′
2

)−1
,

and

(B′
2)

−
m(B1C−1B′

1) = (B1C−1B′
1+B2B′

2)
−1B2

[
B′

2(B1C−1B′
1 + B2B′

2)
−1B2

]−1
,

the estimators of δβ1 and δβ2 in (1) and (2) can be expressed in equivalent
forms without generalized inverse matriceŝ̂

δβ1 = δ̂β1 −C−1B′
1

[
T−TB2 (B′

2TB2)
−1 B′

1T
] (

b + B1δ̂β1

)
, (5)̂̂

δβ2 = − (B′
2TB2)

−1 B′
2T

(
b + B1δ̂β1

)
, (6)

where T =
(
B1C−1B′

1 + B2B′
2

)−1
.

Now we turn back to the model with quadratic terms and explore the prop-
erties (1)–(4) of the estimators.

Lemma 2.2 If

Y − f0 ∼n (Fδβ1 +
1
2
κ(δβ1),Σ), b + B1δβ1 + B2δβ2 +

1
2
ω (δβ1, δβ2) = 0,

(7)
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then biases of the estimators (1) and (2) are

b1 = E

(̂̂
δβ1

)
− δβ1 =

1
2
C−1B′

1

[
MB2B1C−1B′

1MB2

]+
ω (δβ1, δβ2)

+
1
2

[
MB′

1MB2
CMB′

1MB2

]+

F′Σ−1κ(δβ1),

b2 = E

(̂̂
δβ2

)
− δβ2

=
1
2

[
(B′

2)
−
m(B1C−1B′

1)

]′ (
ω (δβ1, δβ2)−B1C−1F′Σ−1κ(δβ1)

)
,

where C = F′Σ−1F.

Proof By [2, Lemmas A.7.24 and A.8.4] and due to MB2B2 = 0, we can write

E

(̂̂
δβ1

)
= E

(
δ̂β1 −C−1B′

1

[
MB2B1C−1B′

1MB2

]+ [
b + B1δ̂β1

])
= −C−1B′

1

[
MB2B1C−1B′

1MB2

]+
b

+
[
I−C−1B′

1

[
MB2B1C−1B′

1MB2

]+
B1

]
E

(
δ̂β1

)
= −C−1B′

1

[
MB2B1C−1B′

1MB2

]+
b

+
[
I−C−1B′

1

[
MB2B1C−1B′

1MB2

]+
B1

]
C−1F′Σ−1

(
Fδβ1 +

1
2
κ(δβ1)

)
= δβ1 −C−1B′

1

[
MB2B1C−1B′

1MB2

]+
(b + B1δβ1)

+
1
2

[
I−C−1B′

1

[
MB2B1C−1B′

1MB2

]+
B1

]
C−1F′Σ−1κ(δβ1)

= δβ1 + C−1B′
1MB2

[
MB2B1C−1B′

1MB2

]+
MB2

(
B2δβ2 +

1
2
ω (δβ1, δβ2)

)
+

1
2

[
C−1 −C−1B′

1MB2

[
MB2B1C−1B′

1MB2

]+
MB2B1C−1

]
F′Σ−1κ(δβ1)

= δβ1 +
1
2
C−1B′

1

[
MB2B1C−1B′

1MB2

]+
ω (δβ1, δβ2)

+
1
2

[
MB′

1MB2
CMB′

1MB2

]+

F′Σ−1κ(δβ1).

Then

b1 = E

(̂̂
δβ1

)
− δβ1 =

1
2
C−1B′

1

[
MB2B1C−1B′

1MB2

]+
ω (δβ1, δβ2)

+
1
2

[
MB′

1MB2
CMB′

1MB2

]+

F′Σ−1κ(δβ1).

Similarly by [2, Lemma A.7.20] and due to[
(B′

2)
−
m(B1C−1B′

1)

]′
B2 = I



Suitability of linearization of nonlinear problems not only in biology. . . 177

we obtain

E

(̂̂
δβ2

)
= E

(
−

[
(B′

2)
−
m(B1C−1B′

1)

]′ (
b + B1δ̂β1

))
= −

[
(B′

2)
−
m(B1C−1B′

1)

]′
b−

[
(B′

2)
−
m(B1C−1B′

1)

]′
B1C−1F′Σ−1E (Y − f0)

= −
[
(B′

2)
−
m(B1C−1B′

1)

]′
b−

[
(B′

2)
−
m(B1C−1B′

1)

]′
×B1C−1F′Σ−1

(
Fδβ1 +

1
2
κ(δβ1)

)
= −

[
(B′

2)
−
m(B1C−1B′

1)

]′
(b + B1δβ1)−

1
2

[
(B′

2)
−
m(B1C−1B′

1)

]′
×B1C−1F′Σ−1κ(δβ1)

=
[
(B′

2)
−
m(B1C−1B′

1)

]′ (
B2δβ2 +

1
2
ω (δβ1, δβ2)

)
− 1

2

[
(B′

2)
−
m(B1C−1B′

1)

]′
B1C−1F′Σ−1κ(δβ1)

= δβ2 +
1
2

[
(B′

2)
−
m(B1C−1B′

1)

]′ [
ω (δβ1, δβ2)−B1C−1F′Σ−1κ(δβ1)

]
,

and therefore

b2 = E

(̂̂
δβ2

)
− δβ2

=
1
2

[
(B′

2)
−
m(B1C−1B′

1)

]′ [
ω (δβ1, δβ2)−B1C−1F′Σ−1κ(δβ1)

]
. �

3 Measures of nonlinearity and areas of linearization

In this section we suppose the observation vector to be normally distributed.
Bias of an estimator of δβ2 can be split into components, i.e.

b2 = E

(̂̂
δβ2

)
− δβ2 = b2,0 + b2,1,

where

b2,0 ∈M
(

var(̂̂δβ2)
)

and b2,1 ∈ M
(
M

var(d

dδβ2)

)
,

as can be seen in Fig. 1.

Let a symbol λmax denote the biggest eigenvalue of the matrix var(̂̂δβ2). By
Theorem 9.2.1 in [3] it is easy to prove that for

̂̂
δβ2 ∼ Nk2(δβ2 + b2, var(̂̂δβ2))
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λ

Ēδβ2

M(var(̂̂δβ2))

E(̂̂δβ2))

̂

̂δβ2

δβ2

b2 b2,0

b2,1

max

Figure 1: The components of bias.

the random variable

T =
[̂̂
δβ2 − E

(̂̂
δβ2

)
+ b2,0

]′ (
var(̂̂δβ2) + λmaxMvar(d

dδβ2)

)+

×
[̂̂
δβ2 − E

(̂̂
δβ2

)
+ b2,0

]
has a noncentral χ2 distribution with f = h(var(̂̂δβ2)) degrees of freedom and
a parameter of noncentrality

δ = b′2,0

(
var(̂̂δβ2) + λmaxMvar(d

dδβ2)

)+

b2,0. (8)

A random variable

T̄ =
(
δβ2 − ̂̂

δβ2

)′ (
var(̂̂δβ2) + λmaxMvar(d

dδβ2)

)+ (
δβ2 − ̂̂

δβ2

)
can be then rewritten in the form

T̄ = T +
b′2,1b2,1

λmax
,

because by [2, Lemmas A.7.22 and A.7.2] it holds that[
var(̂̂δβ2) + λmaxMvar(d

dδβ2)

]+

=
[
var(̂̂δβ2)

]+

+
1

λmax
M

var(d

dδβ2)

and

b′2,1

[
var(̂̂δβ2)

]+

b2,1 = 0.

This consideration leads us to a modified confidence ellipsoid for the parameter
δβ2.
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Definition 3.1 A modified confidence ellipsoid for the parameter δβ2 in the
model (7) is defined as

Ēδβ2
=

{
u ∈ Rk2 :

(
u− ̂̂

δβ2

)′ {[
var(̂̂δβ2)

]+

+
1

λmax
M

var(d

dδβ2)

}(
u− ̂̂

δβ2

)

≤ χ2
f (0; 1− α)

}
,

where f = h(var(̂̂δβ2)).

As a certain analogy of the Bates-Wats measure of curvature, a measure of
nonlinearity for a confidence ellipsoid for the parameter δβ2 can be defined.

Definition 3.2 For a linear model with type II constraints in the form (7), we
define a measure of nonlinearity of confidence ellipsoid for the parameter δβ2 as

CIIell,δβ2
= sup

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√√√√b′
2

{[
var(̂̂δβ2)

]+

+ 1
λmax

M
var(d

dδβ2)

}
b2

δs′K′
1

{[
var(̂̂δβ1)

]+

+ 1
κmax

M
var(d

dδβ1)

}
K1δs

: δs ∈ Rk1+k2−q

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

(9)

where κmax is the biggest eigenvalue of the matrix var(̂̂δβ1) and K1 is a matrix
of type k1 × (k1 + k2 − q) satisfying M(K1) =M(MB′

1MB2
).

It is obvious that

P {
T̄ ≤ χ2

f (0; 1− α)
}

= P
{
χ2
f (δ) +

b′2,1b2,1

λmax
≤ χ2

f (0; 1− α)

}
and certainly such δ0 > 0 exists which satisfies the equality

P {
χ2
f (δ0) + δ0 ≤ χ2

f (0; 1− α)
}

= 1− α− ε (10)

for a sufficiently small ε > 0. Now we define an area of linearization of the
parameter δβ2 for this δ0.

Definition 3.3 An area of linearization of the parameter δβ2 for the model (7)
is

Lδβ2
=

{
K1δs : δs′K′

1

{[
var(̂̂δβ1)

]+

+
1

κmax
M

var(d

dδβ1)

}
K1δs ≤

√
δ0

CIIell,δβ2

,

δs ∈ Rk1+k2−q
}
,

where the matrix K1 has properties mentioned in Definition 3.2.
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Lemma 3.1 If K1δs ∈ Lδβ2
, then

P {
δβ2 ∈ Ēδβ2

} ≥ 1− α− ε.
Proof By the definition of Lδβ2

and CIIell,δβ2
, we can write√√√√b′

2

{[
var(̂̂δβ2)

]+

+
1

λmax
M

var(d

dδβ2)

}
b2

≤ CIIell,δβ2
δs′K′

1

{[
var(̂̂δβ1)

]+

+
1

κmax
M

var(d

dδβ1)

}
K1δs ≤

√
δ0.

Since, with respect to M
var(d

dδβ2)
b2,0 = 0,

P{
δβ2 ∈ Ēδβ2

}
=P{

T̄ ≤ χ2
f (0; 1− α)

}
=P

{
χ2
f (δ) +

b′2,1b2,1

λmax
≤ χ2

f (0; 1− α)

}
≥ P {

χ2
f (δ0) + δ0 ≤ χ2

f (0; 1− α)
}

= 1− α− ε. �

Because the parameter δβ2 is a function of the parameter δβ1 we must, in
order to verify of the property δβ1 ≈ K1δs ∈ Lδβ2

, construct also a modified
confidence ellipsoid for the parameter δβ1.

Definition 3.4 A modified confidence ellipsoid for the parameter δβ1 in the
model (7) is

Ēδβ1
=

{
u ∈ Rk1 :

(
u− ̂̂

δβ1

)′ {[
var(̂̂δβ1)

]+

+
1

κmax
M

var(d

dδβ1)

}(
u− ̂̂

δβ1

)

≤ χ2
f1(0; 1− α)

}
,

where f1 = h(var(̂̂δβ1)) and κmax is the biggest eigenvalue of the matrix

var(̂̂δβ1).

Similarly as for δβ2, it is also possible to define a measure of nonlinearity
for δβ1.

Definition 3.5 For the linear model (7), we define a measure of nonlinearity
of a confidence ellipsoid for the parameter δβ1 as

CIIell,δβ1
= sup

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√√√√b′1

{[
var(̂̂δβ1)

]+

+ 1
κmax

M
var(d

dδβ1)

}
b1

δs′K′
1

{[
var(̂̂δβ1)

]+

+ 1
κmax

M
var(d

dδβ1)

}
K1δs

: δs ∈ Rk1+k2−q

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

(11)
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A sufficient condition for linearization regarding the confidence ellipsoid for
the parameter δβ2 is

Eδβ1
⊂⊂ Lδβ2

⇒
√
δ0

CIIell,δβ2

' χ2
f1(0; 1− α), (12)

(cf. Fig. 2).

Eδβ1
Lδβ2

Rk1+k2−q

Rk1

Figure 2: The confidence ellipsoid Eδβ1
and the area of linearization Lδβ2

.

4 Numerical example

Tracer kinetics of liver blood flow can be described by a compartmental model
(Fig. 3) and an ordinary differential equation

dCL(t)
dt

= k1aCa(t) + k1pCp(t)− k2CL(t). (13)

We obtained the values of tracer concentration CL(ti) in liver, Ca(ti) in a
liver artery and Cp(ti) in a portal vein by measuring times ti, i = 1, 2, . . . , n.

To the equation (13) we can add a delay, in the liver artery or in the por-
tal vein or both. So overall, we can obtain three different equations for our
compartmental model (included the one without any delay):

(KMI)
dCL(t)
dt

= k1aCa(t) + k1pCp(t)− k2CL(t),

(KMII)
dCL(t)
dt

= k1aCa(t− τa) + k1pCp(t)− k2CL(t),

(KMIII)
dCL(t)
dt

= k1aCa(t− τa) + k1pCp(t− τp)− k2CL(t).

For the sake of simplicity, let us consider only the model without any delay,
denoted as (KMI). A vector of observations of tracer concentrations for this
model is in the form

Y = (Ca(t1), . . . , Ca(tn−1), Cp(t1), . . . , Cp(tn−1), CL(t1), . . . , CL(tn))
′
,
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k1a

k1p

k2

Ca(t)

Cp(t)

CL(t)

Figure 3: Dual-input one-compartmental model of blood flow in liver.

and a statistical model
Y ∼ N3n−2

(
Iβ1, σ

2I
)
, (14)

where β1 = (μ1, . . . μn−1, ν1, . . . , νn−1, ζ1, . . . , ζn)′, with constraints

ζi+1 − ζi
ti+1 − ti = k1aμi + k1pνi − k2ζi, i = 1, 2, . . . , n− 1.

Let for i = 1, 2, . . . , n− 1

μi = μ
(0)
i + δμi, νi = ν

(0)
i + δνi, ζi = ζ

(0)
i + δζi,

then for
Z = Y −

(
μ

(0)
1 , . . . μ

(0)
n−1, ν

(0)
1 , . . . , ν

(0)
n−1, ζ

(0)
1 , . . . , ζ(0)

n

)′

we have a model
Z ∼ N3n−2

(
Iδβ1, σ

2I
)
,

where
δβ1 = (δμ1, . . . δμn−1, δν1, . . . , δνn−1, δζ1, . . . , δζn)′ .

Then for k1a = k
(0)
1a + δk1a, k1p = k

(0)
1p + δk1p, k2 = k

(0)
2 + δk2 and

β2 =

⎛⎝ k1a

k1p

k2

⎞⎠ , δβ2 =

⎛⎝ δk1a

δk1p

δk2

⎞⎠ ,

the model constraints

gi (β1, β2) = −k1aμi − k1pνi +
(
k2 − 1

ti+1 − ti

)
ζi +

1
ti+1 − ti ζi+1 = 0,

i = 1, 2, . . . , n− 1, can be rewritten in the form
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gi (β1, β2) = −
(
k

(0)
1a + δk1a

)(
μ

(0)
i + δμi

)
−

(
k

(0)
1p + δk1p

)(
ν

(0)
i + δνi

)
+

(
k

(0)
2 + δk2 − 1

ti+1 − ti

)(
ζ
(0)
i + δζi

)
+

1
ti+1 − ti

(
ζ
(0)
i+1 + δζi+1

)
= 0,

i = 1, . . . , n− 1.

In a matrix form we can write

g (β1, β2) = b + (B1,B2)
(

δβ1

δβ2

)
+

1
2

⎡⎢⎢⎢⎢⎢⎣
(
δβ1

′, δβ2
′) ∂2g1(β1,β2)

∂(β1
β2

)∂(β1
′,β2

′)

(
δβ1

δβ2

)
...(

δβ1
′, δβ2

′) ∂2gn−1(β1,β2)

∂(β1
β2

)∂(β1
′,β2

′)

(
δβ1

δβ2

)
⎤⎥⎥⎥⎥⎥⎦ ,

where for Δti = ti+1 − ti, i = 1, . . . , n− 1,

bi = −k(0)
1a μ

(0)
i − k(0)

1p ν
(0)
i +

(
k

(0)
2 − 1

Δti

)
ζ
(0)
i +

1
Δti

ζ
(0)
i+1, i = 1, . . . , n− 1,

a matrix B1 is of type (n − 1) × (3n − 2) and it should be divided into three
blocks

B1 =
[
−k(0)

1a In−1,−k(0)
1p In−1, 1

]
,

where

1 =

⎡⎢⎢⎢⎢⎣
k

(0)
2 − 1

Δt1
, 1

Δt1
, 0, 0, . . . , 0, 0

0, k
(0)
2 − 1

Δt2
, 1

Δt2
, 0, . . . , 0, 0

...
...

...
...

...
...

...

0, 0, 0, 0, . . . , k(0)
2 − 1

Δtn−1
, 1

Δtn−1

⎤⎥⎥⎥⎥⎦ ,

B2 =

⎛⎜⎜⎜⎜⎝
−μ(0)

1 , −ν(0)
1 , ζ

(0)
1

−μ(0)
2 , −ν(0)

2 , ζ
(0)
2

...
...

...

−μ(0)
n−1, −ν(0)

n−1, ζ
(0)
n−1

⎞⎟⎟⎟⎟⎠ .

For i = 1, . . . , n− 1 the (3n+ 1)× (3n+ 1) matrix

∂2gi (β1,β2)

∂

(
β1

β2

)
∂
(
β1

′,β2
′)
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has almost all elements equal to zero except for⎧⎪⎪⎨⎪⎪⎩
∂2gi (β1,β2)

∂

(
β1

β2

)
∂
(
β1

′,β2
′)

⎫⎪⎪⎬⎪⎪⎭
3n−1,i

= −1
2

⎧⎪⎪⎨⎪⎪⎩
∂2gi (β1,β2)

∂

(
β1

β2

)
∂
(
β1

′,β2
′)

⎫⎪⎪⎬⎪⎪⎭
3n,n+i−1

= −1
2

⎧⎪⎪⎨⎪⎪⎩
∂2gi (β1,β2)

∂

(
β1

β2

)
∂
(
β1

′,β2
′)

⎫⎪⎪⎬⎪⎪⎭
3n+1,2n+i−2

= +
1
2

and the corresponding symmetric elements.
Calculation of estimators of δβ1 and δβ2 is iterative. For initiative iteration

we put

μ
(1)
i = Ca(ti), ν

(1)
i = Cp(ti), ζ

(1)
i = CL(ti), i = 1, . . . , n− 1,

and k(1)
1a , k(1)

1p , k(1)
2 are calculated as a solution to a system

B2

⎛⎜⎝ k
(1)
1a

k
(1)
1p

k
(1)
2

⎞⎟⎠ =

⎛⎜⎜⎜⎝
ζ
(1)
1 −ζ(1)2

Δt1
...

ζ
(1)
n−1−ζ(1)n

Δtn−1

⎞⎟⎟⎟⎠ ,

i.e. from the model constraints for δβ1 = 0 and δβ2 = 0.
From (5), (6) we calculate the (k + 1)-th iteration of estimators of δβ1 and

δβ2, i.e. in this case

δβ
(k+1)
1 = Z(k) −B′

1

[
T−TB2 [B′

2TB2]
−1 B′

2T
] (

b(k) + B1Z(k)
)

δβ
(k+1)
2 = − [B′

2TB2]
−1 B′

2T
(
b(k) + B1Z(k)

)
,

where T = (B1B′
1 + B2B′

2)
−1, Z(k) = Y − β1

(k), and

b(k) = B1β1
(k) +

1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(
δβ1

(k)′, δβ2
(k)′

)
∂2g1(β1

(k),β2
(k))

∂(β1
β2

)∂(β1
′,β2

′)

(
δβ1

(k)

δβ2
(k)

)
...(

δβ1
(k)′, δβ2

(k)′
)
∂2gn−1(β1

(k),β2
(k))

∂(β1
β2

)∂(β1
′,β2

′)

(
δβ1

(k)

δβ2
(k)

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.
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The matrices B1, B2 are constructed with the k-th iteration of the parameters
β1, β2 obtained from

β1
(k) = β1

(k−1) + δβ1
(k),

β2
(k) = β2

(k−1) + δβ2
(k).

Estimators of covariance matrices of the final estimators
̂̂
δβ1,

̂̂
δβ2 are cal-

culated from (3), (4), i.e. in this case (C = σ−2I)

̂
var(̂̂δβ1) =

̂
var(̂̂β1) = σ̂2

(
MB′

1MB2
MB′

1MB2

)+

,

̂
var(̂̂δβ2) =

̂
var(̂̂β2) = σ̂2

([
B′

2 (B1B′
1 + B2B′

2)
−1 B2

]−1

− I
)
,

where

σ̂2 =

(
Y − ̂̂

β1

)′ (
Y − ̂̂

β1

)
n+ q − (k1 + k2)

and (
MB′

1MB2
MB′

1MB2

)+

=
(
I−B1 [MB2B1B′

1MB2 ]
+ B1

)
.

For data from the graphic example in [4] (values of tracer concentration in
liver, artery and portal vein measures at 23 times—see Table 1 and Fig. 4), i.e.
for n = 23, q = n − 1 = 22, k1 = 3n− 2 = 67 and k2 = 3, we get these results
after 4 iterations: ̂̂

β2 =

⎛⎝ 0.002431475
0.009413782
0.039506253

⎞⎠ ,

σ̂2 = 0.001130171,

var

(̂̂
β2

)
= var

(̂̂
δβ2

)

=

⎛⎝ 3.238255e− 07 −6.991068e− 07 −2.103772e− 06
−6.991068e− 07 3.001722e− 06 1.255561e− 05
−2.103772e− 06 1.255561e− 05 5.826697e− 05

⎞⎠ .

Among the results we were interested only in the vector of kinetics parameters
β2, because they seem to be important for early diagnosis of substantional liver
diseases.

In Fig. 5 there are discrete points of measured tracer concentration in liver
and a curve of the tracer concentration in liver estimated from the model (i.e.
ζ1, . . . , ζn values).
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Now we calculate the measure of nonlinearity CIIell,δβ2
by algorithm mentioned

in [1] (pp. 230–231) with the value of δ0 from (10) set at ε = 0.04. The value of
√
δ0

CIIell,δβ2

=
√

1.570312
0.04511495

= 27.77618

is compared with the value of χ2
48(0; 0.95) = 65.17077. From the numerical re-

sults it is obvious that the condition mentioned in (12) is not satisfied, i.e. for
our data set it is not suitable to linearize the original nonlinear model and work
with the estimators of kinetics coefficients obtained from the linearized model,
although these estimators seem to be very accurate. If the estimated parameter
σ̂ was three times lower, which might be accomplished by more accurate mea-
surement or by measurement in shorter time intervals, the condition would be
satisfied and linearization would be appropriate.

i ti [s] CL(ti) [mmol/l] Ca(ti) [mmol/l] Cp(ti) [mmol/l]

1 0.00 0.000 0.000 0.00

2 3.30 0.000 0.000 0.00

3 6.75 0.000 2.350 0.00

4 10.00 0.000 4.230 0.07

5 13.25 0.030 4.350 0.19

6 16.75 0.111 3.620 0.68

7 20.00 0.156 2.440 1.36

8 23.50 0.126 1.600 1.88

9 26.75 0.204 1.220 2.11

10 30.00 0.309 1.220 2.49

11 33.50 0.294 1.500 2.30

12 36.75 0.360 2.000 2.21

13 40.50 0.378 2.230 2.26

14 43.50 0.411 2.162 2.21

15 47.00 0.489 1.970 2.40

16 50.50 0.519 1.790 2.28

17 54.00 0.561 1.600 2.35

18 57.00 0.516 1.480 2.26

19 60.50 0.618 1.580 2.23

20 64.00 0.543 1.530 2.16

21 67.00 0.561 1.620 2.26

22 70.50 0.510 1.430 2.16

23 74.00 0.600 1.430 2.07

Table 1: Measured data of tracer concentration.
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Figure 4: Curves of measured tracer concentration in a liver artery Ca(t) and
a portal vein Cp(t) and points of measured tracer concentration in liver CL(t).
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5 Conclusions

Many real-life systems are basicaly nonlinear. Particularly in biology and med-
icine we meet nonlinear problems very often. By treating them as linear we
employ a very rough and limited approximation [5]. There are many meth-
ods that solve nonlinear problems, mostly numerical methods, but these usualy
suppose accurate measurements, and they do not take into consideration inac-
curacy and uncertainty inherent in biology and medicine settings (subjective
examination, inter- or intraobjective variability and so on). One way out is to
apply linearization of nonlinear problems, for example the above-mentioned lin-
earization via Taylor series, to use the well-known and well-explored theory of
linear models. We know how to estimate parameters and their variability in the
linearized models [1]. However, we should check whether the type of problem
and measured data allow for treating the nonlinear problem in this way.

The aim of this article was to find a condition which would guarantee for
linear models with type II constraints that the true values of estimated param-
eters are covered by a modified confidence ellipsoid (with probability no less
than 1 − α − ε for a preset small ε > 0), and to verify in this manner that the
usage of linearization is appropriate. As can be seen in the numerical example,
this condition is not easy to satisfy, although calculated estimators (and their
variances) in the linearized model look very good. When solving a nonlinear
problem by linearization we should proove that the linearization is safe. In
case of linear models with type II constraints a method of such verification was
presented here.
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