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Abstract
Almost-periodic solutions in various metrics (Stepanov, Weyl, Besi-

covitch) of higher-order differential equations with a nonlinear Lipschitz-
continuous restoring term are investigated. The main emphasis is focused
on a Lipschitz constant which is the same as for uniformly almost-periodic
solutions treated in [A1] and much better than those from our investiga-
tions for differential systems in [A2], [A3], [AB], [ABL], [AK]. The upper
estimates of ε for ε-almost-periods of solutions and their derivatives are
also deduced under various restrictions imposed on the constant coeffi-
cients of the linear differential operator on the left-hand side of the given
equation. Besides the existence, uniqueness and localization of almost-
periodic solutions and their derivatives are established.
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der differential equation; nonlinear restoring term; existence and
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1 Introduction

We shall consider the differential equation

y(n) +
n∑
j=1

ajy
(n−j) = f(y) + p(t), (1)

where aj ∈ R, j = 1, . . . , n, are real constants such that the real parts of the
roots of the characteristic polynomial associated with the linear operator on the
left-hand side of (1), namely

λn +
n∑
j=1

ajλ
n−j , (2)

are at least nonzero, i.e. Reλj �= 0, j = 1, . . . , n. It is well-known that the
related Routh–Hurwitz conditions are necessary and sufficient for Reλj < 0,
j = 1, . . . , n, i.e. in order polynomial (2) to be stable. In this case, all coeffi-
cients aj ∈ R in (1) must be positive, i.e. aj > 0, j = 1, . . . , n. One can also find
necessary and sufficient conditions in order all roots of (2) to be negative, but for
characteristic polynomials of a higher degree these conditions are rather cum-
bersome (see e.g. [AG, Chapter III.5]). Assume, furthermore, that the restoring
term f ∈ Lip(R,R) is a bounded Lipschitz-continuous function with constant
L < |an|, and that the forcing term p ∈ L1

loc(R,R) is an essentially bounded,
locally Lebesgue integrable function which will be successively supposed to be
almost-periodic (a.p.) in the sense of Stepanov, Weyl or Besicovitch.

The main aim of the present paper is to extend appropriately sufficient con-
ditions for the existence of uniformly almost-periodic solutions and their deriva-
tives, obtained for (1) in [A1] (cf. also [AG, Chapter III.10]), provided the forcing
term p is almost-periodic in a more general sense (Stepanov, Weyl, Besicovitch).
Although the existence criteria for such a.p. solutions and their derivatives can
be deduced from our earlier results for differential systems, namely for Stepanov
a.p. solutions in [AB], for Weyl a.p. solutions in [A2], [A3], and for Besicovitch
a.p. solutions in [ABL] (cf. also [AG, Chapter III.10]), the upper estimates for
Lipschitz constant L related to f would be very rough (cf. e.g. [AK]). Another
purpose therefore consists in obtaining much sharper inequality for L, namely
L < |an|. Since this is possible only if the roots of (2) are at least nonzero real
(otherwise, the desired estimates for L would explicitly depend on them), we
shall still assume that the coefficients aj , j = 1, . . . , n, yield nonzero real roots.

Higher-order differential equations of the type (1), where n > 2, have not
been treated w.r.t. the existence of a.p. solutions so often (see e.g. [Kh], [KBK],
[L]). The investigations of the other authors of more general than uniformly
a.p. solutions were also quite rare (see e.g. [BFSD1]–[BFSD3], [BFH], [DHS],
[DM], [H], [Ku], [LZ], [P], [ZL]). As far as we know, apart from our mentioned
papers [A2], [A3], [AB], [ABL] and [LZ], [P], [R], [ZL], almost-periodic solutions
in the generalized sense of (1), where n > 2, have not yet been studied with the
indicated respect.
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The paper is organized as follows. After some preliminaries, the main exis-
tence results are formulated. Roughly speaking, as much as we impose on the
coefficients aj , j = 1, . . . , n, on the left-hand side of (1), as good estimates of
ε for ε-almost-periods of a.p. solutions and their derivatives we obtain. More-
over, more transparent estimates of (entirely bounded) a.p. solutions allow us
to replace global boundedness assumption on f by restrictions localized only
on certain domains. This will be done, besides another, in concluding remarks,
jointly with extending our results to differential inclusions, on the basis of se-
lection theorems in [HP] and [D1]–[D3], [DS].

2 Some preliminaries

At first, we recall various types of almost-periodicity.

Definition 1 Let us introduce the following (pseudo-) metrics:
(Stepanov)

DSl
(f, g) := sup

a∈R

1
l

a+l∫
a

|f(t)− g(t)| dt,

(Weyl)

DW (f, g) := lim
l→∞

sup
a∈R

1
l

a+l∫
a

|f(t)− g(t)| dt = lim
l→∞

DSl
(f, g),

(Besicovitch)

DB(f, g) := lim sup
T→∞

1
2T

T∫
−T

|f(t)− g(t)| dt,

where f, g : R → R are measurable functions. Denoting by DG any of the
above (pseudo-) metrics, by the metric space (G,DG), we understand the related
quotient space in the sense that we identify such elements f1, f2, for which
DG(f1, f2) = 0.

Definition 2 A function f ∈ L1
loc(R,R) is said to be G-almost-periodic

(G-a.p.) if

∀ε > 0 ∃k > 0 ∀a ∈ R ∃τ ∈ [a, a+ k] : DG(f(t+ τ), f(t)) < ε.

The above τ is called an ε-almost-period in the respective sense.

Instead of DS1-a.p. or DW -a.p. or DB-a.p. function, we shall write S1-a.p.
or W -a.p. or B-a.p., respectively.

The following definition uses curiously the Stepanov metric for the almost-
periodicity in the sense of H. Weyl.



10 J. ANDRES, A. M. BERSANI, L. RADOVÁ

Definition 3 A function f ∈ L1
loc(R,R) is said to be equi-Weyl-almost-periodic

(equi-W -a.p.) if

∀ε > 0 ∃k, l0(ε) > 0 ∀a ∈ R ∃τ ∈ [a, a+ k] :
DSl

(f(t+ τ), f(t)) < ε, ∀l ≥ l0(ε).

Remark 1 It is well-known (see e.g. [ABG], [L], [LZ]) that, without any loss
of generality, we can take l0 ≥ 1 in Definition 3.

Definition 4 A function f : R → R is called uniformly G-continuous if

∀ε > 0 ∃δ = δ(ε) > 0 : |h| < δ =⇒ DG(f(t+ h), f(t)) < ε.

If, in particular, the above implication holds for a continuous function f with
DG replaced by the sup-norm, then we simply speak about uniform continuity
of f .

In the following sections, the existence of almost-periodic solutions and their
derivatives in various metrics will be proved by three different techniques for
differential equation (1).

Hence, consider the differential equation (1), i.e.

y(n) +
n∑
j=1

ajy
(n−j) = f(y) + p(t),

where aj ∈ R, j = 1, . . . n, f ∈ Lip(R,R) and p ∈ L1
loc(R,R).

Assume, furthermore, that
(i) all roots λj , j = 1, . . . n, of the characteristic polynomial (2), i.e. of

λn +
n∑
j=1

ajλ
n−j ,

are nonzero and real;
(ii) f is bounded and Lipschitz on R, i.e. there exists L > 0 such that

|f(x) − f(y)| ≤ L|x− y|, ∀x, y ∈ R;

(iii) p is an essentially bounded Ḡ-a.p. function, where Ḡ means either S or
W or B or equi-W case;

(iv) there exists a positive constant D0 s.t.

supess
t∈R

|p(t)|+ sup
y∈R

|f(y)| ≤ D0.

In the entire text, by a solution y(·) of (1), we shall mean the one in the
sense of Carathéodory, i.e. such that y(n−1)(·) is locally absolutely continuous.

The following lemma guarantees the existence of a unique bounded solution
of (1), including its suitable representation for our application, and the same
for its derivatives.
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Lemma 1 Assume that all roots of the characteristic polynomial (2) are nonzero
and real (i.e. (i)). Under the assumption (iv), and (ii) with L < |an|, equation
(1) has exactly one (Carathéodory) entirely bounded solution y(·) given by the
formula

y(t) =

t∫
Λ1

t1∫
Λ2

. . .

tn−1∫
Λn

eλ1t+(λ2−λ1)t1+...+(λn−λn−1)tn−1−λntn [f(y(tn))+p(tn)] dtn . . . dt1,

where Λj = +∞ · λj, j = 1, . . . , n.
Denoting the right-hand side of the preceding formula by [1, . . . , n], the k-th

derivatives (k = 1, . . . , n− 1) of solution y(·) satisfy

y(k)(t) =
dk([1, . . . , n])

dtk
= [k + 1, . . . , n] +

k∑
c1=1

λc1 [c1, k + 1, . . . , n]

+
k∑

c1,c2=1
c1<c2

λc1λc2 [c1, c2, k + 1, . . . , n] + . . .

+
k∑

c1,...,cp=1
c1<...<cp

(
p∏
i=1

λci

)
[c1, . . . , cp, k + 1, . . . , n] + . . .+

(
k∏
i=1

λi

)
[1, . . . , n],

where

[c, . . . , n] =

t∫
Λc

tc∫
Λc+1

. . .

tn−1∫
Λn

eλct+(λc+1−λc)tc+...+(λn−λn−1)tn−1−λntn

× [f(y(tn)) + p(tn)] dtn . . . dtc+1 dtc.

Proof The complete proof can be found in [AG]. The existence of a bounded
solution is verified at page 554 (cf. also pp. 329–330). The representation formula
is given at p. 321 (Lemma 5.45) and the formula for the k-th derivative is derived
at pp. 324–325 (Lemma 5.61). The uniqueness is proved at p. 556. �

Remark 2 The solution y(·) in Lemma 1 satisfies

sup
t∈R

|y(t)| ≤ D0

|an|

(see [AG, p. 323]) and its k-th derivative (k = 1, . . . , n− 1) can be estimated by

a) sup
t∈R

|y(k)(t)| ≤ 2kD0

|an|
k∏
j=1

|αj |, when the characteristic polynomial has only

real nonzero roots (see [AG, Lemma 5.63 at pp. 325–326]);
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b) sup
t∈R

|y(k)(t)| ≤ 2kD0

|an−k| , provided each of the shifted polynomials

λn−p +
n−p∑
j=1

ajλ
n−p−j , p = 0, . . . , n− 1,

admits real nonzero roots (see [AG, Lemma 5.70 at p. 327]);

c) sup
t∈R

|y(k)(t)| ≤ 2kakD0(
n
k

)
an

, whenever all roots of the characteristic polynomial

are negative (see [AG, Lemma 5.67 at p. 326]).
The meaning of constant D0 can be seen in (iv).
Moreover, the estimates for the k-th derivatives are independent of the per-

mutation of the roots (see [AG, p. 326]).

Remark 3 Observe that, under the assumptions (i), (iv), a bounded solution
of (1) with its derivatives, up to the (n− 1)-th order, are uniformly continuous,
and subsequently also uniformly G-continuous.

Remark 4 The existence and representation parts of Lemma 1 are true if only
the real parts of roots of (2) are assumed to be nonzero (cf. [AG, Chapter III.5]).
On the other hand, the related estimates for solutions y(·) and their derivatives
y(k)(·), k = 1, . . . , n−1, do not depend explicitly on the coefficients ak, but only
on the real parts of the roots of (2) (cf. again [AG, Chapter III.5]).

3 Existence of a.p. solutions: case of nonzero real roots

The following main theorem is stated under the most general assumptions, when
comparing with other main results of this paper.

Theorem 1 Let the above conditions (i)–(iv) be satisfied. If L < |an|, then
equation (1) admits a unique bounded Ḡ-a.p. solution with bounded Ḡ-a.p.
derivatives, up to the (n− 1)-th order.
Moreover, the ε-almost-period of p(·) implies the 1

|an|−L ε-almost-period of

the solution y(·) and the 2k|λ1...λk|
|an|−L ε-almost-period of the k-th derivative y(k)(·)

of the solution in the Ḡ-(pseudo-)metric, for k = 1, . . . , n− 1, where λ1, . . . , λn
are the roots of the characteristic polynomial λn +

∑n
j=1 ajλ

n−j .

Proof It follows from Lemma 1 that equation (1) admits a unique bounded
solution of the form as above. Using the appropriate representation of this
solution, one can obtain by means of (ii):

|y(t+ τ)− y(t)| ≤

≤
∣∣∣∣
t∫

Λ1

t1∫
Λ2

. . .

tn−1∫
Λn

eλ1t+(λ2−λ1)t1+...+(λn−λn−1)tn−1−λntn [ |f(y(tn + τ)) − f(y(tn))|
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+ |p(tn + τ)− p(tn)| ] dtn dtn−1 . . . dt1

∣∣∣∣
≤

∣∣∣∣
t∫

Λ1

t1∫
Λ2

. . .

tn−1∫
Λn

eλ1t+(λ2−λ1)t1+...+(λn−λn−1)tn−1−λntn (L|y(tn + τ) − y(tn)|

+ |p(tn + τ) − p(tn)| ) dtn dtn−1 . . . dt1

∣∣∣∣
=

∣∣∣∣(− 1
λn

) . . . (− 1
λ1

)
∣∣∣∣

1∫
0

1∫
0

. . .

1∫
0

L

∣∣∣∣y(− n∑
j=1

ln sj
λj

+ t+ τ)− y(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣

+
∣∣∣∣p(− n∑

j=1

ln sj
λj

+ t+ τ)− p(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣ dsn . . . ds2 ds1,

where the last equality can be obtained by virtue of successive substitutions
sj = eλj(tj−1−tj), for j = n, n− 1 . . . , 2, and s1 = eλ1(t−t1).

Now, we shall prove the Ḡ-almost-periodicity of solution y(·), when applying
assumption (iii). To employ all of the considered (pseudo-) metrics, we will need
the following estimate (for a < b, a, b ∈ R):

b∫
a

|y(t+ τ)− y(t)| dt ≤

≤ 1
|λn · . . . · λ1|

b∫
a

1∫
0

. . .

1∫
0

L

∣∣∣∣ y(− n∑
j=1

ln sj
λj

+ t+ τ) − y(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣

+
∣∣∣∣p(− n∑

j=1

ln sj
λj

+ t+ τ)− p(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣ dsn . . . ds2 ds1 dt

=
L

|an|

1∫
0

. . .

1∫
0

b∫
a

∣∣∣∣y(− n∑
j=1

ln sj
λj

+ t+ τ)− y(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣ dt dsn . . . ds1

+
1
|an|

1∫
0

. . .

1∫
0

b∫
a

∣∣∣∣p(− n∑
j=1

ln sj
λj

+ t+ τ)− p(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣ dt dsn . . . ds1.

Using the Stepanov metric, we get (a := u, b := u+ 1):

sup
u∈R

u+1∫
u

| y(t+ τ)− y(t) | dt ≤
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≤ L

|an| sup
u∈R

1∫
0

. . .

1∫
0

u+1∫
u

∣∣∣∣y(− n∑
j=1

ln sj
λj

+ t+ τ)− y(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣ dt dsn . . . ds1

+
1
|an| sup

u∈R

1∫
0

. . .

1∫
0

u+1∫
u

∣∣∣∣p(− n∑
j=1

ln sj
λj

+ t+ τ)− p(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣ dt dsn . . . ds1

<
L

|an| sup
u∈R

u+1∫
u

|y(t+ τ) − y(t)| dt+
ε

|an|

1∫
0

. . .

1∫
0

dsn . . . ds1.

Hence,

sup
u∈R

u+1∫
u

|y(t+ τ) − y(t)| dt < ε

|an| − L = ε̂.

Thus, under the assumption |an| > L, the ε̂-almost period of solution y(·)
corresponds to an ε-almost period of function p(·) (in the sense of Stepanov).

For the equi-Weyl case, we get (a := u, b := u+ l):

sup
u∈R

1
l

u+l∫
u

|y(t+ τ)− y(t)| dt ≤

≤ L

|an| sup
u∈R

1∫
0

. . .

1∫
0

1
l

u+l∫
u

∣∣∣∣y(− n∑
j=1

ln sj
λj

+ t+ τ)− y(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣ dt dsn . . . ds1

+
1
|an| sup

u∈R

1∫
0

. . .

1∫
0

1
l

u+l∫
u

∣∣∣∣p(− n∑
j=1

ln sj
λj

+ t+ τ)− p(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣ dt dsn . . . ds1

<
L

|an| sup
u∈R

1
l

u+l∫
u

|y(t+ τ) − y(t)| dt+
ε

|an|

1∫
0

. . .

1∫
0

dsn . . . ds1,

which implies

sup
u∈R

1
l

u+l∫
u

|y(t+ τ) − y(t)| dt < ε

|an| − L = ε̂, ∀l ≥ l0.

By the above estimate, we can also obtain the following inequalities for the
W -almost-periodicity:

lim
l→∞

[
sup
u∈R

1
l

u+l∫
u

|y(t+ τ) − y(t)| dt
]
≤
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≤ L

|an| lim
l→∞

sup
u∈R

1∫
0

. . .

1∫
0

1
l

u+l∫
u

∣∣∣∣y(− n∑
j=1

ln sj
λj

+ t+ τ)

− y(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣ dt dsn . . . ds1

+
1
|an| lim

l→∞
sup
u∈R

1∫
0

. . .

1∫
0

1
l

u+l∫
u

∣∣∣∣p(− n∑
j=1

ln sj
λj

+ t+ τ)

− p(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣ dt dsn . . . ds1

<
L

|an| lim
l→∞

sup
u∈R

1
l

u+l∫
u

|y(t+ τ)− y(t)| dt+
ε

|an|

1∫
0

. . .

1∫
0

dsn . . . ds1.

Thus,

lim
l→∞

[
sup
u∈R

1
l

u+l∫
u

| y(t+ τ)− y(t) | dt
]
<

ε

|an| − L = ε̂

holds for the W -almost-periodicity of y(·).
The proof for B-almost-periodicity is again based on the application of the

inequality derived above. Hence, (a := −T , b := T ):

lim sup
T→∞

1
2T

T∫
−T

|y(t+ τ)− y(t)| dt ≤

≤ L

|an| lim sup
T→∞

1
2T

1∫
0

. . .

1∫
0

T∫
−T

∣∣∣∣y(− n∑
j=1

ln sj
λj

+ t+ τ)

− y(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣ dt dsn . . . ds1

+
1
|an| lim sup

T→∞

1
2T

1∫
0

. . .

1∫
0

T∫
−T

∣∣∣∣p(− n∑
j=1

ln sj
λj

+ t+ τ)

− p(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣ dt dsn . . . ds1

<
L

|an| lim sup
T→∞

1
2T

T∫
−T

|y(t+ τ)− y(t)| dt+
ε

|an|

1∫
0

. . .

1∫
0

dsn . . . ds1.
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Repeating the procedure as in the preceding cases, one arrives at

lim sup
T→∞

1
2T

T∫
−T

|y(t+ τ)− y(t)| dt < ε

|an| − L = ε̂.

We could see that the almost-periodicity of solution y(·) was verified in all
given (pseudo-)metrics, whenever L < |an|. Moreover, to ε-almost period of
p(·), there corresponds the ε

|an|−L -almost period of solution y(·) (in the related
pseudo-metric).

To prove the Ḡ-almost-periodicity of the derivatives y(k)(·), we use the for-
mula from Lemma 1. Hence, applying (ii) and making successive substitutions
as in the preceding part of the proof, we get

|y(k)(t+ τ)− y(k)(t)| ≤

≤
∣∣∣∣∣

t∫
Λk+1

tk+1∫
Λk+2

. . .

tn−1∫
Λn

eλk+1t+(λk+2−λk+1)tk+1+...+(λn−λn−1)tn−1−λntn

× [ |f(y(tn + τ)) − f(y(tn))|+ |p(tn + τ)− p(tn)| ] dtn . . . dtk+1

∣∣∣∣∣
+

k∑
j=1

∣∣∣∣∣λj
t∫

Λj

tj∫
Λk+1

. . .

tn−1∫
Λn

eλ1t+(λ2−λ1)t1+...+(λn−λn−1)tn−1−λntn

× [ |f(y(tn + τ)) − f(y(tn))|+ |p(tn + τ)− p(tn)| ] dtn . . . dtj
∣∣∣∣∣

+
k∑

i,j=1
i<j

∣∣∣∣∣λiλj
t∫

Λi

ti∫
Λj

tj∫
Λk+1

. . .

tn−1∫
Λn

eλit+(λj−λi)ti+...+(λn−λn−1)tn−1−λntn

× [ |f(y(tn + τ))− f(y(tn))|+ |p(tn + τ) − p(tn)| ] dtn . . . dtj dti
∣∣∣∣∣ + . . .

+

∣∣∣∣∣
⎛⎝ k∏
j=1

λj

⎞⎠ t∫
Λ1

t1∫
Λ2

. . .

tn−1∫
Λn

eλ1t+(λ2−λ1)t1+...+(λn−λn−1)tn−1−λntn

× [ |f(y(tn + τ)) − f(y(tn))|+ |p(tn + τ)− p(tn)| ] dtn . . . dt1
∣∣∣∣∣

≤
∣∣∣∣∣

t∫
Λk+1

tk+1∫
Λk+2

. . .

tn−1∫
Λn

eλk+1t+(λk+2−λk+1)tk+1+...+(λn−λn−1)tn−1−λntn
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× [L|y(tn + τ)− y(tn)|+ |p(tn + τ)− p(tn)| ] dtn . . . dtk+1

∣∣∣∣∣
+

k∑
j=1

∣∣∣∣∣λj
t∫

Λj

tj∫
Λk+1

. . .

tn−1∫
Λn

eλ1t+(λ2−λ1)t1+...+(λn−λn−1)tn−1−λntn

× [L|y(tn + τ)− y(tn)|+ |p(tn + τ)− p(tn)| ] dtn . . . dtj
∣∣∣∣∣

+
k∑

i,j=1
i<j

∣∣∣∣∣λiλj
t∫

Λi

ti∫
Λj

tj∫
Λk+1

. . .

tn−1∫
Λn

eλit+(λj−λi)ti+...+(λn−λn−1)tn−1−λntn

× [L|y(tn + τ) − y(tn)|+ |p(tn + τ) − p(tn)| ] dtn . . . dtj dti
∣∣∣∣∣ + . . .

+

∣∣∣∣∣
⎛⎝ k∏
j=1

λj

⎞⎠ t∫
Λ1

t1∫
Λ2

. . .

tn−1∫
Λn

eλ1t+(λ2−λ1)t1+...+(λn−λn−1)tn−1−λntn

× [L|y(tn + τ)− y(tn)|+ |p(tn + τ)− p(tn)| ] dtn . . . dt1
∣∣∣∣∣

=
1∣∣∣ n∏

i=k+1

(−λi)
∣∣∣

1∫
0

1∫
0

. . .

1∫
0

L

∣∣∣∣y(− n∑
j=k+1

ln sj
λj

+ t+ τ)− y(−
n∑

j=k+1

ln sj
λj

+ t)
∣∣∣∣

+
∣∣∣∣p(− n∑

j=k+1

ln sj
λj

+ t+ τ) − p(−
n∑

j=k+1

ln sj
λj

+ t)
∣∣∣∣dsn . . . dsk+2 dsk+1

+
1∣∣∣ n∏

i=k+1

(−λi)
∣∣∣

k∑
i=1

1∫
0

1∫
0

. . .

1∫
0

L

∣∣∣∣y(− ln si
λi

−
n∑

j=k+1

ln sj
λj

+ t+ τ)

− y(− ln si
λi

−
n∑

j=k+1

ln sj
λj

+ t)
∣∣∣∣

+
∣∣∣∣p(− ln si

λi
−

n∑
j=k+1

ln sj
λj

+ t+ τ)− p(− ln si
λi

−
n∑

j=k+1

ln sj
λj

+ t)
∣∣∣∣ dsn . . . dsk+1 dsi

+ . . .+
1∣∣∣ n∏

i=k+1

(−λi)
∣∣∣

1∫
0

1∫
0

. . .

1∫
0

L

∣∣∣∣y(− n∑
j=1

ln sj
λj

+ t+ τ) − y(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣
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+
∣∣∣∣p(− n∑

j=1

ln sj
λj

+ t+ τ)− p(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣ dsn . . . ds2 ds1.

Thus, for arbitrary a < b, the following inequality holds:

b∫
a

|y(k)(t+ τ)− y(k)(t)| dt ≤

≤ 1
n∏

i=k+1

|λi|

b∫
a

1∫
0

. . .

1∫
0

L

∣∣∣∣y(− n∑
j=k+1

ln sj
λj

+ t+ τ)− y(−
n∑

j=k+1

ln sj
λj

+ t)
∣∣∣∣

+
∣∣∣∣p(− n∑

j=k+1

ln sj
λj

+ t+ τ) − p(−
n∑

j=k+1

ln sj
λj

+ t)
∣∣∣∣ dsn . . . dsk+1 dt

+
1

n∏
i=k+1

|λi|

k∑
i=1

b∫
a

1∫
0

1∫
0

. . .

1∫
0

L

∣∣∣∣y(− ln si
λi

−
n∑

j=k+1

ln sj
λj

+ t+ τ)

− y(− ln si
λi

−
n∑

j=k+1

ln sj
λj

+ t)
∣∣∣∣

+
∣∣∣∣p(− ln si

λi
−

n∑
j=k+1

ln sj
λj

+ t+ τ)−p(− ln si
λi

−
n∑

j=k+1

ln sj
λj

+ t)
∣∣∣∣ dsn . . . dsk+1 dsi dt

+ . . .+
1

n∏
i=k+1

|λi|

b∫
a

1∫
0

. . .

1∫
0

L

∣∣∣∣y(− n∑
j=1

ln sj
λj

+ t+ τ)− y(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣

+
∣∣∣∣p(− n∑

j=1

ln sj
λj

+ t+ τ) − p(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣ dsn . . . ds1 dt

=
1

n∏
i=k+1

|λi|

1∫
0

. . .

1∫
0

b∫
a

L

∣∣∣∣y(− n∑
j=k+1

ln sj
λj

+ t+ τ)− y(−
n∑

j=k+1

ln sj
λj

+ t)
∣∣∣∣

+
∣∣∣∣p(− n∑

j=k+1

ln sj
λj

+ t+ τ) − p(−
n∑

j=k+1

ln sj
λj

+ t)
∣∣∣∣ dt dsn . . . dsk+1

+
1

n∏
i=k+1

|λi|

k∑
i=1

1∫
0

1∫
0

. . .

1∫
0

b∫
a

L

∣∣∣∣y(− ln si
λi

−
n∑

j=k+1

ln sj
λj

+ t+ τ)
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− y(− ln si
λi

−
n∑

j=k+1

ln sj
λj

+ t)
∣∣∣∣

+
∣∣∣∣p(− ln si

λi
−

n∑
j=k+1

ln sj
λj

+ t+ τ) − p(− ln si
λi

−
n∑

j=k+1

ln sj
λj

+ t)
∣∣∣∣

× dt dsn . . . dsk+1 dsi

+ . . .+
1

n∏
i=k+1

|λi|

1∫
0

. . .

1∫
0

b∫
a

L

∣∣∣∣y(− n∑
j=1

ln sj
λj

+ t+ τ)− y(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣

+
∣∣∣∣p(− n∑

j=1

ln sj
λj

+ t+ τ)− p(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣dt dsn . . . ds1.

Now, the Ḡ-almost-periodicity of derivatives y(k)(·) will be verified for single
cases separately. Applying (iii) and employing to the correspondence between
the ε-almost-period of p(·) and the ε

|an|−L -almost-period of solution y(·) (in the
given pseudo-metric), one obtains e.g. in the Stepanov case (taking a := u,
b := u+ 1):

sup
u∈R

u+1∫
u

|y(k)(t+ τ)− y(k)(t)| dt ≤

≤ sup
u∈R

1
n∏

i=k+1

|λi|

( 1∫
0

. . .

1∫
0

u+1∫
u

L

∣∣∣∣y(− n∑
j=k+1

ln sj
λj

+ t+ τ)− y(−
n∑

j=k+1

ln sj
λj

+ t)
∣∣∣∣

+
∣∣∣∣p(− n∑

j=k+1

ln sj
λj

+ t+ τ) − p(−
n∑

j=k+1

ln sj
λj

+ t)
∣∣∣∣ dt dsn . . . dsk+1

+
k∑
i=1

1∫
0

1∫
0

. . .

1∫
0

u+1∫
u

L

∣∣∣∣y(− ln si
λi

−
n∑

j=k+1

ln sj
λj

+t+τ)−y(− ln si
λi

−
n∑

j=k+1

ln sj
λj

+t)
∣∣∣∣

+
∣∣∣∣p(− ln si

λi
−

n∑
j=k+1

ln sj
λj

+ t+ τ) − p(− ln si
λi

−
n∑

j=k+1

ln sj
λj

+ t)
∣∣∣∣

× dt dsn . . . dsk+1 dsi

+ . . .+

1∫
0

. . .

1∫
0

u+1∫
u

L

∣∣∣∣y(− n∑
j=1

ln sj
λj

+ t+ τ)− y(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣

+
∣∣∣∣p(− n∑

j=1

ln sj
λj

+ t+ τ) − p(−
n∑
j=1

ln sj
λj

+ t)
∣∣∣∣ dt dsn . . . ds1

)
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<
1

n∏
i=k+1

|λi|
·
{

ε L

|an| − L + ε+
(
k

1

)[
ε L

|an| − L + ε

]
+

(
k

2

)[
ε L

|an| − L + ε

]

+ . . .+
(
k

k

)[
ε L

|an| − L + ε

]}
=

|an| ε
(|an| − L) ·

n∏
i=k+1

|λi|

k∑
j=0

(
k

j

)

=
2k|an| ε

(|an| − L)
n∏

i=k+1

|λi|
.

Following the similar way as above, we can prove quite analogously the equi-
W -almost-periodicity of derivatives (taking a := u, b := u+ l).

To verify the Weyl-almost-periodicity or the Besicovitch-almost-periodicity
of derivatives y(k)(·), we use the above integral estimate. Integrands contain
the Weyl-a.p. or Besicovitch-a.p. function p(·) and entirely bounded, W -a.p. or
B-a.p. solution y(·), respectively. Thus, we can verify by the similar manner as
above the Weyl-almost-periodicity (putting a := u, b := u + l) as well as the
Besicovitch-almost-periodicity (a := −T , b = T ) of derivatives.

After all, to ε-almost-period of function p(·), there corresponds the 2k|λ1...λk|
|an|−L ε-

almost-period of k-th derivative (k = 1, . . . , n− 1) of solution y(·), in the given
(pseudo-)metric, provided L < |an|. �

4 Existence of a.p. solutions: shifted polynomials
approach

It is not very convenient that the almost-periods of the derivatives of a Ḡ-a.p.
solution depended on the roots of the characteristic polynomial (2). The shifted
polynomials approach will allow us to avoid this handicap.

Theorem 2 Let the above conditions (i)–(iv) be satisfied. Assume, further-
more, that aj �= 0, for j = 1, . . . , n − 1, and that all shifted polynomials
λn−p +

∑n−p
j=1 ajλ

n−p−j , p = 0, . . . , n− 1, have real nonzero roots. If |an| > L,
then equation (1) admits a unique bounded Ḡ-a.p. solution with Ḡ-a.p. deriva-
tives, up to the (n− 1)-th order.

Moreover, the ε-almost-period of p(·) implies the 2k|an|
|an−k|(|an|−L) ε-almost-pe-

riod of the k-th derivative of the solution in the Ḡ-(pseudo-)metric, for k =
0, . . . , n− 1.

Proof The existence of a unique bounded solution y(·) of (1) follows from
Lemma 1. Its Ḡ-almost-periodicity can be proved exactly in the same way as
in the proof of Theorem 1. So, it remains to prove the Ḡ-almost-periodicity of
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derivatives y(k)(·). Putting y(t) into f and substituting φ = y′, one can write
(1) in the form

φ(n−1) +
n−1∑
j=1

ajφ
(n−j−1) = f(y(t))− any(t) + p(t),

with exactly one bounded solution (again, according to Lemma 1). Applying
the same procedure as at the beginning of the proof of Theorem 1, we can write
the following inequality:

|φ(t+ τ)− φ(t)| ≤

≤ 1

|λ̂n−1| . . . |λ̂1|

1∫
0

. . .

1∫
0

(L+ |an|)
∣∣∣∣y(− n−1∑

j=1

ln sj
λ̂j

+ t+ τ)− y(−
n−1∑
j=1

ln sj
λ̂j

+ t)
∣∣∣∣

+
∣∣∣∣p(− n−1∑

j=1

ln sj
λ̂j

+ t+ τ)− p(−
n−1∑
j=1

ln sj
λ̂j

+ t)
∣∣∣∣ dsn−1 . . . ds1,

where λ̂j ∈ R, j = 1, . . . , n − 1, are nonzero roots of the corresponding char-
acteristic polynomial λn−1 +

∑n−1
j=1 ajλ

n−1−j . Thus, for arbitrary a < b, the
following estimate holds

b∫
a

|y′(t+ τ)− y′(t)| dt =

b∫
a

|φ(t+ τ)− φ(t)| dt ≤

≤ L+ |an|
|λ̂n−1| . . . |λ̂1|

b∫
a

1∫
0

. . .

1∫
0

∣∣∣∣y(− n−1∑
j=1

ln sj
λ̂j

+ t+ τ)

− y(−
n−1∑
j=1

ln sj
λ̂j

+ t)
∣∣∣∣ dsn−1 . . . ds1 dt

+
1

|λ̂n−1| . . . |λ̂1|

b∫
a

1∫
0

. . .

1∫
0

∣∣∣∣p(− n−1∑
j=1

ln sj
λ̂j

+ t+ τ)

− p(−
n−1∑
j=1

ln sj
λ̂j

+ t)
∣∣∣∣ dsn−1 . . . ds1 dt

=
L+ |an|
|an−1|

b∫
a

1∫
0

. . .

1∫
0

∣∣∣∣y(− n−1∑
j=1

ln sj
λ̂j

+t+τ)−y(−
n−1∑
j=1

ln sj
λ̂j

+t)
∣∣∣∣ dsn−1 . . . ds1 dt

+
1

|an−1|

b∫
a

1∫
0

. . .

1∫
0

∣∣∣∣p(− n−1∑
j=1

ln sj
λ̂j

+ t+ τ)− p(−
n−1∑
j=1

ln sj
λ̂j

+ t)
∣∣∣∣ dsn−1 . . . ds1 dt.
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To prove the Ḡ-almost-periodicity of y′(·), denote by τ the ε-almost period
of p and, subsequently, the ε

|an|−L -almost period of y (in the Ḡ (pseudo-)metric).
Concretely, for the S-almost-periodicity of y′(·), we apply the preceding

inequality with a = u, b = u + 1 and the fact that τ is the Stepanov ε-almost
period of p as well as the Stepanov ε

|an|−L -almost period of y. Therefore,

sup
u∈R

u+1∫
u

|y′(t+ τ) − y′(t)| dt < L+ |an|
|an−1| sup

u∈R

u+1∫
u

1∫
0

. . .

1∫
0

∣∣∣∣y(− n−1∑
j=1

ln sj
λ̂j

+ t+ τ)

− y(−
n−1∑
j=1

ln sj
λ̂j

+ t)
∣∣∣∣ dsn−1 . . . ds1 dt+

ε

|an−1|

<
L+ |an|
|an−1| ·

ε

|an| − L +
ε

|an−1| =
2|an|

|an−1| (|an| − L)
ε.

Repeating the procedure with the equi-Weyl pseudo-metric, we obtain for
a = u, b = u + l, where l ≥ l0, and for the equi-Weyl ε-almost period of p
denoted by τ (which is the ε

|an|−L -almost period of solution y) that

sup
u∈R

1
l

u+l∫
u

|y′(t+ τ)− y′(t)| dt <

<
L+ |an|
|an−1| sup

u∈R

1
l

u+l∫
u

1∫
0

. . .

1∫
0

∣∣∣∣y(− n−1∑
j=1

ln sj
λ̂j

+ t+ τ)

− y(−
n−1∑
j=1

ln sj
λ̂j

+ t)
∣∣∣∣ dsn−1 . . . ds1 dt+

ε

|an−1|

<
L+ |an|
|an−1| ·

ε

|an| − L +
ε

|an−1| =
2|an|

|an−1| (|an| − L)
ε.

This inequality holds for ∀l ≥ l0, where l0 is connected with p.
The W -almost-periodicity of y′(·) will be proved in the same way. Denoting

by τ the Weyl ε-almost period of p, one can derive:

lim
l→+∞

sup
u∈R

1
l

u+l∫
u

|y′(t+ τ)− y′(t)| dt <

<
L+ |an|
|an−1| lim

l→+∞
sup
u∈R

1
l

u+l∫
u

1∫
0

. . .

1∫
0

∣∣∣∣y(− n−1∑
j=1

ln sj
λ̂j

+ t+ τ)

− y(−
n−1∑
j=1

ln sj
λ̂j

+ t)
∣∣∣∣ dsn−1 . . . ds1 dt+

ε

|an−1|
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<
L+ |an|
|an−1| ·

ε

|an| − L +
ε

|an−1| =
2|an|

|an−1| (|an| − L)
ε.

Finally, let us concentrate on the Besicovitch case. Thanks to the above
integral estimate, we can verify the B-almost periodicity of the derivative y′(·):

lim sup
T→+∞

1
2T

+T∫
−T

|y′(t+ τ)− y′(t)| dt <

<
L+ |an|
|an−1| lim sup

T→+∞

1
2T

+T∫
−T

1∫
0

. . .

1∫
0

∣∣∣∣y(− n−1∑
j=1

ln sj
λ̂j

+ t+ τ)

− y(−
n−1∑
j=1

ln sj
λ̂j

+ t)
∣∣∣∣ dsn−1 . . . ds1 dt+

ε

|an−1| <
2|an|

|an−1| (|an| − L)
ε.

Hence, to ε-almost-period of p, there corresponds the 2|an|
|an−1|(|an|−L) ε-almost-

period of y′, in the Ḡ-(pseudo-)metric.
Putting ψ = φ′, we arrive at the equation

ψ(n−2) +
n−2∑
j=1

ajψ
(n−j−2) = f(y(t))− any(t)− an−1y

′(t) + p(t).

In view of Lemma 1, this equation has exactly one entirely bounded solu-
tion. Proceeding by the similar way as above and denoting the roots of the

corresponding characteristic polynomial by
̂̂
λj , j = 1, . . . , n − 2, one gets the

estimate

|ψ(t+ τ)− ψ(t)| ≤ 1

|̂̂λn−2| . . . |̂̂λ1|

1∫
0

. . .

1∫
0

(L+ |an|)
∣∣∣∣y(− n−2∑

j=1

ln sĵ̂
λj

+ t+ τ)

− y(−
n−2∑
j=1

ln sĵ̂
λj

+ t)
∣∣∣∣ + |an−1|

∣∣∣∣y′(− n−2∑
j=1

ln sĵ̂
λj

+ t+ τ) − y′(−
n−2∑
j=1

ln sĵ̂
λj

+ t)
∣∣∣∣

+
∣∣∣∣p(− n−1∑

j=1

ln sĵ̂
λj

+ t+ τ)− p(−
n−1∑
j=1

ln sĵ̂
λj

+ t)
∣∣∣∣ dsn−2 . . . ds1,

which leads (for a < b) to

b∫
a

|y′′(t+ τ) − y′′(t)| dt =

b∫
a

|ψ(t+ τ)− ψ(t)| dt
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≤ L+ |an|
|an−2|

b∫
a

1∫
0

. . .

1∫
0

∣∣∣∣y(− n−2∑
j=1

ln sĵ̂
λj

+ t+ τ)− y(−
n−2∑
j=1

ln sĵ̂
λj

+ t)
∣∣∣∣

× dsn−2 . . . ds1 dt

+
|an−1|
|an−2|

b∫
a

1∫
0

. . .

1∫
0

∣∣∣∣y′(−n−2∑
j=1

ln sĵ̂
λj

+ t+ τ)− y′(−
n−2∑
j=1

ln sĵ̂
λj

+ t)
∣∣∣∣ dsn−2 . . . ds1 dt

+
1

|an−2|

b∫
a

1∫
0

. . .

1∫
0

∣∣∣∣p(−n−2∑
j=1

ln sĵ̂
λj

+ t+ τ)− p(−
n−2∑
j=1

ln sĵ̂
λj

+ t)
∣∣∣∣ dsn−2 . . . ds1 dt.

Proceeding by the same way as in the case of y′(·), we can analyze all kinds of
(pseudo-)metrics separately. The Ḡ-almost-periodicity of y′′(·) can be verified by
means of the ε-almost-period of p (denoted by τ , as usual), which coincides with
the ε

|an|−L -almost period of solution y and the 2|an|
|an−1|(|an|−L) ε-almost-period of

y′, in the Ḡ-(pseudo-)metric. Repeating the procedure as above, we get that
the mentioned almost-period τ coincides with the 4|an|

|an−2|(|an|−L) ε-almost-period

of y′′, in the Ḡ-(pseudo-)metric.
By the same manner, we can verify the Ḡ-almost-periodicity of higher-order

derivatives y(k). The essential estimate takes now the form

b∫
a

|y(k)(t+ τ)− y(k)(t)| dt ≤

≤ L+ |an|
n−k∏
j=1

|λ̃j |

b∫
a

1∫
0

. . .

1∫
0

∣∣∣∣y(−n−k∑
j=1

ln sj
λ̃j

+ t+ τ)− y(−
n−k∑
j=1

ln sj
λ̃j

+ t)
∣∣∣∣ dsn−k . . . ds1 dt

+
k−1∑
l=1

(
|an−l|
n−k∏
j=1

|λ̃j |

b∫
a

1∫
0

. . .

1∫
0

∣∣∣∣y(l)(−
n−k∑
j=1

ln sj
λ̃j

+ t+ τ)

− y(l)(−
n−k∑
j=1

ln sj
λ̃j

+ t)
∣∣∣∣ dsn−k . . . ds1 dt

)

+
1

n−k∏
j=1

|λ̃j |

b∫
a

1∫
0

. . .

1∫
0

∣∣∣∣p(− n−k∑
j=1

ln sj
λ̃j

+ t+ τ) − p(−
n−k∑
j=1

ln sj
λ̃j

+ t)
∣∣∣∣

× dsn−k . . . ds1 dt,
for a < b, where λ̃j ∈ R denote the nonzero roots of the related shifted polyno-
mial (j = 1, . . . , n− k).
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Studying all cases separately, we obtain the Ḡ-almost-periodicity of y(k).
Moreover, the relationship between Ḡ-almost-periods of p and of derivatives
y(k) can be described as follows: to ε-almost-period of p, there corresponds

the 2k|an|
|an−k|(|an|−L) ε-almost-period of y(k), in the Ḡ-(pseudo-)metric, for k =

0, . . . , n − 1, provided L < |an|, and |aj | �= 0, for j = 0, . . . , n. This completes
the proof. �

5 Existence of a.p. solutions: case of negative roots

Another way how to come to almost-periods of the derivatives not depending
on the roots of the characteristic polynomial λn +

∑n
j=1 ajλ

n−j is to assume
that all roots are negative. This implies that all coefficients aj , j = 1, . . . , n,
must be positive.

Theorem 3 Let the above conditions (i)–(iv) be satisfied. Assume additionally
that all roots of the characteristic polynomial (2) are negative. If L < an, then
there exists a unique bounded Ḡ-a.p. solution y(·) of equation (1) with Ḡ-a.p.
derivatives, up to the (n− 1)-th order.
Moreover, the ε-almost-period of p(·) implies the 2kak

( n
k )(an−L)

ε-almost-period

of the k-th derivative y(k)(·) of the solution y(·), in the Ḡ-(pseudo-)metric, for
k = 0, . . . , n− 1, where a0 := 1.

Proof According to Lemma 1, equation (1) admits exactly one bounded solu-
tion. Its representation formula can be now written in the form:

y(t) =

t∫
−∞

t1∫
−∞

. . .

tn−1∫
−∞

eλ1t+(λ2−λ1)t1+...+(λn−λn−1)tn−1−λntn

× [f(y(tn)) + p(tn)] dtn . . . dt1.

Analogously as in the proof of Theorem 1, we can prove the Ḡ-almost-
periodicity of solution y(·).

Proceeding by the same way as in the proof of Theorem 1, we can check the
Ḡ-almost-periodicity of derivatives y(k)(·), k = 1, . . . , n− 1. More precisely, we

can specify that the ε-almost-period of p(·) implies the 2k(−1)k λ1...λk

an−L ε-almost-
period of k-th derivative of solution y(·), k = 1, . . . , n− 1, in the Ḡ-sense. Due
to the independence of the preceding term under the permutation of roots (see
[AG, p. 326]), one has

(
n
k

)
choices of λi1 , . . . , λik for n roots of the characteristic

polynomial (2). Let us sum up the following
(
n
k

)
inequalities:

sup
u∈R

u+1∫
u

|y(k)(t+ τ)− y(k)(t)| dt < 2k(−1)k λi1 . . . λik
an − L ε,

for the S-metric,
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sup
u∈R

1
l

u+l∫
u

|y(k)(t+ τ)− y(k)(t)| dt < 2k(−1)k λi1 . . . λik
an − L ε,

in the equi-Weyl case (for all l ≥ l0, where l0 is connected with p),

lim
l→+∞

sup
u∈R

1
l

u+l∫
u

|y(k)(t+ τ)− y(k)(t)| dt < 2k(−1)k λi1 . . . λik
an − L ε,

for the Weyl pseudo-metric, and

lim sup
T→+∞

1
2T

T∫
−T

|y(k)(t+ τ)− y(k)(t)| dt < 2k(−1)k λi1 . . . λik
an − L ε,

in the Besicovitch case.

Divide these sums by
(
n
k

)
. Now, application of the Vieta formula

n∑
i1,...,ik=1
i1<...<ik

(−1)k
k∏
j=1

λij = ak

leads to the desired simplification: every ε-almost-period of p(·) implies the
2kak

(n
k )(an−L)

ε-almost-period of y(k)(·), in the Ḡ-sense. �

6 Concluding remarks

First of all, one can readily check that all main theorems remain valid if, instead
of the boundedness of f , only the existence of a positive constant D0 > 0 is
assumed such that (cf. Remark 2)

max
|y|≤D0/|an|

|f(y)|+ supess
t∈R

|p(t)| ≤ D0.

The same is true for the Lipschitzianity of f : it is enough that

|f(x)− f(y)| ≤ L |x− y|

holds, with 0 < L < |an|, only for |x| ≤ D0
|an| , |y| ≤ D0

|an| .
Therefore, considering the pendulum-type equation

y′′ + ay′ + b sin y = p(t), (3)

where a, b are nonzero constants such that a2 ≥ 4|b| and p ∈ L1
loc(R,R) is G-

a.p., and following the arguments in [A1] (cf. [AG, pp. 556–557]), we can easily
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deduce that eguation (3) admits at least two G-a.p. solutions y1(·) and y2(·)
with G-a.p. derivatives such that

sup
t∈(−∞,∞)

|y1(t)| < π

2
and sup

t∈(−∞,∞)

|y2(t)− π| < π

2
,

provided only
supess

t∈(−∞,∞)

|p(t)| < |b|.

Furthermore, since multivalued Lipschitz-continuous function with nonempty,
convex and compact values ϕ : R → 2R \ {∅}, i.e.

dH (ϕ(x), ϕ(y)) ≤ L |x− y|,

where dH stands for the Hausdorff metric and L ∈ R is a constant, possesses
a single-valued Lipschitz continuous selection f ⊂ ϕ with constant L0 such
that L0 := L(12

√
3/5 + 1) (see e.g. [HP, pp. 101–103]), and since Stepanov or

equi-Weyl a.p. multivalued function with nonempty, convex and compact values
P : R → 2R \ {∅} possesses a single-valued Stepanov or equi-Weyl a.p. selection
p ⊂ P , respectively (see [D1], [D2], [DS] resp. [D3]), the existence parts (without
uniqueness) of all main theorems can be extended to the differential inclusions

y(n) +
n∑
j=1

ajy
(n−j) ∈ ϕ(y) + P (t),

provided a positive constant D0 > 0 exists such that

max
|y|≤D0/|an|

|ϕ(y)|+ supess
t∈R

|P (t)| ≤ D0,

ϕ is Lipschitz-continuous, for |y| ≤ D0
|an| , with a constant L such that

L < |an|/(12
√

3/5 + 1),

and P is either Stepanov or equi-Weyl almost-periodic in a multivalued sense
(for the related definitions and more details, see e.g. [AG, Chapter III.10 and
Appendix A.1]).

Finally, all G-a.p. solutions y(·) and their derivatives, up to the order (n−1),
are in fact (see Remark 3) G-normal (a.p. in the sense of Bochner), i.e. the
families {y(k)(t + h) | h ∈ R}, h = 0, 1, . . . , n − 1, are G-precompact, because
these solutions and their derivatives are bounded and uniformly continuous; for
more details, see [AG, Chapter III.10] and [ABG]. Stepanov a.p. solutions are
even uniformly almost-periodic.

Some further remarks are in order.

Remark 5 Observe the similarity of the estimates for ε-almost-periods with
those for bounded solutions and their derivatives in Remark 2.
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Remark 6 Analogous theorems can be obtained when only assuming that the
real parts of the roots of the characteristic polynomial (2) are nonzero. On
the other hand, the explicit inequality L < |an| would be replaced by a rather
implicit condition L < |α1 . . . αn|, where αj = Reλj , j = 1, . . . , n, denote the
real parts of the roots λj of (2). Moreover, the related ε-almost-periods of a.p.
solutions and their derivatives would depend on αj , j = 1, . . . , n.

Remark 7 Similar theorems can be also deduced for a more general equation
than (1), namely

y(n) +
n∑
j=1

ajy
(n−j) =

n∑
j=1

fj

(
y(n−j)

)
+ p(t),

or inclusion (without uniqueness)

y(n) +
n∑
j=1

ajy
(n−j) ∈

n∑
j=1

ϕj

(
y(n−j)

)
+ P (t),

but the related calculations would be rather cumbersome. At least in the case
of uniformly a.p. solutions, this will be treated by ourselves elsewhere.
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Abstract

The simple incidence structure D(A, 2) formed by points and un-
ordered pairs of distinct parallel lines of a finite affine plane A = (P ,L) of
order n > 2 is a 2 − (n2, 2n, 2n − 1) design. If n = 3, D(A, 2) is the com-
plementary design of A. If n = 4, D(A, 2) is isomorphic to the geometric
design AG3(4, 2) (see [2; Theorem 1.2]). In this paper we give necessary
and sufficient conditions for a 2− (n2, 2n, 2n− 1) design to be of the form
D(A, 2) for some finite affine plane A of order n > 4. As a consequence
we obtain a characterization of small designs D(A, 2).

Key words: 2− (n2, 2n, 2n− 1) designs; incidence structure; affine
planes.

2000 Mathematics Subject Classification: 05B05, 05B25

By a 2 − (v, k, λ) design we mean a pair D = (P ,B) where P is a set of
v points and B is a collection of distinguished subsets of P called blocks such
that each block contains k points and any two distinct points are contained in
exactly λ common blocks1. Our main result is the following

Theorem 1 Let n be an integer with n > 4 and let D = (P ,B) be a
2 − (n2, 2n, 2n − 1) design. Then D is of the form D(A, 2) if and only if
the following two conditions are satisfied: (c1) any three distinct points of D
*Supported by MIUR, Università di Palermo.
1For further definitions (and basic results) about 2-designs see [1].
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are contained in exactly 3 or n − 1 common blocks; (c2) if X1, X2, . . . , Xn−1

are n − 1 distinct blocks of D such that |X1 ∩ X2 ∩ · · · ∩ Xn−1| > 2, then
X1 ∩X2 ∩ · · · ∩Xn−1 = Xi ∩Xj whenever i �= j.

Before proving the theorem we need some preliminary results about
2− (n2, 2n, 2n− 1) designs.

Lemma 1 Suppose A = (P ,L) is a finite affine plane of order n > 4 and let
D(A, 2) be the system of points and unordered pairs of distinct parallel lines
of A. Then D(A, 2) is a 2− (n2, 2n, 2n−1) design satisfying the following prop-
erties:

(1) any three distinct collinear points of A are contained in exactly n − 1
blocks of D(A, 2);

(2) any three distinct non-collinear points of A are joined by precisely 3 blocks
of D(A, 2);

(3) if X1, X2, . . . , Xn−1 are n − 1 distinct blocks of D(A, 2) such that |X1 ∩
X2 ∩ · · · ∩ Xn−1| > 2, then X1 ∩ X2 ∩ · · · ∩ Xn−1 = Xi ∩ Xj whenever
i �= j.

Proof This follows directly from the definition of D(A, 2). �

Lemma 2 Let n be an integer greater than 4 and let D = (P ,B) be a
2 − (n2, 2n, 2n − 1) design any three distinct points of which are contained in
exactly 3 or n− 1 blocks. Then for any choice of two distinct points x, y in D
there are precisely n− 2 points z ∈ P \ {x, y} with the property that x, y, z are
joined by n− 1 distinct blocks of D.

Proof Let x, y be any two distinct points of D and denote by c the number
of points z ∈ P \ {x, y} with the property that x, y, z are joined by n − 1
blocks of D. Then 0 ≤ c ≤ n2 − 2 and n2 − 2 − c is the number of points
w ∈ P \{x, y} with the property that x, y, w are joined by exactly 3 blocks of D.
Thus, counting the point block pairs (p, C) with x �= p �= y and {x, y, p} ⊂ C,
we find 3(n2 − 2 − c) + (n − 1)c = (2n − 2)(2n − 1) which can be written as
(n− 4)c = (n− 4)(n− 2). Hence, since n− 4 �= 0, c = n− 2 and the lemma is
proved. �

Lemma 3 Let n be an integer with n > 4 and let D = (P ,B) be a
2−(n2, 2n, 2n−1) design. If X1, X2, . . . , Xn−1 are n−1 distinct blocks of D such
that X1∩X2∩· · ·∩Xn−1 = Xi∩Xj whenever i �= j, then |X1∩X2∩· · ·∩Xn−1| ≥ n
with equality if and only if X1 ∪X2 ∪ . . .Xn−1 = P.

Proof Write X1 ∪X2 ∪ · · · ∪Xn−1 = l ∪ (X1 \ l) ∪ (X2 \ l) ∪ · · · ∪ (Xn−1 \ l),
where l = X1∩X2∩· · ·∩Xn−1. Then |X1∪X2∪· · ·∪Xn−1| = a+(n−1)(2n−a) =
n2 + (n − 2)(n − a) with a = |l|. Thus, since D has n2 points, we obtain
n2 ≥ n2 + (n − 2)(n − a) which, since n > 4, gives n ≤ a. Moreover n = a is
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equivalent to ask |X1 ∪X2 ∪ · · · ∪Xn−1| = n2, i.e. X1 ∪X2 ∪ · · · ∪Xn−1 = P ,
and the lemma is proved. �

Proof of Theorem 1 In view of Lemma 1, we have only to prove that D =
D(A, 2) for some affine plane A (of order n), provided conditions (c1) and (c2)
hold. DefineA = (P ,L) by taking P as the set of points and the set L = {l ⊂ P :
|l| > 2, l = L1 ∩ L2 ∩ · · · ∩ Ln−1 with L1, L2, . . . , Ln−1 distinct blocks of D} as
the set of lines. By Lemma 2, L is non empty. Let l ∈ L and let L1, L2, . . . , Ln−1

be the n−1 distinct blocks ofD such that l = L1∩L2∩· · ·∩Ln−1. Then condition
(c2) gives l = Li ∩ Lj whenever i �= j so that, by Lemma 3, l contains at least
n points. On the other hand, as any three distinct points of l are joined by the
n− 1 blocks Li (i = 1, 2, . . . , n− 1), it follows from Lemma 2 that l contains at
most 2 + (n− 2) = n points. Thus we must have n ≤ |l| ≤ n and consequently
|l| = n. Let x, y be any two distinct points of D. By Lemma 2 we may choose
a point z ∈ P \ {x, y} and n− 1 distinct blocks Z1, Z2, . . . , Zn−1 ∈ B such that
{x, y, z} ⊆ Z1 ∩ Z2 ∩ · · · ∩ Zn−1. Therefore h = Z1 ∩ Z2 ∩ . . . Zn−1 belongs to
L and passes through both x and y. Assume that {x, y} ⊆ k for some k ∈ L
with k �= h. Writing k as the intersection k = W1 ∩W2 ∩ . . .Wn−1 of n − 1
distinct blocks W1,W2, . . . ,Wn−1 ∈ B we obtain {x, y, p} ⊆ Z1∩Z2∩· · ·∩Zn−1

or {x, y, p} ⊆ W1 ∩W2 ∩ · · · ∩Wn−1 whenever p ∈ h ∪ k is a point such that
x �= p �= y. Then from Lemma 2 we deduce |h ∪ k| ≤ 2 + (n − 2) = n which
contradicts our assumption k �= h and shows that h is the unique element in
L containing {x, y}. Thus each l ∈ L has n points and each pair of points is
on exactly one common point set m ∈ L: this is sufficient to conclude that
A = (P ,L) is a finite affine plane of order n. Note that such a plane A = (P ,L)
has the properties: (i) for any line l ∈ L and any point x ∈ P , x /∈ l, there is
just one block of D containing both l and x; (ii) if a block C ∈ B contains a
line h ∈ L and if y ∈ C is a point not on h, then C = h ∪ k where k ∈ L is the
only line of A through y not intersecting h. Property (i) follows from the fact
that (by condition (c2) and Lemma 3) the point set P can be written as disjoint
union P = l∪ (L1 \ l)∪ (L2 \ l)∪· · ·∪ (Ln−1 \ l), if L1, L2, . . . , Ln−1 are the n−1
distinct blocks of D through the line l ∈ L. To show (ii) we proceed as follows.
Denote by k the line of A through y parallel to h. Let z ∈ C \ h be a point
distinct from y and denote by l the line of A joining y to z. We claim that l = k.
In fact l �= h and l = W1 ∩W2 ∩ · · · ∩Wn−1 for suitable n − 1 distinct blocks
W1,W2, . . . ,Wn−1 ∈ B. Suppose there is a point w ∈ h ∩ l. Then y, z, w are
three distinct points belonging to l and, by condition (c1), there is no block in
D containing {y, z, w}, apart from the blocks Wi. But h ⊂ C forces w ∈ C and
consequently {y, z, w} ⊂ C. Thus we have C = Wi for some i ∈ {1, 2, . . . , n−1}
so that l ⊂ C. Then l ∪ h ⊆ C and there is just one point p ∈ C such that
p /∈ l ∪ h, since |C| = 2n = 1 + |l ∪ h|. As p belongs to n+ 1 lines of A, we may
choose a line s ∈ L through p such that w /∈ s and s meets both l and h. Since
C = {p} ∪ l ∪ h, we have that s intersects C in exactly three points, namely
p, l ∩ s and h ∩ s. On the other hand, if S1, S2, . . . , Sn−1 are the n− 1 distinct
blocks of D such that s = S1 ∩ S2 ∩ · · · ∩ Sn−1, we infer from condition (c1)
that S1, S2, . . . , Sn−1 are the only blocks of D containing p, l ∩ s, h ∩ s. Since
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{p, l ∩ s, h ∩ s} ⊂ C, we obtain C = Sj for some j ∈ {1, 2, . . . , n− 1} and hence
s ⊂ C. Therefore s = s ∩ C consists of three points, a contradiction. Thus l
and h do not intersect and l is the unique line of A through y not intersecting
h, i.e. l = k. Therefore z ∈ k. As this is true for every point z ∈ C \ h distinct
from y and |C \ h| = n = |k|, we may conclude that C \ h = k. So C = h ∪ k
and (ii) holds.

As any parallel class of the affine plane A = (P ,L) consists of n lines and
A has n+ 1 parallel classes, we infer from (i) and (ii) that D = (P ,B) contains
exactly (n+ 1)n(n−1)

2 blocks X of the form X = l∪m with l,m distinct parallel

lines of A. But any 2 − (n2, 2n, 2n− 1) design has precisely b = (n+ 1)n(n−1)
2

blocks. Then we must have

B = {X ⊂ P : X = l ∪m with l,m distinct parallel lines of A}

and hence D = D(A, 2). The theorem is proved. �

Since up to isomorphism there is just one affine plane of order 5, 7 or 8 we
have the following characterization of small designs D(A, 2).

Corollary 1 Suppose n is one of the numbers 5, 7, 8 and let A(n) be the de-
sarguesian affine plane of order n. There exists up to isomorphisms exactly
one 2 − (n2, 2n, 2n − 1) design D = (P ,B) satisfying conditions (c1), (c2) of
Theorem 1, namely the 2-design D(A(n), 2).

We end our investigation with a few remarks

Remark 1 If A = (P ,L) is a finite affine plane of order n > 4, then 0, 4, n
are the intersection numbers of the 2 − (n2, 2n, 2n − 1) design D(A, 2): i.e.
{0, 4, n} = {|X ∩ Y | : X,Y are two distinct blocks of D(A, 2)}.

Remark 2 There is no plane of order n = 6, but there is an example of a
2 − (36, 12, 11) design produced by H. Hanany [3], Table 5.23, p. 343. The
2 − (25, 10, 9) design D = (P ,B) exhibited by H. Hanany, loc. cit. Table 5.23,
p. 334 is not of the form D(A, 2): since D = (P ,B) admits 8 as an intersection
number (i.e. |X ∩ Y | = 8 for suitable distinct blocks X,Y ∈ B).
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Abstract

It is shown that every directoid equipped with sectionally switching
mappings can be represented as a certain implication algebra. Moreover,
if the directoid is also commutative, the corresponding implication algebra
is defined by four simple identities.
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The concept of directoid was introduced by J. Ježek and R. Quackenbush
[4] in the sake to axiomatize algebraic structures defined on upward directed
ordered sets. In certain sense, directoids generalize semilattices. For the reader
convenience, we repeat definitions and basic properties of these concepts.

An ordered set (A;≤) is upward directed if U(x, y) �= ∅ for every x, y ∈ A,
where U(x, y) = {a ∈ A; x ≤ a and y ≤ a}. Elements of U(x, y) are referred to
be common upper bounds of x, y. Of course, if (A;≤) has a greatest element
then it is upward directed.

Let (A;≤) be an upward directed set and � denots a binary operation on A.
The pair A = (A;�) is called a directoid if

(i) x � y ∈ U(x, y) for all x, y ∈ A;

(ii) if x ≤ y then x � y = y and y � x = y.
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If, moreover, the operation � is commutative, A is called a commutative direc-
toid.

Example 1 Consider an ordered set A = {a, b, c, d, 1} whose diagram is visu-
alized in Fig. 1.

�

�

�

�

�

a

c

b

d

1

������������

�
�

��
�

�

Fig. 1

Define a � b = d, b � a = c, c � d = d � c = 1 and for other couples x, y ∈ A by
the condition (ii). Then A = (A;�) is a directoid which is not commutative.

Of course, every ∨-semilattice is a commutative directoid. When we change
in our Example 1 the definition of � only in one instance, i.e. we put b� a = d,
the resulting algebra is a commutative directoid which is not a semilattice.

The following axiomatization of directoids was involved in [4]:

Proposition 1 A groupoid A = (A;�) is a directoid if and only if it satisfies
the following identities

(D1) x � x = x;

(D2) (x � y) � x = x � y;
(D3) y � (x � y) = x � y;
(D4) x � ((x � y) � z) = (x � y) � z.
Then a binary relation ≤ defined on A by the rule

x ≤ y if and only if x � y = y (R)

is an order and x � y ∈ U(x, y) for each x, y ∈ A.
A groupoid A = (A;�) is a commutative directoid if and only if it satisfies

the identities (D1), (D4) and

(D5) x � y = y � x.
Let us note that if a directoid A = (A;�) is associative, i.e. if it satisfies

the identity x � (y � z) = (x � y) � z then it is also commutative and hence a
semilattice.

Of course, every upward directed set (A;≤) can be converted into a (co-
mutative) directoid whenever one assignes to a couple x, y ∈ A an element
λ(x, y) ∈ U(x, y) such that for x ≤ y we pick up λ(x, y) = λ(y, x) = y. Then
for x� y = λ(x, y), (A;�) is a directoid; if, moreover, λ(x, y) = λ(y, x) for every
pair x, y of A, the directoid is commutative.
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Let (A;≤, 1) be an ordered set with a greatest element 1. For p ∈ A, the
interval [p, 1] will be called a section. A mapping f of [p, 1] into itself will
be called a sectional mapping. To distinguish sectional mappings on different
sections, we introduce the following notation: if f is a sectional mapping on
[p, 1] and x ∈ [p, 1] then f(x) will be denoted by xp. A sectional mapping on
[p, 1] is called a switching mapping if pp = 1 and 1p = p and it is called an
involution if xpp = x for each x ∈ [p, 1]. Of course, any involution is a bijection
and if a sectional mapping on [p, 1] is a switching involution then

xp = 1 iff x = p and xp = p iff x = 1.

(A;≤, 1) will be called with sectionally switching involutions if there is a sec-
tional switching involution on the section [p, 1] for each p ∈ A.

The concept of implication algebra was introduced by J. C. Abbott [1]. It
is a groupoid A = (A; ◦) with a distinguished element 1 (which is an algebraic
constant, namely A satisfies x ◦ x = 1) in which an order ≤ can be induced by
x ≤ y if and only if x ◦ y = 1. It was shown [1] that (A;≤) is a semilattice
with a greatest element 1 where x∨ y = (x ◦ y) ◦ y and, moreover, every section
[p, 1] is equipped by a sectional antitone involution xp = x ◦ p (which is in
fact a complementation in this section). This concept was generalized in [2]
and applied in [3] for axiomatization of logical connective implication in many-
valued logics. Let us note the name implication algebra express the fact that
x ◦ y is interpreted as a connective implication x⇒ y.

Lemma 1 Let A = (A; ◦, 1) be an algebra of type (2, 0) satisfying the following
conditions

(A1) x ◦ x = 1, x ◦ 1 = 1;
(A2) x ◦ y = 1 implies y = (y ◦ x) ◦ x;
(A3) x ◦ ((((x ◦ y) ◦ y) ◦ z) ◦ z) = 1.
Define a binary relation ≤ on A by the setting

x ≤ y if and only if x ◦ y = 1. (∗)
Then (A;≤) is an ordered set with a greatest element 1 where for each p ∈ A
the mapping x �→ xp = x ◦ p is a sectional switching involution on [p, 1].

Proof By (A1) and (A2) we infer immediately

1 ◦ x = (x ◦ x) ◦ x = x. (∗∗)
Due to (A1), the relation ≤ is reflexive and x ≤ 1 for each x ∈ A. Suppose x ≤ y
and y ≤ x. Then x ◦ y = 1, y ◦ x = 1 and, by (A2), y = (y ◦ x) ◦ x = 1 ◦ x = x
thus ≤ is antisymmetrical. Suppose x ≤ y and y ≤ z. Then x ◦ y = 1, y ◦ z = 1
and by (A1) and (A3) we have

x◦z = x◦(1◦z) = x◦((y◦z)◦z) = x◦(((1◦y)◦z)◦z) = x◦((((x◦y)◦y)◦z)◦z) = 1

thus x ≤ z proving transitivity of ≤.
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Now, let p ∈ A and x ∈ [p, 1]. Then p ≤ x and hence p ◦ x = 1. Due to (A2)
we conclude xpp = (x ◦ p) ◦ p = x thus every sectional mapping x �→ xp = x ◦ p
is an involution on [p, 1]. Applying (A1) and (∗∗) we infer that it is a switching
mapping. �

Lemma 2 Let A = (A; ◦, 1) satisfy (A1), (A2), (A3) and

(A4) y ◦ (x ◦ y) = 1;

(A5) x ◦ ((x ◦ y) ◦ y) = 1.

Then (x ◦ y) ◦ y ∈ U(x, y) for each x, y ∈ A.
Proof By Lemma 1, ≤ defined by (∗) is an order on A. Replace x by x ◦ y
in (A4) we obtain y ◦ ((x ◦ y) ◦ y) = 1 thus y ≤ (x ◦ y) ◦ y. By (A5) we have
x ≤ (x ◦ y) ◦ y thus (x ◦ y) ◦ y ∈ U(x, y). �

Since every implication algebra in the sense of [1] satisfies (A1)–(A5), it mo-
tivates us to introduce the following concept: An algebraA = (A; ◦, 1) satisfying
(A1)–(A5) will be called a weak d−implication algebra. We can state

Theorem 1 Let A = (A; ◦, 1) be a weak d-implication algebra. Define a binary
operation � on A by

x � y = (x ◦ y) ◦ y
and for each p ∈ A define xp = x ◦ p. Then D(A) = (A;�) is a directoid with
the greatest element 1 with sectionally switching involutions whose induced order
coincides with that of A.
Proof Define x � y = (x ◦ y) ◦ y and xp = x ◦ p, for x ∈ [p, 1].
(a) Let x ◦ y = 1. Then x � y = (x ◦ y) ◦ y = 1 ◦ y = y.
(b) Let ≤ be the induced order on A. By (A4) we have x ◦ y ∈ [y, 1]. Suppose
now x � y = y. Then, since the sectional mapping on [y, 1] is an involution, we
infer

x ◦ y = (x ◦ y)yy = ((x ◦ y) ◦ y) ◦ y = (x � y) ◦ y = y ◦ y = 1.

We have shown x ◦ y = 1 if and only if x � y = y thus the order on A defined
by (∗) coincides with that of (A;�) defined by (R). The fact that (A;�) is a
directoid follows directly by Lemma 2 and the fact that x ≤ y gets x � y =
(x ◦ y) ◦ y = 1 ◦ y = y and, by (A2), also y � x = (y ◦ x) ◦ x = y. By Lemma 1,
sectional mappings x �→ xp for x ∈ [p, 1] are switching involutions. �

Example 2 Let A = {a, b, c, d, 1} and the operation ”◦” on A is given by the
table

◦ a b c d 1
a 1 c 1 1 1
b d 1 1 1 1
c d d 1 d 1
d c c c 1 1
1 a b c d 1
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One can easily verify the conditions (A1) – (A5) thus A = (A; ◦, 1) is a weak
d-implication algebra. For � defined by x � y = (x ◦ y) ◦ y we obtain just the
directoid depicted in Example 1.

To show that directoids with sectional switching involutions can be repre-
sented by weak d-implication algebras, we need to prove the converse of Theo-
rem 1.

Theorem 2 Let D = (D;�, 1) be a directoid with a greatest element 1, ≤ its
induced order. Let for each p ∈ D there exists a sectional switching involution
x �→ xp on [p, 1]. Define

x ◦ y = (x � y)y.
Then A(D) = (D; ◦, 1) is a weak d-implication algebra.

Proof Since y ≤ x � y in D, we have x � y ∈ [y, 1] and hence the definition of
the new operation ”◦” is sound. Moreover, (x ◦ y) ◦ y = (x � y)yy = x � y.

We have to verify the conditions (A1)–(A5).

(A1): x ◦ x = (x � x)x = xx = 1 and x ◦ 1 = (x � 1)1 = 11 = 1.

(A2): Suppose x◦ y = 1. Then (x�y)y = 1 thus (since the sectional mapping is
a switching bijection) also x� y = y. Conversely, if x� y = y then x ◦ y = 1, i.e.
the order induced on D coincides with that given by (∗) in Theorem 1. Hence,
if x ◦ y = 1 then x ≤ y thus y ∈ [x, 1], i.e. (y ◦ x) ◦ x = yxx = y.

(A3): By (D4) we have x ≤ (x � y) � z thus

x ◦ ((((x ◦ y) ◦ y) ◦ z) ◦ z) = x ◦ ((x � y) � z) = 1.

(A4): Since x� y ∈ [y, 1], we have x ◦ y = (x� y)y ∈ [y, 1] thus y ≤ x ◦ y whence
y ◦ (x ◦ y) = 1.

(A5): Since y ≤ x � y we have

(x ◦ y) ◦ y = ((x � y)y � y)y = (x � y)yy = x � y.
Thus x ≤ x � y = (x ◦ y) ◦ y proving x ◦ ((x ◦ y) ◦ y) = 1. �

In what follows, we modify our results for commutative directoids. For this,
define a one more concept.

An algebra A = (A; ◦, 1) of type (2,0) is called a d-implication algebra if it
satisfies the identities (A1), (A3) and

(B1) (x ◦ y) ◦ y = (y ◦ x) ◦ x;
(B2) ((x ◦ y) ◦ y) ◦ y = x ◦ y.

The fact that every d-implication algebra is also a weak d-implication algebra
will be clear from the next theorems. Let us only mention that d-implication
algebras are determined by identities and hence they form a variety.
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Lemma 3 Let A = (A; ◦, 1) be a d-implication algebra. Define a binary relation
≤ on A by the setting x ≤ y if and only if x ◦ y = 1. Then ≤ is an order on A
and 1 is a greatest element.

Proof By (A1), ≤ is reflexive. Suppose x ≤ y and y ≤ x. Then x ◦ y = 1,
y ◦ x = 1 and, due to (B1), also x = 1 ◦ x = (y ◦ x) ◦ x = (x ◦ y) ◦ y = 1 ◦ y = y,
i.e. ≤ is antisymmetrical. Transitivity of ≤ can be shown identically as in the
proof of Lemma 1. By (A1), x ≤ 1 for each x ∈ A. �

Theorem 3 Let A = (A; ◦, 1) be a d-implication algebra. Define

x � y = (x ◦ y) ◦ y

and for x ∈ [y, 1] let xy = x ◦ y. Then C(A) = (A;�) is a commutative directoid
with a greatest element 1 and with sectionally switching involutions.

Proof By Lemma 3, (A;≤) is an ordered set where x ≤ y if and only if x◦y = 1
and 1 is a greatest element of (A;≤). Due to (B1) we infer x � y = y � x.

By (B1) and (A3) we have

x ◦ (x � y) = x ◦ ((x ◦ y) ◦ y) = x ◦ ((((x ◦ y) ◦ y) ◦ y) ◦ y) = 1

thus x ≤ x � y. Analogously y ≤ y � x = x � y thus x � y ∈ U(x, y). Further, if
x ≤ y then

x � y = (x ◦ y) ◦ y = 1 ◦ y = y.

We have shown that (A;�) is a commutative directoid. Analogously as in the
previous proofs, the induced order of (A;�) coincides with ≤. Hence, 1 is a
greatest element of (A;�).

Now, let y ∈ A and x ∈ [y, 1]. Then y ≤ x and hence xyy = (x ◦ y) ◦ y =
x � y = x. Further, yy = y ◦ y = 1 and 1y = 1 ◦ y = y thus for each y ∈ A the
mapping x �→ xy is a sectional switching involution on [y, 1]. �

Theorem 4 Let C = (C;�, 1) be a commutative directoid with a greatest ele-
ment 1. Let ≤ be its induced order and for each p ∈ C there exists a sectional
switching involution x �→ xp on [p, 1]. Define

x ◦ y = (x � y)y.

Then A(C) = (C; ◦, 1) is a d-implication algebra.

Proof It was shown in Theorem 2 that ” ◦ ” is correctly defined operation on
C satisfying (A1) and (A3), and that (x ◦ y) ◦ y = x � y. Since x � y = y � x,
(B1) is evident. It remains to prove (B2). Since y ≤ x � y, we derive

((x ◦ y) ◦ y) ◦ y = (x � y) ◦ y = (x � y)y = x ◦ y. �
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Remark 1 Let A = (A; ◦, 1) be a d-implication algebra, C(A) the induced
commutative directoid and A(C(A)) the induced d-implication algebra. Denote
by • the binary operation in A(C(A)). Then

x • y = (x � y)y = ((x ◦ y) ◦ y) ◦ y = x ◦ y

by (B2) thus A(C(A)) = A.

Remark 2 Let C = (C;�, 1) be a commutative directoid with 1 and with
sectionally switching involutions. Let A(C) be the induced d-implication alge-
bra and C(A(C)) the induced directoid. Denote by ∪ the binary operation in
C(A(C)). Since x � y ∈ [y, 1], we derive

x ∪ y = (x ◦ y) ◦ y = ((x � y)y � y)y = (x � y)yy = x � y

thus also C(A(C)) = C.

Remark 3 Hence, the mutual correspondence between commutative directoids
with 1 and with sectional switching involutions and d-algebras is one-to-one and
hence every such C can be identify with A(C). However, d-implication algebras
form a variety thus also the induced commutative directoids.
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Abstract

By a nearlattice is meant a join-semilattice where every principal filter
is a lattice with respect to the induced order. The aim of our paper is
to show for which nearlattice S and its element c the mapping ϕc(x) =
〈x∨ c, x∧p c〉 is a (surjective, injective) homomorphism of S into [c)× (c].

Key words: Nearlattice; semilattice; distributive element; pseudo-
complement; dual pseudocomplement.
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It is well-known (see e.g. [4]) that if L is a bounded distributive lattice and c ∈
L has a complement in L then L is isomorphic to the direct product [c)×(c]. On
the other hand, if c is not complemented then the mapping ϕc(x) = 〈x∨c, x∧c〉
is still an injective homomorphism of L into the mentioned direct product and
one can discuss whether the homomorphic image ϕc(L) is a subdirect product
of [c)× (c].

In what follows we generalize this setting for the so-called nearlattices (see
[1–3, 5–8]) and we investigate which of these results remain true. It turns out
that our task is reasonable only for a class of so-called nested nearlattices.

Definition 1 By a nearlattice we mean a semilattice S = (S;∨) where for each
a ∈ S the principal filter [a) = {x ∈ S; a ≤ x} is a lattice with respect to the
induced order ≤ of S.
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Remark 1 Since the operation meet is defined only in a corresponding principal
filter, we will indicate this fact by indices, i.e. ∧x denotes the meet in [x). On
the other hand, if a, b ∈ [x) and y ≤ x then a, b ∈ [y) and a ∧x b = a ∧y b since
both are considered with respect to the same (induced) order ≤.

Definition 2 Let S = (S;∨) be a nearlattice and ∅ �= A ⊆ S. A is called
a sublattice of S if it is a lattice with respect to the induced order ≤ of S.

A sublattice M of a nearlattice S is called maximal if M is not a proper
sublattice of another sublattice of S.

Let S = (S;∨) be a nearlattice. Denote by MS = {Mγ , γ ∈ Γ} the set of all
maximal sublattices Mγ of S.

Further, if there exists an element c ∈ ⋂MS , S will be called a nested
nearlattice.

Remark 2 a) Every finite nearlattice S is nested, because S is a join semilattice
with 1 and 1 ∈ ⋂

MS .
b) An example of an infinite nearlattice which is not nested is shown in

Fig. 1.
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For any element c ∈ S we can find a maximal sublattice which does not
contain c. In particular, if c = i or c = ai then c does not belong to the
maximal sublattice [ai+1).

Let S be a nested nearlattice and suppose c ∈ ⋂MS. Suppose x ∈ S. Then
there exists γ ∈ Γ such that x ∈ Mγ . Since Mγ is a lattice and c ∈ Mγ , there
exists inf{x, c} with respect to the induced order. Suppose p ∈ S with p ≤ x, c.
Then clearly x ∧p c = inf{x, c}. Apparently, this operation does not depend
on γ (when x belongs to more than one Mγ). Summarizing, there surely exists
p ∈ S such that x ∧p c = inf{x, c}.
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Definition 3 Let S be a nested nearlattice and c ∈ ⋂MS . The mapping
ϕc : S → [c)× (c] defined by

ϕc(x) = 〈x ∨ c, x ∧p c〉

will be called a decomposition mapping.

The mapping ϕc is obviously everywhere defined, since c ∈ ⋂MS .

Definition 4 Let S be a nearlattice and {Mγ , γ ∈ Γ} be the set of its maximal
sublattices.

(i) An element a of S is called distributive if

a ∨ (x ∧p y) = (a ∨ x) ∧p (a ∨ y),

for all x, y, p ∈Mγ , p ≤ x, y and all γ ∈ Γ.

(ii) An element a is called dually distributive if

a ∧p (x ∨ y) = (a ∧p x) ∨ (a ∧p y),

for all a, x, y, p ∈Mγ , p ≤ a, x, y and all γ ∈ Γ.

A nearlattice S is called distributive if

a ∨ (b ∧p c) = (a ∨ b) ∧p (a ∨ c)

for all a, b, c ∈ S with p ≤ b, c.

Suppose now, that an element c is distributive and also dually distributive.
We wonder whether ϕc is a homomorphism.

Definition 5 By a suitable element we mean an element c of a nested nearlat-
tice S = (S;∨) with c ∈ ⋂MS , which is distributive and also dually distribu-
tive.

Of course, in a nested distributive nearlattice S every element c ∈ ⋂MS is
suitable.

Proposition 1 Let S = (S;∨) be a nested nearlattice and c its suitable element.
Then the decomposition mapping ϕc is a homomorphism.

Proof ϕc(x∨y) = 〈(x∨y)∨c, (x∨y)∧p c〉 = 〈(x∨c)∨(y∨c), (x∧p c)∨(y∧p c)〉 =
〈x ∨ c, x ∧p c〉 ∨ 〈y ∨ c, y ∧p c〉 = ϕc(x) ∨ ϕc(y).

ϕc(x∧py) = 〈(x∧py)∨c, (x∧py)∧pc〉 = 〈(x∨c)∧p (y∨c), (x∧pc)∧p(y∧pc)〉 =
〈x ∨ c, x ∧p c〉 ∧p 〈y ∨ c, y ∧p c〉 = ϕc(x) ∧p ϕc(y). �
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Example 1 Let S be a nearlattice depicted in Fig 2.
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We can easily check that the elements 0, b, 1 are distributive and also dually
distributive. An element c is distributive, but not dually distributive, an element
a is dually distributive, but not distributive.

Consider the decomposition mappings ϕb, ϕa and ϕc. Then for ϕb : S �→
[b)× (b] we have ϕb(1) = 〈1, b〉, ϕb(0) = 〈b, 0〉, ϕb(b) = 〈b, b〉, ϕb(a) = 〈1, 0〉 and
ϕb(c) = 〈1, 0〉 (see Fig. 3). Clearly, [b) = {b, 1}, (b] = {0, b}.
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Fig. 3

One can see that the mapping ϕb is a surjective homomorphism which is not
injective.

For the decomposition mapping ϕa : S �→ [a) × (a] we have ϕa(1) = 〈1, a〉,
ϕa(0) = 〈a, 0〉, ϕa(a) = 〈a, a〉, ϕa(b) = 〈1, 0〉 and ϕa(c) = 〈c, a〉 (see Fig. 4).
Obviously, [a) = {a, c, 1} and (a] = {0, a}.
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〈a, 0〉
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〈1, a〉

〈c, 0〉 〈a, a〉

Fig. 4
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The mapping ϕa is not a homomorphism, because

ϕa(c ∧ b) = 〈a, 0〉 �= 〈c, 0〉 = ϕa(c) ∧ ϕa(b).

Similarly, the decomposition mapping ϕc : S �→ [c)× (c] is not a homomor-
phism.

Now, we will check, whether ϕc is an injection. Let ϕc(x) = ϕc(y). Then
x ∨ c = y ∨ c and x ∧p c = y ∧p c. If the mapping ϕc is injective, then x = y.
Thus the mapping ϕc is injective only if for each x, y ∈ Mγ (x ∨ c = y ∨ c and
x ∧p c = y ∧p c) implies x = y.

Remark 3 Distributivity and dual distributivity of the element c is not enough
to ensure injectivity of the mapping ϕc (see Fig. 3). If we swap b and c, in Fig. 2,
we obtain b ∨ c = a ∨ c and also b ∧0 c = a ∧0 c, but a �= b.

Let us note that for injectivity of ϕc it is not necessary that each maximal
sublattice is distributive.

Proposition 2 If S = (S;∨) is a nested distributive nearlattice and c ∈ ⋂MS,
then the decomposition mapping ϕc is injective.

Proof If S is distributive then each maximal sublattice is a distributive lattice,
in which (x ∨ c = y ∨ c and x ∧p c = y ∧p c) implies x = y. �

If ϕc is an injective homomorphism, then ϕc is an embedding of S into
[c)× (c], i.e. S is isomorphic to a subnearlattice of this direct product.

Example 2 Denote by M1 = {a, c, 1},M2 = {b, c, 1} the maximal sublattices
of the finite distributive nearlattice S visualized in Fig. 5.
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Evidently c ∈M1 ∩M2. Further, [c) = {c, 1} and (c] = {c, a, b}.
The direct product [c)× (c] is depicted in Fig. 6.
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Fig. 6

We have ϕc(1) = 〈1, c〉, ϕc(c) = 〈c, c〉, ϕc(a) = 〈c, a〉 and ϕc(b) = 〈c, b〉.
One can see that ϕc is an injective homomorphism, which is not surjective.

Remark 4 For c = 1 (where 1 is the greatest element of S), we obtain: [c) =
{c}, (c] = S, and thus [c)× (c] ∼= S.

Now we are interested in assumptions under which the mapping ϕc is surjec-
tive. Suppose S is a nested nearlattice with the set {Mγ; γ ∈ Γ} of its maximal
sublattices. An element a ∈ S has a complement bγ in Mγ if Mγ is a bounded
lattice (with 0γ or 1 as the least or greatest element, respectively) and a∨bγ = 1,
a ∧0γ bγ = 0γ .

Proposition 3 Let S = (S;∨) be a nested nearlattice and c its suitable ele-
ment. Suppose that c has a complement pγ in each maximal sublattice Mγ of
the nearlattice S. Then the decomposition mapping ϕc is a surjective homo-
morphism.

Proof We need only to prove, that for each 〈x, y〉 ∈ [c) × (c], there exists an
element z ∈ S, such that ϕc(z) = 〈x, y〉.

Since 〈x, y〉 ∈ [c) × (c], then clearly y ≤ c ≤ x and there exists γ ∈ Γ such
that [y) ⊆Mγ . Denote by ∧γ the operation symbol ∧y (because it in fact does
not depend on y in the following computation).

Take z = (y ∨ pγ) ∧γ x. Then

ϕc(z) = 〈z ∨ c, z ∧γ c〉 = 〈(y ∨ pγ) ∧γ x) ∨ c, (y ∨ pγ) ∧γ x ∧γ c〉
= 〈(y ∨ pγ ∨ c) ∧γ (x ∨ c), ((y ∧γ c) ∨ (pγ ∧γ c)) ∧γ x〉

= 〈(y ∨ 1) ∧γ (x ∨ c), ((y ∧γ c) ∨ (pγ ∧γ c)) ∧γ x〉
= 〈x ∨ c, y ∧γ c ∧γ x〉 = 〈x, y〉,

proving that ϕc is surjective. �

Corollary 1 Let S = (S;∨) be a nested distributive nearlattice and MS =
{Mγ; γ ∈ Γ} the set of its maximal sublattices. If there exists an element
c ∈ ⋂MS such that c has a complement in each Mγ then the decomposition
mapping ϕc is the isomorphism of S onto [c)× (c].
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Example 3 The nearlattice S in Fig. 7 is a nested distributive nearlattice
which has exactly two distinct maximal sublattices M1 = {a, c, p1, 1} and M2 =
{b, c, p2, 1}. Of course, c ∈M1 ∩M2.
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The complement of c in M1, is p1. The complement of c in M2, is p2. Clearly,
[c) = {c, 1}, (c] = {a, b, c}. The direct product [c) × (c] is depicted in Fig. 6.
Obviously, the decomposition mapping ϕc : S �→ [c)× (c] is an isomorphism.

Remark 5 If the element c has not a complement in any Mγ , then the mapping
ϕc need not be surjective (see Example 2).

Definition 6 Let (L;∨, 0, 1) be a lattice with the greatest element 1 and the
least element 0. An element c∗ ∈ L is called a pseudocomplement of c ∈ L, if it
is the greatest element such that c ∧ c∗ = 0. An element c+ ∈ L will be called
a dual pseudocomplement of c ∈ L, if it is the least element for which c∨c+ = 1.

Proposition 4 Let S = (S;∨) be a nested nearlattice and c its suitable element.
Suppose that an element c has a pseudocomplement c∗γ and a dual pseudocom-
plement c+γ in each maximal sublatticeMγ. Then the homomorphic image ϕc(S)
is a subdirect product of [c), (c].

Proof By Proposition 1, ϕc is a homomorphism of S into [c)× (c], thus ϕc(S)
is a subnearlattice of the nearlattice [c)× (c]. We need only to prove that ϕc is
surjective in the both components. Let 〈x, y〉 ∈ [c)× (c], i.e. y ≤ c ≤ x. By the
assumption, there exist c∗γ , c

+
γ ∈Mγ .

Put z1 = (y ∨ c+γ ) ∧γ x. Then

ϕc(z1) = 〈z1 ∨ c, z1 ∧γ c〉 = 〈((y ∨ c+γ ) ∧γ x) ∨ c, ((y ∨ c+γ ) ∧γ x) ∧γ c〉
= 〈(y ∨ c+γ ∨ c) ∧γ (x ∨ c), ((y ∧γ c) ∨ (c+γ ∧γ c)) ∧γ x〉 = 〈x, y ∨ (c+γ ∧γ c)〉,

thus ϕc(z1) is surjective in the first component.
Consider z2 = (y ∨ c∗γ) ∧γ x. Then

ϕc(z2) = 〈z2 ∨ c, z2 ∧γ c〉 = 〈((y ∨ c∗γ) ∧γ x) ∨ c, ((y ∨ c∗γ) ∧γ x) ∧γ c〉
= 〈(y ∨ c∗γ ∨ c) ∧γ (x ∨ c), ((y ∧γ c) ∨ (c∗γ ∧γ c)) ∧γ x〉 = 〈(c ∨ c∗γ) ∧γ x, y〉,

i.e. ϕc(z2) is surjective in the second component. �
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On the other hand, we are able to get a surjective mapping of S × S onto
[c)× (c] for a nested nearlattice S and its suitable element c which need not be
a homomorphism.

Proposition 5 Let S = (S;∨) be a nested nearlattice and c its suitable element.
Suppose that an element c has a pseudocomplement c∗γ and a dual pseudocom-
plement c+γ in each maximal sublattice Mγ. Denote by ψc a mapping from S×S
into [c)× (c], defined by

ψc(z1, z2) = 〈z1 ∨ c, z2 ∧γ c〉,

where γ ∈ Γ, such that z2 ∈Mγ. Then ψc is a surjective mapping of S×S onto
[c)× (c].

Proof Let 〈x, y〉 ∈ [c) × (c], then y ≤ c ≤ x. Hence there exists γ ∈ Γ such
that [y) ⊆Mγ .

Take z1 = (y ∨ c+γ ) ∧γ x, z2 = (y ∨ c∗γ) ∧γ x. Then

ψc(z1, z2) = 〈z1 ∨ c, z2 ∧γ c〉
= 〈((y ∨ c+γ ) ∧γ x) ∨ c, ((y ∨ c∗γ) ∧γ x) ∧γ c〉

= 〈(y ∨ c+γ ∨ c) ∧γ (x ∨ c), ((y ∧γ c) ∨ (c∗γ ∧γ c)) ∧γ x〉
= 〈x ∨ c, y ∧γ c〉 = 〈x, y〉,

thus ψc is a surjective mapping of S × S onto [c)× (c]. �

We finish with a note concerning lattices.

Remark 6 Let L = (L;∨,∧) be a bounded lattice and suppose that an el-
ement c ∈ L has a pseudocomplement c∗ and a dual pseudocomplement c+.
Let the elements c+ and c∗ are distributive and dually distributive. Introduce
a mapping:

ψc+,c∗ : L �→ [c+)× (c∗], ψc+,c∗(z) = 〈z ∨ c+, z ∧ c∗〉.

Since the decomposition mappings ϕ∗
c and ϕ+

c are homomorphisms by Propo-
sition 1, also ψc+,c∗ is a homomorphism.

Further, analogously as in the Proposition 4 and the Proposition 5, it is easy
to show that the mapping ϕc+ is surjective in the first component, the mapping
ϕc∗ is surjective in the second component and the mapping ψc+,c∗ is a surjective
homomorphism of the lattice L onto [c+)× (c∗].

Example 4 Let L be the eight element lattice depicted on the left hand side
in Fig. 8.
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Fig. 8

L is obviously distributive. Clearly [c+) = {c+, 1} and (c∗] = {0, c∗} (see
the lattice (c+]× (c∗] on the right hand side of Fig. 8). The mapping ψc+,c∗ is
a surjective homomorphism of the lattice L onto [c+)× (c∗], given by

ψc+,c∗(1) = ψc+,c∗(z) = 〈1, c∗〉,
ψc+,c∗(c+) = ψc+,c∗(y) = ψc+,c∗(c∗) = 〈c+, c∗〉,
ψc+,c∗(c) = 〈1, 0〉,
ψc+,c∗(x) = ψc+,c∗(0) = 〈c+, 0〉.
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Abstract

An attractive interplay between the direct decompositions and the
explicit form of basic subgroups in group rings of abelian groups over a
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1 Introduction

Throughout the text of this brief paper, let G be an abelian group with
p-component Gp, written by multiplicative record, and R a commutative ring
with identity (of prime characteristic, for instance p, for applications). As usual,
RG denotes the group ring of G over R with group of normalized units V (RG),
abbreviated for facilitating of the exposition via V (G). For a subgroup A of G,
we define by the same reason I(G;A) as the relative augmentation ideal of RG
with respect to A. All other notation and terminology from the abelian group

53



54 P. V. DANCHEV

theory, not expressly given here, are either standard or follow the classical book
of Fuchs [5].

Nachev has demonstrated in [6] that there is a transversal between the basic
subgroups of G and V (G), provided that G is p-primary and R is p-perfect
with prime characteristic p. Specifically, Nachev established in an explicit form
a series of basic subgroups of V (G) by the usage of the basic subgroups of a
p-group G under the limitation on R to be p-perfect of prime characteristic p.
In the proof, he uses intensively a relationship between the properties of a fixed
basic subgroup B of G and the decomposition of (1 + I(G;B)) ∩ V (G)p into
appropriate direct factors.

This approach of finding such a connection also captures the spirit of the
present short note. We thus identify and focus on certain suitable decomposi-
tions in V (G)p by developing the Nachev’s method to the mixed case. Thereby
we state and prove many of the results in the more general setting of arbitrary
groups. We hereafter will also accent on the kind of a basic subgroup of V (G)p
over a coefficient ring larger than the corresponding one in [4].

2 Main Results

We first hasten to the following key technicality (see [1] and [3] too). It is
worthwhile noticing that it encompasses Lemma 7 from [6].

Lemma 1 ([2], Lemma 6) Assume that G = C×A is an abelian group and R is
any commutative unitary ring. Then V (G)p = V (C)p× [(1+ I(G;A))∩V (G)p].

We are now ready to proceed by proving the following formula which is a
non-trivial strengthening of formula (11) of the scheme for proof in [6].

Theorem 1 (Decomposition) Suppose G is an abelian group with a p-basic
subgroup B and suppose R is a commutative ring with identity element. Then
the following decomposition holds:

(1 + I(G;B)) ∩ V (G)p =
(

1 + I(G;B0) +
∞∐
n=1

(1 + I(Gn−1;Bn))
)
∩ V (G)p,

where B =
∐∞
n=0Bn; Bn

∼= ∐
αn
〈pn〉, ∀n ≥ 1; B0

∼= ∐
α0
Z (where αn is a

cardinal ∀ n ≥ 0 and Z is an infinite cyclic group) and G =
∐

1≤i≤nBi × Gn

with Gn = Bn+1 ×Gn+1 and Gn = (B0 ×
∐∞
i=n+1Bi)G

pn

, ∀n ≥ 1; G0 = G.

Proof In accordance with [5, p. 163, Theorem 32.4] we subsequently write down
B =

∐∞
n=0 Bn, G =

∐
1≤i≤nBi × Gn, Gn = Gn+1 × Bn+1 and Gn = B∗

nG
pn

,
where B∗

n = B0 ×
∐∞
i=n+1 Bi. It is worth to noting that B0 is not in general a

direct factor of G.
Employing the foregoing Lemma 1 for n = 1 we derive that

V (G)p = V (G1)p × [(1 + I(G;B1)) ∩ V (G)p] .
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Consequently, by induction on n we obtain

V (G)p = V (Gn)p ×
[ ∐
1≤i≤n

(1 + I(Gi−1;Bi)) ∩ V (G)p

]
,

where G0 = G. Furthermore, we observe that[ ∐
1≤i≤n

(1 + I(Gi−1;Bi))
]
∩ V (G)p ⊆

(
1 + I

(
G;

∐
1≤i≤n

Bi

))
∩ V (G)p ≤ V (G)p.

Therefore, the previous decomposition implies that(
1 + I

(
G;

∐
1≤i≤n

Bi

))
∩ V (G)p =

=
[ ∐
1≤i≤n

(1 + I(Gi−1;Bi)) ∩ V (G)p

]
×

(
V (Gn)p ∩

(
1 + I

(
G;

∐
1≤i≤n

Bi

)))
.

But Gn ∩
∐

1≤i≤nBi = 1, so the latter intersection is equal to 1 (e.g. [1]). Thus
the last decomposition transforms to the following:(

1+ I

(
G;

∐
1≤i≤n

Bi

))
∩V (G)p =

( ∐
1≤i≤n

(1+ I(Gi−1;Bi))
)
∩V (G)p, ∀n ≥ 1.

Finally, since B is the union of an ascending chain of subgroups B0×
∐

1≤i≤nBi
(n = 1, 2, . . .), whence because of the finite support (1+ I(G;B))∩V (G)p is the
union of(

1+I
(
G;B0×

∐
1≤i≤n

Bi

))
∩V (G)p =

(
1+I(G;B0)+I

(
G;

∐
1≤i≤n

Bi

))
∩V (G)p,

by taking in both sides of the last identity the limit operation n→∞, we deduce
that(

1+ I

(
G;

∞∐
i=0

Bi

))
∩V (G)p =

(
1+ I(G;B0)+

∞∐
i=1

(1+ I(Gi−1;Bi))
)
∩V (G)p,

which is precisely the desired equality. �

We are now in a position to give an alternative verification of the following
assertion (see, for instance, [4, Theorem 2]).

Theorem 2 (Basis) Let G be an abelian group with a p-basic subgroup B and
let R be a perfect commutative ring with 1 of prime characteristic p. Then
[1 + I(G;B)] ∩ V (G)p is a basic subgroup of V (G)p.

Proof In order to show the truthfulness of this claim, it is enough to check
only the validity of three conditions from the definition of a basic subgroup (see,
for example, [5]).
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1) The fact that [1+I(G;B)]∩V (G)p is a coproduct of cyclic groups follows
at once by the method described in [4] and applied to R and B0 as well as by
the preceding Theorem, because Bp

n

n = 1 forces that

(1 + I(Gn−1;Bn))p
n

= 1 + Ip
n

(Gn−1;Bn) = 1 + I(Gp
n

n−1;B
pn

n ) = 1.

2) The property of [1 + I(G;B)] ∩ V (G)p to be a pure subgroup of V (G)p
follows like this: For each n ≥ 1 we calculate with the aid of [1] that

[(1 + I(G;B)) ∩ V (G)p] ∩ V (G)p
n

p = (1 + I(G;B)) ∩ V (Gp
n

)p

= (1 + I(Gp
n

;Bp
n

)) ∩ V (Gp
n

)p = (1 + I(G;B)p
n

) ∩ V (G)p
n

p

= (1 + I(G;B))p
n ∩ V (G)p

n

p = [(1 + I(G;B)) ∩ V (G)p]p
n

.

3) The divisibility of the quotient group V (G)p/[(1+I(G;B))∩V (G)p] can be
verified as follows: Writing G = BGp, and taking into account that Gp = BpG

p
p,

we conclude by application of the main proposition in [3] that

V (G)p = V (Gp)p[(1 + I(G;B)) ∩ V (G)p].

Since V (Gp)p = V (G)pp, we are done. �

Remark 1 In [4] the same affirmation as alluded to above was proved under the
more restrictive assumption on R to be a field. The foregoing theorem extends
this result to an arbitrary commutative unitary ring R. Besides, the idea used
here is at all different to that in [4].
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Abstract

The aim of this paper is to develop two different methods for an execut-
ing of the deformation measurement and to prove that these two methods
are equivalent which is a advantage for a conclusive verification of the
results of the experiment in a practice.

Key words:Multiepoch linear model, multivariate regression model
with constraints.

2000 Mathematics Subject Classification: 62J05, 62H15

1 Introduction

The aim is to develop two different methods for an executing of four epochs
experiment in which the movements of the reference points on a dam during the
gradual filling of the dam have been measured. According to the instructions
of a structural designer these points should move along the specific trajectories.
The aim of this experiment is to compare these theoretical trajectories with
empirical ones. In the first method coordinates of the reference points and the
parameters that describe trajectories of these points are estimated at the same
time. In the second method the coordinates of the points are estimated first
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of all and these estimates are used for a calculation of the trajectories. The
corrected coordinates from the second method must be equal to the estimated
coordinates from the first method. The first procedure can be realized after
realization of the 4th epoch measurement only. Since it is necessary to know
preliminary results (shifts of the reference points) during the single epoch, we
must estimate coordinates after each epoch separately. At the end of the 4th
epoch estimations of the coordinates of the all reference points are at our disposal
and the parameters of the trajectories can be estimated by means of second
method. However at the same time both coordinates and trajectories parameters
can be estimated simultaneously in another, however equivalent model (first
method). Both methods should give the same result for the parameters of the
trajectories.

2 Notation and auxiliary statements

Let Y be n×m random matrix ( observation matrix ), Y = (Y1, . . . ,Ym), with
the mean value E(Y) = XB. X is an n× k given design matrix, B is an k×m
matrix of unknown parameters (coordinates of the reference points) and C is
an k× q matrix of unknown parameters (parameters of the trajectories). I⊗Σ
is the covariance matrix of the observation vector vec(Y) = (Y′

1, . . . ,Y
′
m)′ and

the constraints are given in a form BH+CZ+G = 0. Here the matrix H,Z,G
are known.

The model
Y ∼ (XB, I⊗Σ),

is regular if r(Xn,k) = k < n and Σ is positive definite. The constraints
BH+CZ+G = 0 are regular if r(H′

m,r,Z
′
q,r) = r < m+q and r(Zq,r) = q < r.

In the following text it is also assumed r(Hm,r) = r < m.
In the following A+ denotes the Moore–Penrose generalized inverse of the

matrix A (i.e. AA+A = A, A+AA+ = A+, AA+ = (AA+)′, A+A = (A+A)′

cf. [3]).
The symbol MX means the projection matrix I−PX , where I is the identity

matrix and PX is the projection matrix (in the Euclidean norm) on the subspace
M(X) = {Xu : u ∈ Rk}. Here Rk means the k dimensional real vector space.

Lemma 1 Let the model and the constraints

Y ∼nm (XB, I⊗Σ), Bk,mHm,r + Ck,qZq,r + G = 0k,r (1)

be regular. Then the best linear unbiased estimators ( BLUE ) of the matrices
B a C arê̂B = −G

[
I− (H′H)−1Z′[Z(H′H)−1Z′]−1Z

]
(H′H)−1H′ +

+ B̂
[
MH + H(H′H)−1Z′[Z(H′H)−1Z′]−1Z(H′H)−1H′

]
, (2)

̂̂C = −G(H′H)−1Z′[Z(H′H)−1Z′]−1 − B̂H(H′H)−1Z′[Z(H′H)−1Z′]−1 (3)
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and

Var[vec( ̂̂B)] =

=
[
MH + H(H′H)−1Z′[Z(H′H)−1Z′]−1Z(H′H)−1H′

]
⊗ (X′Σ−1X)−1,

Var[vec( ̂̂C)] = [Z(H′H)−1Z′]−1 ⊗ (X′Σ−1X)−1.

Here B̂ = (X′Σ−1X)−1X′Σ−1Y.

Proof In the univariate regular model

Y ∼ (Xβ1,Σ), B1β1 + B2β2 + b = 0,

the BLUE of β1 and β2 are

( ˆ̂
β1
ˆ̂
β2

)
= −

(
(X′Σ−1X)−1B′

1Q1,1

Q2,1

)
b +

(
I− (X′Σ−1X)−1B′

1Q1,1B1

−Q2,1B1

)
β̂1

and

var(ˆ̂β1) = (X′Σ−1X)−1 − (X′Σ−1X)−1B′
1Q1,1B1(X′Σ−1X)−1,

var(ˆ̂β2) = −Q2,2,

where β̂1 = (X′Σ−1X)−1X′Σ−1Y and

(
Q1,1, Q1,2

Q2,1, Q2,2

)
=

(
B1(X′Σ−1X)−1B′

1, B2

B′
2, 0

)−1

=

⎛⎝ {MB2AMB2}+ , (B′
2)

−
m(A)[

(B′
2)

−
m(A)

]′
, −

[
(B′

2)
−
m(A)

]′
A(B′

2)
−
m(A)

⎞⎠ .

Here A = B1(X′Σ−1X)−1B′
1 and (B′

2)
−
m(A) denotes minimum A-seminorm

generalized inverse of the matrix B′
2. (cf. theory of the Pandora-Box matrix

in [3])

Now it suffices to write the multivariate model in the form

vec(Y) ∼ [(I⊗X)vec(B), I⊗Σ],

(H′ ⊗ I)vec(B) + (Z′ ⊗ I)vec(C) + vec(G) = 0
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and use the equalities

Q1,1 =
{
M(Z′⊗I)[(H′H)⊗ (X′Σ−1X)−1]M(Z′⊗I)

}+

= [(H′H)−1 ⊗ (X′Σ−1X)]− [(H′H)−1 ⊗ (X′Σ−1X)](Z′ ⊗ I)

× [
(Z ⊗ I)[(H′H)−1 ⊗ (X′Σ−1X)](Z′ ⊗ I)

]−1

× (Z⊗ I)[(H′H)−1 ⊗ (X′Σ−1X)]
= [(H′H)−1 ⊗ (X′Σ−1X)]

{
(I⊗ I)− [

Z′[Z(H′H)−1Z′]−1Z(H′H)−1
]⊗ I

}
,

Q2,1 =
[
(Z⊗ I)−m[(H′H)⊗(X′Σ−1X)−1]

]′
=

[
(Z⊗ I)[(H′H)−1 ⊗ (X′Σ−1X)](Z′ ⊗ I)

]−1

× (Z⊗ I)[(H′H)−1 ⊗ (X′Σ−1X)] =
{
[Z(H′H)−1Z′]−1Z(H′H)−1

}⊗ I,

Q2,2 = −
[
(Z⊗ I)−m[(H′H)⊗(X′Σ−1X)−1]

]′
[(H′H)⊗ (X′Σ−1X)−1]

× (Z⊗ I)−m[(H′H)⊗(X′Σ−1X)−1]

= − [
(Z⊗ I)[(H′H)−1 ⊗ (X′Σ−1X)](Z′ ⊗ I)

]−1

= −[Z(H′H)−1Z′]−1 ⊗ (X′Σ−1X)−1

and vec(AXB) = (B′ ⊗A)vec(X). �

Lemma 2 The BLUEs of the matrices B and C are the same in the model (1)
and in the model

B̂ ∼km [B, I⊗ (X′Σ−1X)−1], Bk,mHm,r + Ck,qZq,r + G = 0k,r (4)

respectively.

Proof We write the model (4) in the form

vec(B̂) ∼ [(I⊗ I)vec(B), I⊗ (X′Σ−1X)−1],

(H′ ⊗ I)vec(B) + (Z′ ⊗ I)vec(C) + vec(G) = 0

and use the relations from the proof of Lemma 1(
Q1,1, Q1,2

Q2,1, Q2,2

)
=

(
(H′ ⊗ I){(I⊗ I)[I⊗ (X′Σ−1X)](I⊗ I)}−1(H⊗ I), Z′ ⊗ I

Z⊗ I, 0

)−1

,

Q1,1 =
{
M(Z′⊗I)[(H′H)⊗ (X′Σ−1X)−1]M(Z′⊗I)

}+

= [(H′H)−1 ⊗ (X′Σ−1X)]
{
(I⊗ I)− [

Z′[Z(H′H)−1Z′]−1Z(H′H)−1
]⊗ I

}
,

Q2,1 =
[
(Z⊗ I)−m[(H′H)⊗(X′Σ−1X)−1]

]′
=

{
[Z(H′H)−1Z′]−1Z(H′H)−1

}⊗ I
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and

Q2,2 = −
[
(Z⊗ I)−m[(H′H)⊗(X′Σ−1X)−1]

]′
[(H′H)⊗ (X′Σ−1X)−1]

× (Z⊗ I)−m[(H′H)⊗(X′Σ−1X)−1] = −[Z(H′H)−1Z′]−1 ⊗ (X′Σ−1X)−1.

Thus the corrected estimate ̂̂B of the preliminary estimate B̂ is given by the
relation(

vec( ̂̂B)

vec( ̂̂C)

)
= −

( {(I⊗ I)[I⊗ (X′Σ−1X)](I ⊗ I)}−1(H⊗ I)Q1,1

Q2,1

)
vec(G)

+
(

(I⊗ I)− {(I⊗ I)[I⊗ (X′Σ−1X)](I⊗ I)}−1(H⊗ I)Q1,1(H′ ⊗ I)
−Q2,1(H′ ⊗ I)

)
× {I⊗ [(X′Σ−1X)−1X′Σ−1]}vec(Y),

i.e.̂̂B = −G
[
I− (H′H)−1Z′[Z(H′H)−1Z′]−1Z

]
(H′H)−1H′

+ B̂
[
MH + H(H′H)−1Z′[Z(H′H)−1Z′]−1Z(H′H)−1H′

]
,̂̂C = −G(H′H)−1Z′[Z(H′H)−1Z′]−1 − B̂H(H′H)−1Z′[Z(H′H)−1Z′]−1.

(cf. the relations (2), (3)). �

Remark 1 The analogous lemma for univariate model without constraints cf.
[2], p. 398, Theorem 9.2.12.

3 Statistical model of experiment
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Fig. 1: Position of the points A, B, C, D and the reference points P1, P2, P3.
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A deformation measurement is realized according the scheme given by Fig. 1.
Here A,B,C,D are points with given coordinates and the reference points are
described as P1, P2, P3. The distances are measured in meters with the standard
deviation σs = 0.01m and the angles are measured with standard deviation
σω = 3

206265 rad. A model of four epochs experiment is considered in the form
(1) and (4), where the ith column of Y is the observation vector of the ith
epoch, i = 1, . . . 4 minus values calculated from approximate coordinates,

Yi =

⎛⎜⎜⎜⎜⎜⎜⎝

√
(β(i)

11 − θA1)2 + (β(i)
12 − θA2)2

...

arctan β
(i)
12 −θA2

β
(i)
11 −θA1

− arctan θB2−θA2
θB1−θA1

...

⎞⎟⎟⎟⎟⎟⎟⎠ , f0 = f(β0).

A choice of the approximate coordinates β0 is the same for each epoch. Thus
the design matrix

X =
∂E(Yi)

∂(β(i))′

∣∣∣∣
β(i)

=β0

is common for all epochs.
Estimation of parameter β in each epoch is a base for calculation of param-

eter γ in the relations y = γ1 + γ2x + γ3x 2 that describe trajectories of the
reference points, e.g. in the case of the reference point P1

β
(i)
12 = γ1 + γ2β

(i)
11 + γ3(β

(i)
11 )2, i = 1, 2, 3, 4.

Estimation of parameters γ1, γ2 and γ3 is executed by linearized regression model

with constraint of type II because estimated coordinates β̂
(i)

are result of the
measurement. Therefore the constraint is

BH + CZ + G = 0,

where C is a matrix of the parameter γ and

H =

⎛⎜⎝ γ0
12 + 2γ0

11β
0
11 −1 0 0 . . .

0 0 γ0
22 + 2γ0

21β
0
21 −1 . . .

...
...

...
...

. . .

⎞⎟⎠ ,

Z =

⎛⎜⎝ 1 β0
11 (β0

11)
2

1 β0
21 (β0

21)2
...

...
...

⎞⎟⎠ ,

G =

⎛⎜⎝ γ0
11 + γ0

12β
0
11 + γ0

13(β0
11)2 − β0

12

γ0
21 + γ0

22β
0
21 + γ0

23(β
0
21)

2 − β0
22

...

⎞⎟⎠ .
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4 Numerical example

In the experiment the distances of the reference points from the points

A = [θA1, θA2], B = [θB1, θB2], C = [θC1, θC2], D = [θD1, θD2]

and the angles between these points are measured. Approximate coordinates
are

P1 = [1300.0 m, 450.0 m], P2 = [1271.4 m, 498.2 m], P3 = [1250.0 m, 550.0 m].

Σ = σ2
s

⎛⎜⎜⎜⎜⎜⎜⎝
I4×4 0 0 0 0 0
0 08×8 0 0 0 0
0 0 I4×4 0 0 0
0 0 0 08×8 0 0
0 0 0 0 I4×4 0
0 0 0 0 0 08×8

⎞⎟⎟⎟⎟⎟⎟⎠

+ σ2
ω

⎛⎜⎜⎜⎜⎜⎜⎝
04×4 0 0 0 0 0
0 I8×8 0 0 0 0
0 0 04×4 0 0 0
0 0 0 I8×8 0 0
0 0 0 0 04×4 0
0 0 0 0 0 I8×8

⎞⎟⎟⎟⎟⎟⎟⎠ ,

σ2
s = (0.01 m)2 and σ2

ω = ( 3
206265 )2, where ω is an angle measured in radians.

The origin of the system of the coordinates is moved to the coordinates
[1200 m, 400 m].

The structural designer gives these trajectories:

−222172.44 + 4444.4444β11 − 22.2222β2
11 − β12 = 0,

80.35555 + 0.25β21 − β22 = 0,
55705.61 − 2222.2222β31 + 22.2222β2

31 − β32 = 0.

The corrected coordinates ̂̂B given in meters from the model (4) are given in
the following Table 1:

1st epoch 2nd epoch 3th epoch 4th epoch

P1 [99.991,50.005] [100.008,50.003] [100.022,49.989] [100.035,49.979]

P2 [71.413,98.206] [71.431,98.214] [71.444,98.223] [71.464,98.233]

P3 [50.000,150.004] [50.008,150.004] [50.033,150.012] [50.035,150.023]

Table 1
and

−383388.15 + 7668.548048β11 − 38.341665β2
11 − β12 = 0,

60.29 + 0.530932β21 − β22 = 0,
94104.42 − 3757.486631β31 + 37.567967β2

31 − β32 = 0.
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Although in the model (4) the estimations of the parameter γ are different
from the parameter given by the structural designer, the estimated trajectories
are practically the same in the sector in which the movements of the reference
point have been measured.

The figures 2–4 show the specific inconsistence between the theory and the
numerical results. The corrected coordinates should lie exactly on the each
trajectories. The inconsistence evident from the figures seems to be made by
the linearization of the nonlinear model. An influence of the nonlinearity will
be characterized by the bias

E(̂̂δβ)− δβ,

where E(̂̂δβ) is calculated under the assumption that the nonlinear model is
quadratized. The expression

E(̂̂δβ)− δβ

can be obtained in our case from the formula in [1], p. 248, Corollary VI. 2.2.3.5.
For the numerical demonstration we use the relations

E(̂̂δβ)− δβ = PC
C−1H′MZ

[C−1H′(HC−1H′ + ZZ′)−1]δµδγ2

for the point P2 and

E(̂̂δβ)− δβ = PC
C−1H′MZ

[C−1H′(HC−1H′ + ZZ′)−1]

×
(
δγ2δβ

(i)
11 + γ0

3(δβ(i)
11 )2 + 2δγ3δβ

(i)
11 β

0(i)
11

)4

i=1

for the points P1, P3, where C = X′Σ−1X, δγi =
√

var γi, δµ = 4 × 1 matrix
containing arbitrary combination of numbers 0, 1,−1.

Numerical results verify the influence of the nonlinearity.

E(̂̂δβ)− δβ = −0.002
0.004

−0.002
0.008
0.002

−0.006
0.004

−0.020

for the point P2, where δµ = [0; 1; 0; 1] and δγ2 = 0.053.
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Fig. 2: P1: Estimation of the trajectory + confidence region in the model (4).
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Fig. 4: P3: Estimation of the trajectory + confidence region in the model (4).
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Abstract

The estimation procedures in the multiepoch (and specially twoepoch)
linear regression models with the nuisance parameters that were described
in [2], Chapter 9, frequently need finding the inverse of a 3×3 partitioned
matrix. We use different kinds of such inversion in dependence on sim-
plicity of the result, similarly as in well known Rohde formula for 2 × 2
partitioned matrix. We will show some of these formulas, also methods
how to get the other formulas, and then we applicate the formulas in es-
timation of the mean value parameters in the twoepoch linear regression
model with the nuisance parameters.

Key words: Inversion of partitioned matrices; Rohde formula; twoe-
poch regression model; useful and nuisance parameters; best linear
estimators of the mean value parameter.
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1 Notations

The following notation will be used throughout the paper:

Rn the space of all n-dimensional real vectors;
u, A the real column vector, the real matrix;
A′, r(A) the transpose, the rank of the matrix A;
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M(A), Ker(A) the range, the null space of the matrix A;
A− a generalized inverse of a matrix A (satisfying

AA−A = A);
A+ the Moore-Penrose generalized inverse of a matrix

A (satisfying AA+A = A, A+AA+ = A+,
(AA+)′ = AA+, (A+A)′ = A+A);

PA the orthogonal projector onto M(A) (in Euclidean
sense);

MA = I−PA the orthogonal projector onto M⊥(A) = Ker(A′);
Ik the k × k identity matrix;
0m,n the m× n null matrix;
1k = (1, . . . , 1)′ ∈ Rk;
χ2
r random variable with chi squared distribution

with r degrees of freedom;
χ2
r(1− α) (1− α)-quantile of this distribution.

If M(A) ⊂ M(S), S positive semidefinite (p.s.d.), then the symbol PS−
A

denotes the projector projecting vectors in M(S) onto M(A) along M(SA⊥).
A general representation of all such projectors PS−

A is given by

A(A′S−A)−A′S− + B(I− SS−),

where B is arbitrary, (see [4], (2.14)). MS−
A = I−PS−

A .

2 Inversion of partitioned matrices

Lemma 1 (Rohde) Let

D =
(

A B
B′ C

)
be (symmetric) positive definite (p.d.). Then

D−1 =

=
(

(A−BC−1B′)−1 −(A−BC−1B′)−1BC−1

−C−1B′(A−BC−1B′)−1 C−1 + C−1B′(A−BC−1B′)−1BC−1

)
(1)

=
(

A−1 + A−1B(C−B′A−1B)−1B′A−1 −A−1B(C−B′A−1B)−1

−(C−B′A−1B)−1B′A−1 (C−B′A−1B)−1

)
. (2)

Proof see [1, Theorem 8.5.11, p. 99].

Theorem 1 (Version I) Let

Q =

⎛⎝ A B D
B′ C F
D′ F′ E

⎞⎠
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be p.d. Then

Q−1 =

⎛⎝Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎞⎠ ,

where

Q11 = [A−DE−1D′ − (B−DE−1F′)(C− FE−1F′)−1(B′ − FE−1D′)]−1,

Q12 = −Q11(B−DE−1F′)(C− FE−1F′)−1,

Q13 = −(Q11D + Q12F)E−1,

Q21 = −(C− FE−1F′)−1(B′ − FE−1D′)Q11 = (Q12)′,
Q22 = (C− FE−1F′)−1 + (C− FE−1F′)−1(B′ − FE−1D′)Q11

× (B−DE−1F′)(C− FE−1F′)−1,

Q23 = −(Q21D + Q22F)E−1,

Q31 = −E−1(D′Q11 + F′Q21) = (Q13)′,
Q32 = −E−1(D′Q12 + F′Q22) = (Q23)′,
Q33 = E−1 + E−1(D′Q11D + D′Q12F + F′Q21D + F′Q22F)E−1.

Proof Let us denote

U =
(

A B
B′ C

)
, V =

(
D
F

)
.

The matrix U is p.d. so that we get with use of Lemma 1, formula (1)

Q−1 =
(

U V
V′ E

)−1

(1)
=

(
(U−VE−1V′)−1 −(U−VE−1V′)−1VE−1

−E−1V′(U−VE−1V′)−1 E−1 + E−1V′(U−VE−1V′)−1VE−1

)
with p.d. matrix

(U−VE−1V′)−1 =
(

A−DE−1D′ B−DE−1F′

B′ − FE−1D′ C− FE−1F′

)−1

.

An application of Rohde formula (1) again and arrangement give us the desired
result. �

Corollary 1 Inverse of partitioned p.d. matrix⎛⎝ A B D
B′ C 0
D′ 0 E

⎞⎠
is equal to ⎛⎝ Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎞⎠ =
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=

⎛⎝ Q11 −Q11BC−1 −Q11DE−1

−C−1B′Q11 C−1 + C−1B′Q11BC−1 −Q21DE−1

−E−1D′Q11 −E−1D′Q12 E−1 + E−1D′Q11DE−1

⎞⎠ ,

where
Q11 = (A−BC−1B′ −DE−1D′)−1.

Theorem 2 (Version II) Let

Q =

⎛⎝ A B D
B′ C F
D′ F′ E

⎞⎠
be p.d. Then

Q−1 =

⎛⎝Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎞⎠ ,

where

Q11 = (A−DE−1D′)−1 + (A−DE−1D′)−1(B−DE−1F′)Q22

× (B′ − FE−1D′)(A−DE−1D′)−1,

Q12 = −(A−DE−1D′)−1(B−DE−1F′)Q22,

Q13 = −(Q11D + Q12F)E−1,

Q21 = −Q22(B′ − FE−1D′)(A−DE−1D′)−1,

Q22 = [C− FE−1F′ − (B′ − FE−1D′)(A−DE−1D′)−1(B−DE−1F′)]−1,

Q23 = −(Q21D + Q22F)E−1,

Q31 = −E−1(D′Q11 + F′Q21),
Q32 = −E−1(D′Q12 + F′Q22),
Q33 = E−1 + E−1(D′Q11D + D′Q12F + F′Q21D + F′Q22F)E−1.

Proof follows directly from the proof of Theorem 1, if we use Rohde formula
(2) instead of (1) in inverting p.d. matrix(

A−DE−1D′ B−DE−1F′

B′ − FE−1D′ C− FE−1F′

)−1

. �

Remark 1 (Version III & Version IV) We use (1) and (2) in inverting p.d.
matrix

U =
(

A B
B′ C

)
in

Q−1 =
(

U V
V′ E

)−1

(2)
=

(
U−1 + U−1V(E−V′U−1V)−1V′U−1 −U−1V(E−V′U−1V)−1

−(E−V′U−1V)−1V′U−1 (E−V′U−1V)−1

)
,

where V = (D′,F′)′.
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Remark 2 (Version V & Version VI) Let us denote

W = (B,D), Z =
(

C F
F′ E

)
in

Q =

⎛⎝ A B D
B′ C F
D′ F′ E

⎞⎠ .

The matrix Z is p.d. and using (1) we get

Q−1 =
(

A W
W′ Z

)−1

(1)
=

(
(A−WZ−1W′)−1 −(A−WZ−1W′)−1WZ−1

−Z−1W′(A−WZ−1W′)−1 Z−1 + Z−1W′(A−WZ−1W′)−1WZ−1

)
.

The only thing that remains is to invert Z by (1) and (2).

Remark 3 (Version VII & Version VIII) Using Rohde formula (2) in p.d.
matrix inversion

Q−1 =
(

A W
W′ Z

)−1

we obtain(
A−1 + A−1W(Z−W′A−1W)−1W′A−1 −A−1W(Z−W′A−1W)−1

−(Z−W′A−1W)−1W′A−1 (Z−W′A−1W)−1

)
with p.d. matrix

(Z−W′A−1W)−1 =
(

C−B′A−1B F−B′A−1D
F′ −D′A−1B E−D′A−1D

)−1

.

An application of (1) and (2) again give us the result. For⎛⎝ A B D
B′ C F
D′ F′ E

⎞⎠−1

=

⎛⎝Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎞⎠ ,

it is interesting to compare Version VIII,

Q11 = A−1 + A−1(BQ22B′ + BQ23D′ + DQ32B′ + DQ33D′)A−1,

Q12 = −A−1(BQ22 + DQ32),
Q13 = −A−1(BQ23 + DQ33),
Q21 = −(Q22B′ + Q23D′)A−1,

Q22 = (C−B′A−1B)−1 + (C−B′A−1B)−1(F−B′A−1D)Q33

× (F′ −D′A−1B)(C−B′A−1B)−1,

Q23 = −(C−B′A−1B)−1(F−B′A−1D)Q33,

Q31 = −(Q32B′ + Q33D′)A−1,

Q32 = −Q33(F′ −D′A−1B)(C−B′A−1B)−1,

Q33 = [E−D′A−1D− (F′ −D′A−1B)(C−B′A−1B)−1(F−B′A−1D)]−1,
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with Version I—it’s in the certain sense “dual” form of Version VIII. Similar
comparisons can be done with other couples of formulas.

3 Twoepoch linear model

The theory of the linear regression models is one of the established statistical
disciplines and it may seem that nearly all has been investigated there. But
this is valid only for the simplest structures of the linear models. In the prac-
tice we need to solve more and more complicated problems and investigation
of corresponding structures of models is at the beginning. The formulas are
quite complicated there but easy programmable and it enables us to get the
estimations of unknown parameters in linear models.

The estimation procedures in multiepoch linear regression models with nui-
sance parameters and its application in geodesy were described in [2, Chapter 9].
But in the twoepoch case we can derive the estimations using convenient inverse
of 3 × 3 partitioned matrices much easily so it legitimates to deal with them
specially.

We derive optimum estimators of the useful mean value within a linear
twoepoch model with the stable and variable (nonstable) parameters, when the
data are affected by a systematic (deterministic) influence, i.e. by a noise which
can be described by a linear model and whose parameters called nuisance, are
estimable from results of the measurement. The subject of an interpretation are
changes of the useful parameters in the single epochs and their characteristics
of accuracy.

Sometimes the dimension of the useful mean value parameters is essentially
smaller than that one of the nuisance parameter. In connection with this fact
the problem occurs how to determine the optimum estimators of the useful
parameters and their accuracy without evaluating in each epoch the large vector
of the nuisance parameters.

One of the fundamental types of multiepoch and specially twoepoch model
(which may exist also in the form with the nuisance parameters) was described
in [2, p. 366].

Replicated measurements studying existence of deformation of some object
and its course (if it exists) are realized in separate networks especially con-
structed for this purpose. It consists of a group of supporting points, whose
position is assumed to be stable (this assumption—hypothesis—is verified dur-
ing the measurement), and a group of points, whose movements related to the
position of the stable points, are investigated (the coordinates of the group of
the stable points are a priori unknown). As far as the processing of the mea-
sured results is concerned this means, that in the framework of each epoch and
after finishing each epoch both the coordinates of the supporting points and
the coordinates of the investigated points, are to be determined. The former
serve to verify the above-mentioned hypothesis on the stableness of the group
of supporting points.
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Let us describe another example from the microeconomics practice. The
progress of daily receipts in retail trade in the same months of two following
years is observed. This progress usually consists of weekly period part and trend
part. The weekly period doesn’t change a lot because of conservative behaviour
of the shoppers (i.e. useful stable parameters in expression of the entire linear
model modelling the situation) in contrast to the trend. There is an influence of
the commercial offers, inflation etc. (i.e. variable parameters; we suppose that
the annual changes are not dramatical). The trend can be quite complicated and
we need often only a small fraction of information that it contains. Here, the
nonstable parameters in case of quadratic trend can be divided into the useful
linear term parameter, that gives some pieces of information about increase or
decrease of receipts, and two nuisance parameters (absolute term and quadratic
term). The data in the above mentioned problem are usually characterized by
a large dispersion and dependence among them.

The result of the measurement at the i-th time point in the first epoch could
be described as

Y1i = β1 cosλt1i + β2 sinλt1i + γ1t1i + κ11 + κ12t
2
1i + ε1i, i = 1, . . . , n1

(λ is known from periodogram, see [5, p. 92]) and

Y2i = β1 cosλt2i + β2 sinλt2i + γ2t2i + κ21 + κ22t
2
2i + ε2i, i = 1, . . . , n2

in the second epoch. Here β1 cosλtji + β2 sinλtji describes the weekly period
(the measurements must begin with respect to this period in both epochs) and
γjtji+κj1 +κj2t

2
ji, j = 1, 2 the quadratical trend in the first and second epoch,

respectively.
Let us consider the observation vector Y = (Y′

1,Y
′
2)′. The model described

above could be rewritten in the form(
Y1

Y2

)
=

(
X1 W1 0 Z1 0
X2 0 W2 0 Z2

)⎛⎝ β
γ
κ

⎞⎠ +
(

ε1

ε2

)
, (3)

where

X1 =

⎛⎜⎝ cosλt11 sinλt11
...

...
cosλt1n1 sinλt1n1

⎞⎟⎠ , X2 =

⎛⎜⎝ cosλt21 sinλt21
...

...
cosλt2n2 sinλt2n2

⎞⎟⎠ ,

W1 = (t11, . . . , t1n1)
′, W2 = (t21, . . . , t2n2)

′,

Z1 =

⎛⎜⎝ 1 t211
...

...
1 t21n1

⎞⎟⎠ , Z2 =

⎛⎜⎝ 1 t221
...

...
1 t22n2

⎞⎟⎠ ,

β = (β1, β2)′, γ = (γ1, γ2)′, κ = (κ11, κ12, κ21, κ22)′.
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The matrices X1,X2,W1,W2,Z1,Z2 are known, the vector β is a vector of the
useful stable parameters, γ is a vector of the useful variable parameters and κ
is a vector of the nuisance variable parameters.

With respect to above mentioned, let us consider the linear model (3), called
the twoepoch model with the stable and nonstable parameters and with the
nuisance parameters. We suppose that

• (Y′
1,Y

′
2)

′ is a (n1 + n2)-dimensional random observation vector after the
second epoch of measurement,

• β ∈ Rk is a vector of the useful stable parameters, the same in both
epochs,

• γ = (γ′
1,γ

′
2)

′ ∈ Rl1+l2 is a vector of the useful nonstable parameters in
the first and the second epoch of measurement,

• κ = (κ′
1,κ

′
2)

′ ∈ Rs1+s2 is a vector of the nuisance nonstable parameters
in first and second epoch,

• X1, X2 are n1 × k, n2 × k design matrices belonging to the vector β,

• W1 is a n1 × l1 design matrix belonging to the vector γ1,

• W2 is a n2 × l2 design matrix belonging to the vector γ2,

• Z1 is a n1 × s1 design matrix belonging to the vector κ1,

• Z2 is a n2 × s2 design matrix belonging to the vector κ2.

We suppose that

1. E(Y1) = X1β + W1γ1 + Z1κ1, E(Y2) = X2β + W2γ2 + Z2κ2,

∀β ∈ Rk, ∀γ1 ∈ Rl1 , ∀γ2 ∈ Rl2 , ∀κ1 ∈ Rs1 , ∀κ2 ∈ Rs2 ;

2. var
[(

Y1

Y2

)]
=

(
Σ1 0
0 Σ2

)
,

3. the matrix Σi is not a function of the vector (β′,γ′
i,κ

′
i)

′ for i = 1, 2.

If the matrix
(

Σ1 0
0 Σ2

)
is p.d. and

r

[(
X1 W1 0 Z1 0
X2 0 W2 0 Z2

)]
= k + l1 + l2 + s1 + s2 < n1 + n2,

the model is said to be regular (see [2, p. 13]).
The described model arises by sequential realizations of the linear partial

regression models,

Y1 = (X1,W1,Z1)

⎛⎝ β
γ1

κ1

⎞⎠ + ε1, var(Y1) = Σ1 (4)
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and

Y2 = (X2,W2,Z2)

⎛⎝ β
γ2

κ2

⎞⎠ + ε2, var(Y2) = Σ2, (5)

representing the model of the measurement within the first and second epoch,
respectively.

Theorem 3 The BLUE, i.e. the best linear unbiased estimator, of the param-
eters β,γi,κi, i = 1, 2 in the single first and second epoch modelled by (4) and
(5), respectively, are

β̂
(i)

= (X′
iΣ

−1
i MΣ−1

i

Zi
M

Σ−1
i M

Σ−1
i

Zi

Wi
Xi)−1X′

iΣ
−1
i MΣ−1

i

Zi
M

Σ−1
i M

Σ−1
i

Zi

Wi
Yi,

γ̂i
(i) = (W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i MΣ−1

i

Zi
(Yi −Xiβ̂

(i)
),

κ̂i
(i) = (Z′

iΣ
−1
i Zi)−1Z′

iΣ
−1
i (Yi −Xiβ̂

(i) −Wiγ̂
(i)
i ),

(Version I) and equivalently

β̂
(i)

= (X′
iΣ

−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i MΣ−1

i

Zi
(Yi −Wiγ̂

(i)
i ),

γ̂i
(i) = (W′

iΣ
−1
i MΣ−1

i

Zi
M

Σ−1
i M

Σ−1
i

Zi

Xi
Wi)−1W′

iΣ
−1
i MΣ−1

i

Zi
M

Σ−1
i M

Σ−1
i

Zi

Xi
Yi,

κ̂i
(i) = (Z′

iΣ
−1
i Zi)−1Z′

iΣ
−1
i (Yi −Xiβ̂

(i) −Wiγ̂
(i)
i ),

(Version II) for i = 1, 2.

Proof According to [2, Theorem 1.1.1, p. 13], the BLUE of the vector parameter
(β′,γ′

i,κ
′
i)

′, i = 1, 2, in each epoch separately, is given by⎛⎜⎝ β̂
(i)

γ̂i
(i)

κ̂i
(i)

⎞⎟⎠ =

⎡⎣⎛⎝ X′
i

W′
i

Z′
i

⎞⎠Σ−1
i (Xi,Wi,Zi)

⎤⎦−1 ⎛⎝ X′
i

W′
i

Z′
i

⎞⎠Σ−1
i Yi.

Using Theorem 1 and Theorem 2, the crucial point of the proof consists in the
fact that ⎡⎣⎛⎝ X′

i

W′
i

Z′
i

⎞⎠Σ−1
i (Xi,Wi,Zi)

⎤⎦−1

=

=

⎛⎝ X′
iΣ

−1
i Xi X′

iΣ
−1
i Wi X′

iΣ
−1
i Zi

W′
iΣ

−1
i Xi W′

iΣ
−1
i Wi W′

iΣ
−1
i Zi

Z′
iΣ

−1
i Xi Z′

iΣ
−1
i Wi Z′

iΣ
−1
i Zi

⎞⎠−1

=

⎛⎝Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎞⎠ ,

where (MΣ−1
i

Zi
= I−PΣ−1

i

Zi
= I− Zi(Z′

iΣ
−1
i Zi)−1Z′

iΣ
−1
i )
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Q11
T.1= [X′

iΣ
−1
i MΣ−1

i

Zi
Xi −X′

iΣ
−1
i MΣ−1

i

Zi
Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1

×W′
iΣ

−1
i MΣ−1

i

Zi
Xi]−1 = (X′

iΣ
−1
i MΣ−1

i

Zi
M

Σ−1
i M

Σ−1
i

Zi

Wi
Xi)−1,

Q12 = −Q11X′
iΣ

−1
i MΣ−1

i

Zi
Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1,

Q13 = −Q11[X′
iΣ

−1
i Zi −X′

iΣ
−1
i MΣ−1

i

Zi
Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i Zi]

× (Z′
iΣ

−1
i Zi)−1,

Q21 = −(W′
iΣ

−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i MΣ−1

i

Zi
XiQ11,

Q22 = (W′
iΣ

−1
i MΣ−1

i

Zi
Wi)−1 + (W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i MΣ−1

i

Zi
Xi

×Q11X′
iΣ

−1
i MΣ−1

i

Zi
Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1,

Q23 = −(W′
iΣ

−1
i MΣ−1

i

Zi
Wi)−1[W′

iΣ
−1
i Zi −W′

iΣ
−1
i MΣ−1

i

Zi
XiQ11X′

iΣ
−1
i Zi

+ W′
iΣ

−1
i MΣ−1

i

Zi
XiQ11X′

iΣ
−1
i MΣ−1

i

Zi
Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1

×W′
iΣ

−1
i Zi](Z′

iΣ
−1
i Zi)−1,

Q31 = −(Z′
iΣ

−1
i Zi)−1[Z′

iΣ
−1
i Xi − Z′

iΣ
−1
i Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1

×W′
iΣ

−1
i MΣ−1

i

Zi
Xi]Q11,

Q32 = −(Z′
iΣ

−1
i Zi)−1[Z′

iΣ
−1
i Wi − Z′

iΣ
−1
i XiQ11X′

iΣ
−1
i MΣ−1

i

Zi
Wi

+ Z′
iΣ

−1
i Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i MΣ−1

i

Zi

×XiQ11X′
iΣ

−1
i MΣ−1

i

Zi
Wi](W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1,

Q33 = (Z′
iΣ

−1
i Zi)−1 + (Z′

iΣ
−1
i Zi)−1[Z′

iΣ
−1
i XiQ11X′

iΣ
−1
i Zi

− Z′
iΣ

−1
i XiQ11X′

iΣ
−1
i MΣ−1

i

Zi
Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i Zi

− Z′
iΣ

−1
i Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i MΣ−1

i

Zi
XiQ11X′

iΣ
−1
i Zi

+ Z′
iΣ

−1
i Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i Zi

+ Z′
iΣ

−1
i Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i MΣ−1

i

Zi
XiQ11X′

iΣ
−1
i MΣ−1

i

Zi
Wi

× (W′
iΣ

−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i Zi](Z′

iΣ
−1
i Zi)−1

and

Q11
T.2= (X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1 + (X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i MΣ−1

i

Zi
WiQ22

×W′
iΣ

−1
i MΣ−1

i

Zi
Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1,

Q12 = −(X′
iΣ

−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i MΣ−1

i

Zi
WiQ22,
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Q13 = −(X′
iΣ

−1
i MΣ−1

i

Zi
Xi)−1[X′

iΣ
−1
i Zi −X′

iΣ
−1
i MΣ−1

i

Zi
WiQ22W′

iΣ
−1
i Zi

+ X′
iΣ

−1
i MΣ−1

i

Zi
WiQ22W′

iΣ
−1
i MΣ−1

i

Zi
Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1

×X′
iΣ

−1
i Zi](Z′

iΣ
−1
i Zi)−1,

Q21 = −Q22W′
iΣ

−1
i MΣ−1

i

Zi
Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1,

Q22 = (W′
iΣ

−1
i MΣ−1

i

Zi
M

Σ−1
i M

Σ−1
i

Zi

Xi
Wi)−1,

Q23 = −Q22[W′
iΣ

−1
i Zi −W′

iΣ
−1
i MΣ−1

i

Zi
Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i Zi]

× (Z′
iΣ

−1
i Zi)−1,

Q31 = −(Z′
iΣ

−1
i Zi)−1[Z′

iΣ
−1
i Xi − Z′

iΣ
−1
i WiQ22W′

iΣ
−1
i MΣ−1

i

Zi
Xi +

Z′
iΣ

−1
i Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i MΣ−1

i

Zi
WiQ22W′

iΣ
−1
i MΣ−1

i

Zi
Xi]

× (X′
iΣ

−1
i MΣ−1

i

Zi
Xi)−1,

Q32 = −(Z′
iΣ

−1
i Zi)−1[Z′

iΣ
−1
i Wi − Z′

iΣ
−1
i Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1

×X′
iΣ

−1
i MΣ−1

i

Zi
Wi]Q22,

Q33 = (Z′
iΣ

−1
i Zi)−1 + (Z′

iΣ
−1
i Zi)−1[Z′

iΣ
−1
i WiQ22W′

iΣ
−1
i Zi

− Z′
iΣ

−1
i WiQ22W′

iΣ
−1
i MΣ−1

i

Zi
Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i Zi

− Z′
iΣ

−1
i Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i MΣ−1

i

Zi
WiQ22W′

iΣ
−1
i Zi

+ Z′
iΣ

−1
i Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i Zi

+ Z′
iΣ

−1
i Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i MΣ−1

i

Zi
WiQ22W′

iΣ
−1
i MΣ−1

i

Zi
Xi

× (X′
iΣ

−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i Zi](Z′

iΣ
−1
i Zi)−1,

respectively. Regarding that

β̂
(i)

= Q11X′
iΣ

−1
i Yi + Q12W′

iΣ
−1
i Yi + Q13Z′

iΣ
−1
i Yi,

γ̂i
(i) = Q21X′

iΣ
−1
i Yi + Q22W′

iΣ
−1
i Yi + Q23Z′

iΣ
−1
i Yi,

κ̂i
(i) = Q31X′

iΣ
−1
i Yi + Q32W′

iΣ
−1
i Yi + Q33Z′

iΣ
−1
i Yi,

i = 1, 2, the proof is complete. �

Notation 1 The model (3) can be rewritten as

Y = (W,Z)
(

δ
κ

)
+ ε, (6)

where

Y =
(

Y1

Y2

)
, W =

(
X1 W1 0
X2 0 W2

)
, Z =

(
Z1 0
0 Z2

)
, δ =

(
β
γ

)
, ε =

(
ε1

ε2

)
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and

Σ = var(Y) =
(

Σ1 0
0 Σ2

)
,

so we get the (ordinary) linear model with nuisance parameters.

Proposition 1 In the regular model (6) the BLUE of the parameter (δ′,κ′)′ is
given as (

δ̂
κ̂

)
=

(
(W′Σ−1MΣ−1

Z W)−1W′Σ−1MΣ−1

Z

(Z′Σ−1Z)−1Z′Σ−1MΣ−1MΣ−1
Z

W

)
Y. (7)

Proof See [3, Theorem 1].

Theorem 4 In the regular model (3) the BLUEs of the parameters β,γ1,γ2,κ1,
κ2 are given as

β̂ = (X′
1Σ

−1
1 MΣ−1

1
Z1

M
Σ−1

1 M
Σ−1

1
Z1

W1
X1 + X′

2Σ
−1
2 MΣ−1

2
Z2

M
Σ−1

2 M
Σ−1

2
Z2

W2
X2)−1

× (X′
1Σ

−1
1 MΣ−1

1
Z1

M
Σ−1

1 M
Σ−1

1
Z1

W1
Y1 + X′

2Σ
−1
2 MΣ−1

2
Z2

M
Σ−1

2 M
Σ−1

2
Z2

W2
Y2),

γ̂1 = (W′
1Σ

−1
1 MΣ−1

1
Z1

W1)−1W′
1Σ

−1
1 MΣ−1

1
Z1

(Y1 −X1β̂),

γ̂2 = (W′
2Σ

−1
2 MΣ−1

2
Z2

W2)−1W′
2Σ

−1
2 MΣ−1

2
Z2

(Y2 −X2β̂),

κ̂1 = (Z′
1Σ

−1
1 Z1)−1Z′

1Σ
−1
1 (Y1 −X1β̂ −W1γ̂1),

κ̂2 = (Z′
2Σ

−1
2 Z2)−1Z′

2Σ
−1
2 (Y2 −X2β̂ −W2γ̂2).

Proof According to Notation 1 we can use (7) to get the result. Here

Σ−1MΣ−1

Z = Σ−1 −Σ−1Z(Z′Σ−1Z)−1Z′Σ−1 =

(
Σ−1

1 MΣ−1
1

Z1
0

0 Σ−1
2 MΣ−1

2
Z2

)

thus (we have used Corollary 1)

(W′Σ−1MΣ−1

Z W)−1 =

=

⎛⎜⎜⎝ X′
1Σ

−1
1 MΣ−1

1
Z1

X1 + X′
2Σ

−1
2 MΣ−1

2
Z2

X2 X′
1Σ

−1
1 MΣ−1

1
Z1

W1 X′
2Σ

−1
2 MΣ−1

2
Z2

W2

W′
1Σ

−1
1 MΣ−1

1
Z1

X1 W′
1Σ

−1
1 MΣ−1

1
Z1

W1 0

W′
2Σ

−1
2 MΣ−1

2
Z2

X2 0 W′
2Σ

−1
2 MΣ−1

2
Z2

W2

⎞⎟⎟⎠
−1

C.1=

⎛⎝ Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎞⎠ ,
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where

Q11 = (X′
1Σ

−1
1 MΣ−1

1
Z1

M
Σ−1

1 M
Σ−1

1
Z1

W1
X1 + X′

2Σ
−1
2 MΣ−1

2
Z2

M
Σ−1

2 M
Σ−1

2
Z2

W2
X2)−1,

Q12 = −Q11X′
1Σ

−1
1 MΣ−1

1
Z1

W1(W′
1Σ

−1
1 MΣ−1

1
Z1

W1)−1,

Q13 = −Q11X′
2Σ

−1
2 MΣ−1

2
Z2

W2(W′
2Σ

−1
2 MΣ−1

2
Z2

W2)−1,

Q21 = −(W′
1Σ

−1
1 MΣ−1

1
Z1

W1)−1W′
1Σ

−1
1 MΣ−1

1
Z1

X1Q11,

Q22 = (W′
1Σ

−1
1 MΣ−1

1
Z1

W1)−1 + (W′
1Σ

−1
1 MΣ−1

1
Z1

W1)−1W′
1Σ

−1
1 MΣ−1

1
Z1

X1

×Q11X′
1Σ

−1
1 MΣ−1

1
Z1

W1(W′
1Σ

−1
1 MΣ−1

1
Z1

W1)−1,

Q23 = (W′
1Σ

−1
1 MΣ−1

1
Z1

W1)−1W′
1Σ

−1
1 MΣ−1

1
Z1

X1

×Q11X′
2Σ

−1
2 MΣ−1

2
Z2

W2(W′
2Σ

−1
2 MΣ−1

2
Z2

W2)−1,

Q31 = −(W′
2Σ

−1
2 MΣ−1

2
Z2

W2)−1W′
2Σ

−1
2 MΣ−1

2
Z2

X2Q11,

Q32 = (W′
2Σ

−1
2 MΣ−1

2
Z2

W2)−1W′
2Σ

−1
2 MΣ−1

2
Z2

X2

×Q11X′
1Σ

−1
1 MΣ−1

1
Z1

W1(W′
1Σ

−1
1 MΣ−1

1
Z1

W1)−1,

Q33 = (W′
2Σ

−1
2 MΣ−1

2
Z2

W2)−1 + (W′
2Σ

−1
2 MΣ−1

2
Z2

W2)−1W′
2Σ

−1
2 MΣ−1

2
Z2

X2

×Q11X′
2Σ

−1
2 MΣ−1

2
Z2

W2(W′
2Σ

−1
2 MΣ−1

2
Z2

W2)−1.

Utilizing that

W′Σ−1MΣ−1

Z =

⎛⎜⎜⎝ X′
1Σ

−1
1 MΣ−1

1
Z1

X′
2Σ

−1
2 MΣ−1

2
Z2

W′
1Σ

−1
1 MΣ−1

1
Z1

0

0 W′
2Σ

−1
2 MΣ−1

2
Z2

⎞⎟⎟⎠ ,

we get (after some calculations) the BLUEs of the useful parameters β,γ1,γ2.
To get the same for the nuisance parameters κ1,κ2 it is sufficient to realize that

(Z′Σ−1Z)−1Z′Σ−1 =
(

(Z′
1Σ

−1
1 Z1)−1Z′

1Σ
−1
1 0

0 (Z′
2Σ

−1
2 Z2)−1Z′

2Σ
−1
2

)
and

MΣ−1MΣ−1
Z

W Y = Y −W(W′Σ−1MΣ−1

Z W)−1W′Σ−1MΣ−1

Z Y

=
(

Y1

Y2

)
−

(
X1 W1 0
X2 0 W2

)⎛⎝ β̂
γ̂1

γ̂2

⎞⎠ =

(
Y1 −X1β̂ −W1γ̂1

Y2 −X2β̂ −W2γ̂2

)
. �



80 Karel HRON

Remark 4 Regarding that Σ1 and Σ2 are supposed to be positive definite, we
can write (see [2, Lemma 10.1.35, p. 441])

Σ−1
1 MΣ−1

1
Z1

= Σ−1
1 −Σ−1

1 Z1(Z′
1Σ

−1
1 Z1)−1Z′

1Σ
−1
1 = (MZ1Σ1MZ1)

+,

Σ−1
2 MΣ−1

2
Z2

= Σ−1
2 −Σ−1

2 Z2(Z′
2Σ

−1
2 Z2)−1Z′

2Σ
−1
2 = (MZ2Σ2MZ2)

+,

respectively.
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Abstract

In this paper, we obtain some stability results for Picard and Mann
iteration processes in metric space and normed linear space respectively,
using two different contractive definitions which are more general than
those of Harder and Hicks [4], Rhoades [10, 11], Osilike [8], Osilike and
Udomene [9], Berinde [1, 2], Imoru and Olatinwo [5] and Imoru et al [6].
Our results are generalizations of some results of Harder and Hicks

[4], Rhoades [10, 11], Osilike [8], Osilike and Udomene [9], Berinde [1, 2],
Imoru and Olatinwo [5] and Imoru et al [6].

Key words: Stability results; Picard and Mann iteration processes.
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1 Introduction

Let (X, d) be a complete metric space, T : X → X a selfmap of X . Suppose
that FT = {p ∈ X | Tp = p} is the set of fixed points of T . Let {xn}∞n=0 ⊂ X be
the sequence generated by an iteration procedure involving T which is defined
by

xn+1 = f(T, xn), n = 0, 1, 2, . . . (1)

where x0 ∈ X is the initial approximation and f is some function. Suppose
{xn}∞n=0 converges to a fixed point p of T . Let {yn}∞n=0 ⊂ X and set

εn = d(yn+1, f(T, yn)), n = 0, 1, 2, . . .

81
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Then, the iteration procedure (1) is said to be T-stable or stable with respect
to T if and only if limn→∞ εn = 0 implies limn→∞ yn = p. If in (1),

f(T, xn) = Txn, n = 0, 1, 2, . . . ,

then we have the Picard iteration process, while we obtain the Mann iteration
if

f(T, xn) = (1 − αn)xn + αnTxn, n = 0, 1, 2, . . . , αn ∈ [0, 1].

Several stability results have been obtained by various authors using differ-
ent contractive definitions. Harder and Hicks [4] obtained interesting stabil-
ity results for some iteration procedures using various contractive definitions.
Rhoades [10,11] generalized the results of Harder and Hicks [4] to a more gen-
eral contractive mapping. In Osilike [8], a generalization of some of the results
of Harder and Hicks [4] and Rhoades [11] was obtained by employing the fol-
lowing contractive definition: there exist a constant L ≥ 0 and a ∈ [0, 1) such
∀x, y ∈ X ,

d(Tx, T y) ≤ Ld(x, Tx) + ad(x, y). (2)

Condition(2) is more general than those of Rhoades[11] and Harder and Hicks[4].
As in Harder and Hicks [4], Berinde [1] obtained the same stability results for
the same iteration procedures using the same contractive definitions, but applied
a different method. The method of Berinde [1] is similar to that employed in
Osilike and Udomene [9] .

Recently, Imoru and Olatinwo [5] obtained some stability results for Pi-
card and Mann iteration procedures by using a more general contractive condi-
tion than those of Harder and Hicks [4], Rhoades [11], Osilike [8], Osilike and
Udomene [9] and Berinde [1]. In the paper [5], the following contractive defi-
nition was employed: there exist a ∈ [0, 1) and a monotone increasing function
φ : �+ → �+, with φ(0) = 0, such that ∀x, y ∈ X ,

d(Tx, T y) ≤ φ(d(x, Tx)) + ad(x, y). (3)

A function h : �+ → �+ is called a comparison function if:
(i) h is monotone increasing;
(ii) limn→∞ hn(t) = 0, ∀t ≥ 0.
We remark here that every comparison function satisfies the condition h(0) = 0.

It is our purpose in this paper to obtain some stability results by applying
two different contractive definitions using again the method of Berinde [1]. We
shall use the following contractive definitions:
I) there exist a constant a ∈ [0, 1) and a monotone increasing function Φ :
�+ → �+ with Φ(0) = 1, such that ∀x, y ∈ X ,

d(Tx, T y) ≤ ad(x, y)Φ(d(x, Tx)), (4)

II) there exist a constant L ≥ 0 and a function Ψ : �+ → �+ such that
∀x, y ∈ X ,

d(Tx, T y) ≤ Ψ(d(x, y))eLd(x,Tx) (5)
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where Ψ may be a comparison function or just a monotone increasing function.
The contractive conditions (4) and (5) are independent as the right-hand side
of (4) cannot be obtained from the right-hand side of (5) or vice-versa.

Condition (4) is more general than (2) in the following sense: If in (4),

Φ(u) = 1 +
ku

d(x, y)
, k ≥ 0, d(x, y) �= 0, ∀x, y ∈ X, x �= y, u ∈ �+,

then we obtain the condition (2).
Also, if in (4), we have

Φ(u) = 1 +
φ(u)
d(x, y)

, d(x, y) �= 0, ∀x, y ∈ X, x �= y, u ∈ �+,

where φ is also a monotone increasing function, then we obtain condition (3).
Also, if Φ(u) = 1, ∀u ∈ �+, then we have the strict contraction employed in
Harder and Hicks [4], Zeidler [13] and Berinde [1,2].

Similarly, condition (5) is more general than (2) in the sense that
if in (5),

Ψ(u) = (au+ Ld(x, Tx))e−Ld(x,Tx), a ∈ [0, 1), L ≥ 0, u ∈ �+, ∀x ∈ X,

and if Ψ is monotone increasing, then we obtain the condition(2).
Again, if Ψ(u) = au, a ∈ [0, 1), u ∈ �+ and L = 0 in (5), then we get the

strict contraction employed in Harder and Hicks [4], Berinde [1,2] and also in
the classical Banach’s contraction mapping principle discussed in Zeidler [13]
and other standard texts on the fixed point theory.

Moreover , if in (5),

Ψ(u) = (ψ(u) + Ld(x, Tx))e−Ld(x,Tx), ∀x ∈ X, u ∈ �+, L ≥ 0,

and if Ψ is monotone increasing and ψ is a comparison function, then we obtain
the contractive mapping of Imoru et al [6].

However, we obtain the contractive definition employed in the extension of
the Banach’s contraction mapping principle due to Berinde [3] if L = 0 in (5).
See also Berinde [2] for detail on the various generalizations of the Picard–
Banach–Caccioppoli theorem.

We shall employ the following Lemmas in the sequel.

Lemma 1 (Berinde [1]) If δ is a real number such that 0 ≤ δ < 1, and
{εn}∞n=0 is a sequence of positive numbers such that limn→∞ εn = 0, then for
any sequence of positive numbers {un}∞n=0 satisfying

un+1 ≤ δun + εn, n = 0, 1, . . . (6)

we have
lim
n→∞un = 0.
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Remark 1 The proof of this lemma is contained in Berinde [1].

Lemma 2 If ψ : �+ → �+ is a subadditive comparison function and {εn}∞n=0 is
a sequence of positive numbers such that limn→∞ εn = 0, then for any sequence
of positive numbers {un}∞n=0 satisfying

un+1 ≤
s∑

m=0

δmψ
m(un) + εn, n = 0, 1, 2, . . . , (7)

where
∑s

m=0 δm = 1, δ0, δ1, . . . , δs ∈ [0, 1], we have

lim
n→∞un = 0.

Remark 2 The proof of this Lemma is contained in Imoru et al [6].

Remark 3 If δk = 0 in (7), k = 1, 2, . . . , s, then we obtain the Lemma 1 of
Berinde [1] with 0 ≤ δo < 1.

Remark 4 If δ1 = 1 and δo = δ2 = δ3 = · · · = δs−1 = δs = 0 in (7), then we
obtain a stability result for the Picard iteration process.

Remark 5 We have a stability result for the Krasnoselskij iteration procedure
if δo = δ1 = 1/2 and δ2 = δ3 = · · · = δs = 0 in (7).

Remark 6 We obtain stability results for the Mann and Schaefer’s iteration
processes if δ0 + δ1 = 1, δ2 = δ3 = · · · = δs = 0 in (7).

Remark 7 If δ0 + δ1 + δ2 = 1, δ3 = δ4 = · · · = δs = 0 in (7), then we obtain a
stability result for the Ishikawa iteration procedure.

Remark 8 If
∑k

m=0 δm = 1 (i.e. s = k) in (7),then we have a stability result
for the Kirk’s iteration process.

2 Main Results

The following are stability results for the Picard iteration process.

Theorem 1 Let (X, d) be a complete metric space and T : X → X a selfmap
of X satisfying (4). Suppose T has a fixed point p. Let x0 ∈ X and let

xn+1 = f(T, xn) = Txn, n = 0, 1, . . .

be the Picard iteration associated to T . Suppose also that Φ : �+ → �+ is a
monotone increasing function such that Φ(0) = 1. Then, the Picard iteration is
T-stable.
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Proof Let εn = d(yn+1, T yn), n = 0, 1, . . . and suppose limn→∞ εn = 0. Then,
we shall establish that limn→∞ yn = p. using (4) and the triangle inequality.
Therefore,

d(yn+1, p) ≤ d(yn+1, T yn) + d(Tyn, p)

= εn + d(Tyn, T p) = d(Tp, T yn) + εn ≤ ad(p, yn)Φ(d(p, T p)) + εn

= ad(yn, p)Φ(0) + εn = ad(yn, p) + εn. (8)

Since a ∈ [0, 1), using Lemma 1 in (8) yields limn→∞ yn = p.
Conversely, let limn→∞ yn = p. Then, by (4) and the triangle inequality, we

have

εn = d(yn+1, T yn) ≤ d(yn+1, p) + d(p, T yn) = d(yn+1, p) + d(Tp, T yn)

≤ d(yn+1, p) + ad(p, yn)Φ(d(p, T p)) = d(yn+1, p) + ad(yn, p)Φ(0)

= d(yn+1, p) + ad(yn, p)→ 0 as n→∞. �

Theorem 2 Let (X, d) be a complete metric space and T : X → X a selfmap
of X satisfying (5). Suppose that T has a fixed point p. Let x0 ∈ X and let

xn+1 = f(T, xn) = Txn, n = 0, 1, . . . ,

be the Picard iteration associated to T . Suppose that Ψ : R+ → R+ is a com-
parison function (or just a monotone increasing function) which is continuous.
Then, the Picard iteration is T-stable.

Proof Let εn = d(yn+1, T yn), n = 0, 1, . . . , and suppose that limn→∞ εn =
0. Then, we shall establish that limn→∞ yn = p, using (5) and the triangle
inequality. Therefore,

d(yn+1, p) ≤ d(yn+1, T yn) + d(Tyn, p)

= εn + d(Tyn, T p) = d(Tp, T yn) + εn ≤ Ψ(d(p, yn))eLd(p,Tp) + εn

= Ψ(d(yn, p)) + εn. (9)

Applying Lemma 2 in (9) yields limn→∞ yn = p.
Conversely, let limn→∞ yn = p. Then, by (5)and the triangle inequality, we

obtain

εn = d(yn+1, T yn) ≤ d(yn+1, p) + d(p, T yn) = d(yn+1, p) + d(Tp, T yn)

≤ d(yn+1, p) + Ψ(d(p, yn))eLd(p,Tp)

= d(yn+1, p) + Ψ(d(yn, p))→ 0 as n→∞. �

Remark 9 Theorem 1 is a generalization of Theorem 3.1 of Imoru and Olatinwo
[5], while Theorem 2 is a generalization of both Theorems P1 and P2 of Imoru
et al [6]. Also, each of the Theorem 3.1 of [5] and Theorems P1 and P2 of [6]
is itself a generalization of Theorem 2 of Harder and Hicks [4], Theorem 1 of
Rhoades[10, 11], Theorems 1 and 2 of Berinde [1], Theorem 1 of Osilike [8] as
well as Theorem 4 of Osilike and Udomene [9].
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We now establish some stability results for the Mann iteration process.

Theorem 3 Let (X, || · ||) be a normed linear space, and T : X → X a selfmap
of X satisfying (4). Suppose T has a fixed point p. Let xo ∈ X and let

xn+1 = f(T, xn) = (1− αn)xn + αnTxn, αn ∈ [0, 1], n = 0, 1, . . . ,

be the Mann iteration process such that 0 < α ≤ αn, n = 0, 1, 2, . . . Let
Φ : R+ → R+ be a monotone increasing function such that Φ(0) = 1. Then, the
Mann iteration process is T-stable.

Proof Let εn = ||yn+1 − (1 − αn)yn − αnTyn||, n = 0, 1, . . . and suppose
that limn→∞ εn = 0. Then,we shall prove that limn→∞ yn = p, by (4) and the
triangle inequality: Therefore,

||yn+1 − p|| ≤ ||yn+1 − (1− αn)yn − αnTyn||+ ||(1− αn)yn + αnTyn − p||
= εn + ||(1− αn)yn + αnTyn − (1− αn + αn)p||
= ||(1 − αn)(yn − p) + αn(Tyn − p)||+ εn

≤ (1− αn)||yn − p||+ αn||Tyn − p||+ εn

= (1− αn)||yn − p||+ αn||Tyn − Tp||+ εn

≤ (1− αn)||yn − p||+ αna||p− yn||Φ(||p− Tp||) + εn

= (1− αn)||yn − p||+ αn a||yn − p||Φ(0) + εn

= (1− αn)||yn − p||+ aαn||yn − p||+ εn

= [1− (1− a)αn]||yn − p||+ εn

≤ [1− (1− a)α]||yn − p||+ εn. (10)

Using Lemma 1 in (10) since 0 ≤ 1− (1− a)α < 1, we obtain

lim
n→∞ yn = p.

Conversely, let limn→∞ yn = p. Then, by (4) and the triangle inequality, we get

εn = ||yn+1 − (1− αn)yn − αnTyn||
≤ ||yn+1 − p||+ ||p− (1 − αn)yn − αnTyn||
= ||yn+1 − p||+ ||(1− αn + αn)p− (1− αn)yn − αnTyn||
= ||yn+1 − p||+ ||(1− αn)(p− yn) + αn(p− Tyn)||
≤ ||yn+1 − p||+ (1− αn)||yn − p||+ αn||p− Tyn||
= ||yn+1 − p||+ (1− αn)||yn − p||+ αn||Tp− Tyn||
≤ ||yn+1 − p||+ (1− αn)||yn − p||+ αna||p− yn||Φ(||p− Tp||)
= ||yn+1 − p||+ (1− αn)||yn − p||+ αna||yn − p||φ(0)
= ||yn+1 − p||+ [1− (1− a)αn]||yn − p||
≤ ||yn+1 − p||+ [1− (1− a)α]||yn − p|| → 0 as n→∞. �
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Theorem 4 Let (X, || · ||) be a normed linear space and T : X → X a selfmap
of X satisfying (5). Suppose that T has a fixed point p. Let x0 ∈ X and
let xn+1 = f(T, xn) = (1 − αn)xn + αnTxn, αn ∈ [0, 1], n = 0, 1, . . . , be
the Mann iteration process such that 0 < α ≤ αn, n = 0, 1, 2, . . . Suppose
that Ψ : R+ → R+ is a comparison function (or just a monotone increasing
function) which is continuous. Then, the Mann iteration is T-stable.

Proof Let εn = ||yn+1 − (1− αn)yn −αnTyn||, n = 0, 1, . . . , and suppose that
limn→∞ εn = 0. Then, we shall prove that limn→∞ yn = p, by using (5) and the
triangle inequality. Therefore,

||yn+1 − p|| ≤ ||yn+1 − (1− αn)yn − αnTyn||+ ||(1− αn)yn + αnTyn − p||
= εn + ||(1− αn)yn + αnTyn − (1− αn + αn)p||
= ||(1 − αn)(yn − p) + αn(Tyn − p)||+ εn

≤ (1− αn)||yn − p||+ αn||Tyn − p||+ εn

= (1− αn)||yn − p||+ αn||Tyn − Tp||+ εn

= (1− αn)||yn − p||+ αn||Tp− Tyn||+ εn

≤ (1− αn)||yn − p||+ αnΨ(||p− yn||)eL||p−Tp|| + εn

= (1− αn)||yn − p||+ αnΨ(||yn − p||) + εn

≤ (1− α)||yn − p||+ αΨ(||yn − p||) + εn. (11)

By applying Lemma 2 in (11), we obtain

lim
n→∞ yn = p.

Conversely, let limn→∞ yn = p. Then, by using (5) and the triangle inequality,
we have

εn = ||yn+1 − (1 − αn)yn − αnTyn||
≤ ||(yn+1 − p||+ ||p− (1− αn)yn − αnTyn||
= ||yn+1 − p||+ ||(1− αn + αn)p− (1− αn)yn − αnTyn||
= ||yn+1 − p||+ ||(1− αn)(p− yn) + αn(p− Tyn)||
≤ ||yn+1 − p||+ (1− αn)||yn − p||+ αnΨ(||p− yn||)eL||p−Tp||
= ||yn+1 − p||+ (1− αn)||yn − p||+ αnΨ(||yn − p||)→ 0
≤ ||yn+1 − p||+ (1− α)||yn − p||+ αΨ(||yn − p||) → 0 as n→∞.

Remark 10 Theorem 3 is a generalization of Theorem 3.2 of Imoru and Olat-
inwo [5], while Theorem 4 is a generalization of Theorem M of Imoru et al [6].
Moreover, each of both Theorem 3.2 of [5] and Theorem M of [6] is itself a
generalization of Theorem 3 of Harder and Hicks [4] ,Theorem 2 of Rhoades [10,
11] and Theorem 3 of Berinde [1].
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Remark 11 If in (4), Φ(u) = eLu, L ≥ 0, or, in (5), Ψ(u) = au, a ∈ [0, 1),
u ∈ �+, then we obtain the following contractive definition: there exist a ∈ [0, 1)
and a constant L ≥ 0 such that ∀x, y ∈ X ,

d(Tx, T y) ≤ ad(x, y)eLd(x,Tx). (12)

By Remark 11, we obtain the following corollary to Theorems 1 and 2.

Corollary 1 Let (X, d) be a complete metric space and T : X → X a selfmap
of X satisfying (12). Suppose that T has a fixed point p. Let xo ∈ X and let

xn+1 = f(T, xn) = Txn, n = 0, 1, 2, . . .

be the Picard iteration. Then, the Picard iteration is T-stable.

In a similar manner, we obtain the following corollary to Theorems 3 and 4.

Corollary 2 Let (X, || · ||) be a normed linear space and T : X → X a selfmap
of X satisfying (12). Suppose that T has a fixed point p. Let x0 ∈ X and let

xn+1 = f(T, xn) = (1− αn)xn + αnTxn, αn ∈ [0, 1], n = 0, 1, . . .

be the Mann iteration process such that 0 < α ≤ αn. Then, the Mann iteration
process is T-stable.
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Abstract

Unknown parameters of the covariance matrix (variance components)
of the observation vector in regression models are an unpleasant obstacle
in a construction of the best estimator of the unknown parameters of the
mean value of the observation vector. Estimators of variance componets
must be utilized and then it is difficult to obtain the distribution of the
estimators of the mean value parameters. The situation is more compli-
cated in the case of nonlinearity of the regression model. The aim of the
paper is to contribute to a solution of the mentioned problem.

Key words: Variance components; nonlinear regression model; lin-
earization region; insensitiveness region.

2000 Mathematics Subject Classification: 62F10, 62J05

1 Introduction

The regression model is assumed to be of the form

Y ∼n
(

f(β),
p∑
i=1

ϑiVi

)
,

*Supported by the Council of the Czech Government MSM 6 198 959 214.
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where Y is an n-dimensional random vector (observation vector) with the mean
value equal to f(β),β ∈ Rk (k-dimensional Euclidean space) and the covariance
matrix equal to

∑p
i=1 ϑiVi. Here ϑ = (ϑ1, . . . , ϑp)′ is a p-dimensional vector of

variance components and ϑ ∈ ϑ ⊂ Rp; ϑ is an open set in Rp. The symmetric
and positive semidefinite (p.s.d.) matrices V1, . . . ,Vp are given and all variance
components are positive.

The problem is to find a decision whether the model can be linearized (with
respect to β) and estimators of the variance components (ϑ) can be used in-
stead of the true values in estimation of β. One of the possible approaches is
demonstrated in the case of the bias of the estimator of β.

2 Preliminaries

In the following text it will be assumed that the model considered can be char-
acterized with sufficient accuracy as

Y − f0 ∼ Nn

(
Fδβ +

1
2
κ(δβ),

p∑
i=1

ϑiVi

)
(1)

where

f0 = f(β0), F =
∂f(u)
∂u′

∣∣∣
u=β0

, κ(δβ) = [κ1(δβ), . . . , κn(δβ)]′,

κi(δβ) = δβ′ ∂2fi(u)
∂u∂u′

∣∣∣
u=β0

δβ, i = 1, . . . , n,

and the vector β0 is as near as possible to the true value β∗ of the parameter β.
The linear version of the model considered is

Y − f0 ∼ Nn

(
Fδβ,

p∑
i=1

ϑiVi

)
, δβ ∈ Rk,ϑ ∈ ϑ. (2)

The regularity of the model will be assumed in the following consideration,
i.e., the rank of the matrix F is r(F) = k < n, and ∀{ϑ ∈ ϑ}Σ(ϑ) =

∑p
i=1 ϑiVi

is positive definite (p.d.).

Lemma 2.1 In the model (2) the ϑ0-LBLUE (locally best linear unbiased es-
timator) of the parameter β is β̂ = β0 + δ̂β, where

δ̂β = [F′(Σ−1(ϑ0)F]−1F′Σ−1(ϑ0)(Y − f0)
∼ Nk

(
δβ, [F′(Σ−1(ϑ0)F]−1Σ(ϑ∗)[F′(Σ−1(ϑ0)F]−1

)
.

Here ϑ∗ is the actual value of the vector parameter ϑ.

Proof is well known and therefore it is omitted.
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The notation SA (A is any n×n matrix) means the matrix with the (i, j)-th
entry equal to

{SA}i,j = Tr(ViAVjA), i, j = 1, . . . , p.

Further (MFΣ0MF )+ is the Moore–Penrose generalized inverse of the matrix
MFΣ0MF , MF = I−PF = FF+ (in more detail cf. [7]).

Lemma 2.2 Let in the model (2) the matrix S(MF Σ0MF )+ be regular (Σ0 =∑p
i=1 ϑ

(0)
i Vi,ϑ

(0) is the value of the parameter ϑ as near as possible to the
actual value ϑ∗). Then the ϑ0-MINQUE (minimin norm quadratic unbiased
estimator; in more detail cf. [8]) of the vector ϑ is

ϑ̂ = S−1
(MF Σ0MF )+

⎛⎜⎝ (Y − f0)′(MFΣ0MF )+V1(MFΣ0MF )+(Y − f0)
...

(Y − f0)′(MFΣ0MF )+Vp(MFΣ0MF )+(Y − f0)

⎞⎟⎠ .

In the case of normality the variance matrix of this estimator is Varϑ0(ϑ̂) =
2S−1

(MF Σ0MF )+ .

Proof Cf. [8].

3 Influence of nonlinearity on the estimator of ϑ

Lemma 3.1 In the model (1) the bias of the estimator from Lemma 2.2 at the
point β0 is

Eβ0,ϑ(ϑ̂)−ϑ =
1
4
S−1

(MXΣ0MF )+

⎛⎜⎝ κ′(δβ)(MFΣ0MF )+V1(MFΣ0MF )+κ(δβ)
...

κ′(δβ)(MFΣ0MF )+Vp(MFΣ0MF )+κ(δβ)

⎞⎟⎠ .

Proof It is valid

Eβ0,ϑ

[
(Y − f0)′(MFΣ0MF )+Vj(MFΣ0MF )+(Y − f0)

]
= Eβ0,ϑ(Y − f0)′(MFΣ0MF )+Vj(MFΣ0MF )+Eβ0,ϑ(Y − f0)

+ Tr
[
(MFΣ0MF )+Vj(MFΣ0MF )+Σ(ϑ)

]
Now it is sufficient to use the equalities

Eβ0,ϑ(Y − f0) = Fδβ +
1
2
κ(δβ)

and

Tr
[
(MFΣ0MF )+Vj(MFΣ0MF )+Σ(ϑ)

]
=

{
S(MF Σ0MF )+

}
j,· ϑ. �



92 Lubomír KUBÁČEK, Eva TESAŘÍKOVÁ

Let the Bates and Watts intrinsic measure of nonlinearity [1] at the point

(β0,ϑ0) be denoted as K(int)
ϑ0

(β0),

K
(int)
ϑ0

(β0) = sup

⎧⎨⎩
√

κ′(δβ)Σ−1
0 MΣ−1

0
F κ(δβ)

δβ′F′Σ−1
0 Fδβ

: δβ ∈ Rk
⎫⎬⎭ .

Theorem 3.2 Let C0 = F′Σ−1
0 F. If

δβ′C0δβ ≤ 2ε

K
(int)
ϑ0

(β0)
,

then

∀{i = 1, . . . , p} |Eβ0,ϑ(ϑ̂i)− ϑi| ≤
p∑
i=1

|ki,j |ε2,

where

k′
i = (ki,1, . . . , ki,p) =

{
S−1

(MF Σ0MF )+

}
i,·

[Diag(ϑ0)]
−1
, i = 1, . . . , p.

Proof Let ζ̂ = (ζ̂1, . . . , ζ̂p)′, where

ζ̂i = (Y − f0)′(MFΣ0MF )+Vi(MFΣ0MF )+(Y − f0), i = 1, . . . , p.

Then, with respect to Lemma 3.1

Eβ0,ϑ(ϑ̂)− ϑ =

= S−1
(MF Σ0MF )+

[
Eβ0,ϑ(ζ̂)− S(MF Σ0MF )+ϑ

]
= S−1

(MF Σ0MF )+
1
4

⎛⎜⎝ κ′(δβ)(MFΣ0MF )+V1(MFΣ0MF )+κ(δβ)
...

κ′(δβ)(MFΣ0MF )+Vp(MFΣ0MF )+κ(δβ)

⎞⎟⎠
= S−1

(MF Σ0MF )+

[
Diag(ϑ0)

]−1 Diag(ϑ0)

×1
4

⎛⎜⎝ κ′(δβ)(MFΣ0MF )+V1(MFΣ0MF )+κ(δβ)
...

κ′(δβ)(MFΣ0MF )+Vp(MFΣ0MF )+κ(δβ)

⎞⎟⎠

=

⎛⎜⎝ k′
1
...

k′
p

⎞⎟⎠ 1
4

⎛⎜⎜⎝
κ′(δβ)(MFΣ0MF )+ϑ(0)

1 V1(MFΣ0MF )+κ(δβ)
...

κ′(δβ)(MFΣ0MF )+ϑ(0)
p Vp(MFΣ0MF )+κ(δβ)

⎞⎟⎟⎠ .

The inclusions M(Vi) = {Viu : u ∈ Rn} ⊂ M(Σ0), i = 1, . . . , p, are a
consequnce of the assumption that the matrices V1, . . . ,Vp are p.s.d. and
ϑi > 0, i = 1, . . . , p. These inclusions imply

κ′(δβ)(MFΣ0MF )+ϑ(0)
i Vi(MFΣ0MF )+κ(δβ)

≤ κ′(δβ)(MFΣ0MF )+Σ0(MFΣ0MF )+κ(δβ) = κ′(δβ)(MFΣ0MF )+κ(δβ).
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Thus we obtain

|Eβ0,ϑ(ϑ̂i)− ϑi| =
1
4

p∑
j=1

ki,jκ
′(δβ)(MFΣ0MF )+ϑ(0)

j Vj(MFΣ0MF )+κ(δβ)

≤ 1
4

p∑
j=1

|ki,j |κ′(δβ)(MFΣ0MF )+κ(δβ).

Now the definition of K(int)
ϑ0

(β0) can be used and thus

κ′(δβ)(MFΣ0MF )+κ(δβ) ≤
(
K

(int)
ϑ0

(β0)
)2

(δβ′C0δβ)2.

If

δβ′C0δβ ≤ 2ε

K
(int)
ϑ0

(β0)
,

then
κ′(δβ)(MFΣ0MF )+κ(δβ) ≤ 4ε2

and also

|Eβ0,ϑ(ϑ̂i)− ϑi| ≤
1
4

p∑
j=1

|ki,j |κ′(δβ)(MFΣ0MF )+κ(δβ) ≤
p∑
j=1

|ki,j |ε2. �

4 Linearization region

In the case of the model (2) when variance components are known, then the
BLUE of β is

β̂ = [F′Σ−1(ϑ)F]−1F′Σ−1(ϑ)Y.

This estimator is biased in the model (1) and

b = Eβ(β̂)− β =
1
2
[F′Σ−1(ϑ)F]−1F′Σ−1(ϑ)κ(δβ).

Let the Bates and Watts parametric curvature at the point (β0,ϑ0) be

denoted as K(par)
ϑ0

(β0)

K
(par)
ϑ0

(β0) = sup

⎧⎨⎩
√

κ′(δβ)Σ−1
0 PΣ−1

0
F κ(δβ)

δβ′F′Σ−1
0 Fδβ

: δβ ∈ Rk
⎫⎬⎭ .

Lemma 4.1 Let in the model (1)

δβ′F′Σ−1(ϑ0)Fδβ ≤ 2ε

K
(par)
ϑ0

(β0)
.

Then

∀{h ∈ Rk}|h′b| ≤ ε

√
h′[F′Σ−1(ϑ0)F]−1h.
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Proof Cf. in [4] and [6].

Remark 4.2 Theorem 3.2 and Lemma 4.1 show that the regions of linearization
for ϑ

Lϑ =

{
δβ : δβ′F′Σ−1(ϑ0)Fδβ ≤ 2ε

K
(int)
ϑ0

(β0)

}
and for the bias b

Lb =

{
δβ : δβ′F′Σ−1(ϑ0)Fδβ ≤ 2ε

K
(par)
ϑ0

(β0)

}

have the same shape, i.e. we have to use the smaller of them. Usually Lb ⊂ Lϑ.

The necessary condition for efficient utilization of Theorem 3.2. and Lemma
4.1 is δβ∗ ∈ Lb ∩Lϑ and at the same time the difference ϑ∗ −ϑ0 must be in so
called nonsensitivenes region which is in more detail described in the following
section.

5 Nonsensitiveness region

How the small shift δϑ of the parameter ϑ can change the statistical properties
of the estimator β̂(ϑ) is given in the following statement.

Lemma 5.1 Let

h′β̂(Y,ϑ0 + δϑ) = h′[F′Σ−1(ϑ0 + δϑ)F]−1F′Σ−1(ϑ0 + δϑ)Y,

h′β̂(Y,ϑ0) = h′[F′Σ−1(ϑ0)F]−1F′Σ−1(ϑ0)Y,

v = Y − Fβ̂(Y,ϑ0).

Then

(i) h′β̂(Y,ϑ0 + δϑ) = h′β̂(Y,ϑ0)− L′
hΣ(δϑ)Σ−1(ϑ0)v,

where Σ(δϑ) =
∑p

i=1 δϑiVi and L′
h = h′[F′Σ−1(ϑ0)F]−1F′Σ−1(ϑ0).

(ii) Eβ(L′
hΣ(δϑ)Σ−1(ϑ0)v) = 0.

(iii) covϑ0

(
L′
hΣ(δϑ)Σ−1(ϑ0)v, β̂(Y,ϑ0)

)
= 0.

Proof Cf. [2] and [3].

Corollary 5.2 Let

Wh =

⎛⎜⎝ L′
hV1

...
L′
hVp

⎞⎟⎠ [MF (Σ(ϑ0)MF ]+(V1Lh, . . . ,VpLh).
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Then
Varϑ0 [h

′β̂(Y,ϑ0 + δϑ)] = Varϑ0 [h
′β̂(Y,ϑ0)] + δϑ′Whδϑ.

If an experimenter can admit√
Varϑ0 [h′β̂(Y,ϑ0)] + δϑ′Whδϑ ≤ (1 + ε)

√
Varϑ0 [h′β̂(Y,ϑ0)],

then δϑ∗ must be in the region

Nh =
{
δϑ : δϑ′Whδϑ ≤ 2εh′ [F′Σ−1(ϑ0)F

]−1
h
}
.

In order to recognize whether δβ∗ and δϑ∗ are in the regions Lb∩Lϑ and Nh,
respectively, we must have some information an an accuracy of the estimators
β̂ and ϑ̂.

The first orientation on the confidence region of the parameter β is the set

Eβ =
{
δβ : (δβ − δ̂β)′F′Σ−1(ϑ0)F(δβ − δ̂β) ≤ χ2

k(0, 1− α)
}
,

where χ2
k(0, 1− α) is the (1 − α)-quantile of the central chi-square distribution

with k degrees of freedom.
Unfortunately the confidence region for the parameter ϑ is not known, how-

ever some information on it we can obtain by the help of the following lemma.

Lemma 5.3 Let

Y ∼ Nn(f0 + Fδβ +
1
2
κ(δβ),

p∑
i=1

ϑiVi).

Then
δϑ′(2S−1

(MF Σ0MF )+)−1δϑ < t2

⇒ ∀{i = 1, . . . , p} |ϑi| ≤ t
√

2{S−1
(MF Σ0MF )+}i,i.

Proof It is a direct consequence of Theorem 2.2. in [5]

Remark 5.4 If the real number t > 0 is sufficiently large such that

|ϑ̂i − ϑ∗| < t
√

2{S−1
(MF Σ0MF )+}i,i, i = 1, . . . , p,

occur with certainty (with sufficiently high probability), then we can be practi-
cally sure that the actual value ϑ∗ of the vector ϑ is in the domain

Kϑ =
{
δϑ : (δϑ− δ̂ϑ)′S(MF Σ0MF )+(δϑ− δ̂ϑ) < 2t2

}
.
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6 Inference on linearization

A comparison of the sets Eβ ,Kϑ,Nh,Lb,Lϑ leads to a decision whether the
considered model with unknown variance components can be linearized. In the
first step we shall take into account the following lemma.

Lemma 6.1 Let ϑ0 be given. Then for any τ > 0 the notation ϑτ means τϑ0.

(i) k′
i(τϑ0) =

{
S−1

(MF Στϑ0MF )+

}
i,·

[Diag(τϑ0)]
−1 = τk′

i(ϑ0).

(ii) S(MF Στϑ0MF )+ = τ2S(MF Σϑ0MF )+ .

(iii) K(int)
τϑ0

(β0) =
√
τK

(int)
ϑ0

(β0).

(iv) Wh(τϑ0) = 1
τWh(ϑ0).

Proof The statements are direct consequences of definitions.

Corollary 6.2 If
n∑
j=1

|ki,j(ϑ0)|ε21 ≤ ε2

√{
2S−1

MF Σϑ0MF )+

}
i,i
,

then

∀{τ > 0}
n∑
j=1

|ki,j(τϑ0)|ε21 ≤ ε2

√{
2S−1

MF Στϑ0MF )+

}
i,i

(consequence of Lemma 6.1 (i) and (ii)).

1
τ
δϑ′Wh(ϑ0)δϑ = δϑ′Wh(τϑ0)δϑ ≤ 2ε3 Varτϑ0 [h

′β̂(τϑ0)]

= τ2ε3 Varϑ0 [h
′β̂(ϑ0)]

(it is to be remarked that β̂(τϑ0) = β̂(ϑ0)). The last inequality can be inter-
preted as follows. If the value ϑ0 is changed into τϑ0, then the admissible shift
δϑ is changed into the shif

√
τδϑ.

Now the sequence of the steps necessary to make a decision can be described.
(i) When the values ϑ0 and ε2 are chosen the value ε1 is determined in such

a way that

n∑
j=1

|ki,j(ϑ0)|ε21 ≤ ε2
√
{2S−1

(MF Σϑ0MF )+}i,i, i = 1, . . . , p,

(it implies |Eϑ0(ϑ̂i) − ϑi| ≤ ε2

√
Varϑ0(ϑ̂i), i = 1, . . . , p, i.e. biases caused by

nonlinearity can be neglected). Thus we determined the region Lϑ0 , i.e.

Lϑ0 =

{
δβ : δβ′F′Σ−1

ϑ0
Fδβ ≤ 2ε1

K
(int)
ϑ0

(β0)

}
.
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(ii) To choose the value ε3 and to determine the set

Nh =
{
δϑ : δϑ′Wh(ϑ0)δϑ ≤ 2ε3 Varϑ0

[
h′β̂(ϑ0)

]}
.

Shifts δϑ inside the set Nh does not enlarge the standard deviation of the

estimator h′δ̂β more than ε3

√
Varϑ0(h′β̂).

(iii) To check the inclusions Eβ ⊂ Lb ∩ Lϑ and

Kϑ =
{
u : u′S(MF Σϑ0MF )+u/2 ≤ t2

}
⊂ Nh.

If these inclusions are satisfied (the actual value δβ∗ of δβ is suffiently small
for the bias of the estimator ϑ̂ and the actual δϑ∗ is with high probability
in the nonsensitiveness region), then the model with the estimated variance
components can be linearized and the estimates ϑ̂ can be used for the estimation
of β without any essential deterioration of the statistical properties.

However if the last inclusion is not satisfied, then the model with unknown
variance components cannot be linearized and it would be necessary to prepare
another experiment in order to make the estimators of ϑ more precise. In more
detail it is shown in the next section.

7 Numerical example

Two points A and B with coordinates (0, 0) and (0, 800) are located in a
plane. Third point P is determined by measurement of the angles ∠BAP
and ∠PBA, respectively, and distances AP and BP . The coordinates and
distances are given in meters, angles are given in sexagesimal system. Measure-
ment are stochastically independent, the variance in measurement of angles is
σ2
ω = (10′′)2 = (10/206264.806 rad)2 = (4.848 × 10−5 rad)2 and the variance

in measurement distances is σ2
D = (0.05 m)2. Each angle is measured M(= 2)-

times and each distance is measured N(= 2)-times. The approximate value of
the parameter β is

β(0) =
(

107.180
400.000

)
.

Thus the quadratized version of the model can be written as

⎛⎜⎜⎝
Y1

Y2

Y3

Y4

⎞⎟⎟⎠ ∼ N2M+2N

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

f (0)
1

f (0)
2

f (0)
3

f (0)
4

⎞⎟⎟⎟⎠ +

⎛⎜⎜⎝
F1

F2

F3

F4

⎞⎟⎟⎠ δβ +
1
2

⎛⎜⎜⎝
κ1(δβ)
κ2(δβ)
κ3(δβ)
κ4(δβ)

⎞⎟⎟⎠ , σ2
ωV1 + σ2

DV2

⎤⎥⎥⎥⎦ ,
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where

f1 = arctan
β2

β1

, f2 = arctan
β2

β1 − 800
,

f3 =
√

(β1 − 800)2 + β2
2, f4 =

√
β2

1 + β2
2,

f (0)
1 = 1Mα

(0)
AP , f (0)

2 = 1Mα
(0)
BP , f (0)

3 = 1ND
(0)
BP , f (0)

4 = 1ND
(0)
AP ,

α
(0)
AP = 750, α

(0)
BP = 1500, D

(0)
BP = 800.000 D

(0)
AP = 414.110,

F1 = 1M × f ′1 = 1M ⊗
(
− sin(α(0)

AP )

D
(0)
AP

,
cos(α(0)

AP )

D
(0)
AP

)
,

F2 = 1M ⊗ f ′2 = 1M ⊗
(
− sin(α(0)

BP )

D
(0)
BP

,
cos(α(0)

BP )

D
(0)
BP

)
,

F3 = 1N ⊗ f ′3 = 1N ⊗
(
cos(α(0)

BP ), sin(α(0)
BP )

)
,

F4 = 1N ⊗ f ′4 = 1N ⊗
(
cos(α(0)

AP ), sin(α(0)
AP )

)
,

f ′1 =
(
−0.9659258

414.110
,
0.2588190
414.110

)
, f ′2 =

(
−0.5000000

800.000
,−0.8660254

800.000

)
,

f ′3 = (−0.8660254, 0.5000000), f ′4 = (0.2588190, 0.9659258),

κ1(δβ) = 1M ⊗ δβ′

⎛⎜⎝ 2β
(0)
1 β

(0)
2

[(β
(0)
1 )2+(β

(0)
2 )2]2

,
(β

(0)
2 )2−(β

(0)
1 )2

[(β
(0)
1 )2+(β

(0)
2 )2]2

(β
(0)
2 )2−(β

(0)
1 )2

[(β
(0)
1 )2+(β

(0)
2 )2]2

, − 2β
(0)
1 β

(0)
2

[(β
(0)
1 )2+(β

(0)
2 )2]2

⎞⎟⎠ δβ′

κ2(δβ) = 1M ⊗ δβ′

⎛⎜⎝ 2(β
(0)
1 −800)β

(0)
2

[(β
(0)
1 −800)2+(β

(0)
2 )2]2

,
(β

(0)
1 −800)2−(β

(0)
2 )2

[(β
(0)
1 −800)2+(β

(0)
2 )2]2

(β
(0)
1 −800)2−(β

(0)
2 )2

[(β
(0)
1 −800)2+(β

(0)
2 )2]2

,
2(β

(0)
1 −800)β

(0)
2

[(β
(0)
1 −800)2+(β

(0)
2 )2]2

⎞⎟⎠ δβ′

κ3(δβ) = 1N ⊗ δβ′

⎛⎜⎝ (β
(0)
2 )2

[(β
(0)
1 −800)2+(β

(0)
2 )2]3/2

, − (β
(0)
1 −800)β

(0)
2

[(β
(0)
1 −800)2+(β

(0)
2 )2]3/2

− (β
(0)
1 −800)β

(0)
2

[(β
(0)
1 −800)2+(β

(0)
2 )2]3/2

,
(β

(0)
1 −800)2

[(β
(0)
1 −800)2+(β

(0)
2 )2]3/2

⎞⎟⎠ δβ′

κ4(δβ) = 1N ⊗ δβ′

⎛⎜⎝ (β
(0)
2 )2

[(β
(0)
1 )2+(β

(0)
2 )2]3/2

, − β
(0)
1 β

(0)
2

[(β
(0)
1 )2+(β

(0)
2 )2]3/2

− β
(0)
1 β

(0)
2

[(β
(0)
1 )2+(β

(0)
2 )2]3/2

,
(β

(0)
1 )2

[(β
(0)
1 )2+(β

(0)
2 )2]3/2

⎞⎟⎠ δβ′,

V1 =
(

I2M,2M , 02M,2N

02N,2M , 02N,2N

)
, V2 =

(
02M,2M , 02M,2N

02N,2M , I2N,2N

)
.

Let

ci,j = f ′i

[
M(f1f ′1 + f2f ′2)

(σ(0))2ω
+
N(f3f ′3 + f4f ′4)

(σ(0))2D

]−1

fj , i, j = 1, 2.
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Then

S(MF Σϑ0MF )+ =

(
11 , 12
21 , 22

)
=

(
3.97× 1017, 5.9× 1010

5.9× 1010, 4.98× 105

)
,

where

11 =
2M

(σ(0)
ω )4

− 2M
c1,1 + c2,2

(σ(0)
ω )6

+M2
c21,1 + 2c21,2 + c22,2

(σ(0)
ω )8

,

12 = MN
c21,3 + c22,3 + c21,4 + c22,4

(σ(0)
ω )4(σ(0)

D )4
= 2,1 ,

22 =
2N

(σ(0)
D )4

− 2N
c3,3 + c4,4

(σ(0)
D )6

+N2
c23,3 + 2c23,4 + c24,4

(σ(0)
D )8

.

Further(
k′

1,·
k′

1,·

)
=

(
11 , 12
21 , 22

)−1 [
Diag

{(
10

206264.806

)2

, 0.052

}]−1

=
(

1.09× 10−9, −1.21× 10−10

−1.29× 10−4, 8.18× 10−4

)
.

Let ε2 = 0.05. Then

ε1 =
√

0.05min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√√√√√

√{
2S−1

(MF Σϑ0MF )+

}
1,1∑p

j=1 |k1,j | ,

√√√√√
√{

2S−1
(MF Σϑ0MF )+

}
2,2∑p

j=1 |k2,j |

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= 0.522576

and

Lb =

{
δβ : δβ′F′Σ−1(ϑ0)Fδβ ≤ 2ε1

K
(par)
ϑ0

(β0)

}
=

{
δβ : δβ′F′Σ−1(ϑ0)Fδβ ≤ 21280.6

}
,

Lϑ =

{
δβ : δβ′F′Σ−1

ϑ0
Fδβ ≤ 2ε1

K
(int)
ϑ0

(β0)

}
=

{
δβ : δβ′F′Σ−1

ϑ0
Fδβ ≤ 32735.1

}
.

Now we can check whether Eβ ⊂ Lϑ. At least it must be satisfied the inequality

χ2
k(0; 1− α) = χ2

2(0; 0.95) = 5.99� 2ε1/K
(int)
ϑ0

(β0) = 32735.1.
Now it is necessary to check the inclusion Eβ ⊂ Lb ∩ Lϑ. If 1 − α = 0.95,

ε1 = 0.522576, then the situation is given in Fig. 1.
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Fig. 1: Regions Lb, Lϑ (with the same ε1) and Eβ (for 1− α = 0.95).

As far as the linearization is concerned, there is no problem, since the region
Lb and Lϑ are very large in a comparison with the confidence ellipse Eβ.

Now it is to be checked the inclusions Kϑ ⊂ Nhi , i = 1, 2. We need the
matrices

Whi =
(

L′
hi

V1

L′
hi

V2

)
[MF (Σ(ϑ0)MF ]+(V1Lhi ,VpLhi),

where

Lhi = h′
i[F

′Σ(ϑ0)−1F]−1F′Σ−1(ϑ0), h1 = (1, 0)′, h2 = (0, 1).

Fig. 2: Regions Kϑ for t = 4, Nh1 and Nh2 for ε3 = 0.1.
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Further

Kϑ =
{
δϑ : δϑ′S(MF Σϑ0MF )+δϑ ≤ 2t2

}
=

{
δϑ : δϑ′S(MF Σϑ0MF )+δϑ ≤ 32

}
,

Nh1 =
{
δϑ : δϑ′Wh1δϑ ≤ 2ε3h′

1(F
′Σ−1

ϑ0
F)−1h′

1

}
=

{
δϑ : δϑ′Wh1δϑ ≤ 3.75489× 10−5

}
,

Nh2 =
{
δϑ : δϑ′Wh2δϑ ≤ 2ε3h′

2(F
′Σ−1

ϑ0
F)−1h′

2

}
=

{
δϑ : δϑ′Wh2δϑ ≤ 9.26454× 10−5

}
.

For ε3 = 0.1 and t = 4, see Fig. 2.
As far as the sensitiveness is concerned, the situation is more complicated.

Fig. 2 shows that an accuracy of the estimators ϑ̂1 and ϑ̂2 based on the mea-
surement results only is not sufficient. It is necessary to realize an additional
experiment for the more accurate estimation of the parameters ϑ1 and ϑ2.

Acknowledgement Authors are indebted to the referee for thorough reading
the manuscript and his help in removing unpleasant mistakes overlooked by
authors.
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Abstract

In this note we describe the structure of dually residuated �-monoids
(DR�-monoids) that have no non-trivial convex subalgebras.

Key words: DR�-monoid; GPMV -algebra; Archimedean property.
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A dually residuated �-monoid, a DR�-monoid for short, is an algebra

(A,⊕, 0,∨,∧,�,�)

of type 〈2, 0, 2, 2, 2, 2〉 such that

(a) (A,⊕, 0,∨,∧) is a lattice-ordered monoid, i.e., (A,⊕, 0) is a monoid, (A,∨,∧)
is a lattice and ⊕ distributes over both ∨ and ∧,

(b) for any a, b ∈ A, a� b is the least element x ∈ A with x⊕ b ≥ a, and a� b
is the least element y ∈ A with b⊕ y ≥ a, and

(c) A satisfies the identities

((x � y) ∨ 0)⊕ y ≤ x ∨ y, y ⊕ ((x � y) ∨ 0) ≤ x ∨ y,
x� x ≥ 0, x� x ≥ 0.

*Supported by the Research Project MSM 6198959214.
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If the operation ⊕ is commutative then A is called a commutative DR�-monoid.
In such a case, the operations � and � coincide, and also conversely, A is
commutative whenever � = �.

Commutative DR�-monoids were originally introduced by K. L. N. Swamy
[10] in order to capture the common features of Abelian �-groups and Boolean
algebras. The above definition, omitting the commutativity of ⊕, is due to
T. Kovář [6] and allows us to consider all �-groups in the setting of DR�-monoids.
Indeed, given an arbitrary �-group (G,+,−, 0,∨,∧), then (G,+, 0,∨,∧,�,�) is
a DR�-monoid in which x� y := x− y and x� y := −y + x.

The reader familiar with residuated lattices easily recognizes that the name
“dually residuated �-monoid” says less than the definition since DR�-monoids
are equivalent to a certain proper subclass of residuated lattices. To be more
precise, by a residuated lattice we mean an algebra (L, ·, e,∨,∧,→,�) of type
〈2, 0, 2, 2, 2, 2〉, where (L, ·, e) is a monoid, (L,∨,∧) is a lattice and the equiva-
lences

a · b ≤ c iff a ≤ b→ c iff b ≤ a � c (1)

hold for all a, b, c ∈ L. Though it need not be evident at once, it not hard to
show that our DR�-monoids are termwise equivalent to those residuated lattices
satisfying the identities

x ∧ y = ((x→ y) ∧ e) · x = x · ((x � y) ∧ e). (2)

Residuated lattices that fulfil (2) were considered e.g. in [2], [5] under the name
GBL-algebras.

Now, we shortly review some relevant concepts from [7]. Given a DR�-monoid
A, we define the absolute value of x ∈ A by

|x| := x ∨ (0� x) = x ∨ (0 � x).

A non-empty subset I of A is called an ideal if

(I1) a⊕ b ∈ I for all a, b ∈ I,

(I2) a ∈ I and |b| ≤ |a| imply b ∈ I.

By a non-trivial ideal of we mean an ideal I with {0} ⊂ I ⊂ A.
The set I (A) of all ideals of A partially ordered by set-inclusion forms an

algebraic distributive lattice in which infima agree with set-theoretical intersec-
tions. Hence for every X ⊆ A there exists the smallest ideal I(X) containing
X ; for ∅ �= X we have

I(X) = {a ∈ A : |a| ≤ |x1| ⊕ · · · ⊕ |xn| for some x1, . . . , xn ∈ X,n ∈ N}.
It can be easily proved that I ⊆ A is an ideal if and only if I is a convex

subalgebra of A.
The congruence kernels are characterized as the so-called normal ideals: An

ideal I of A is said to be normal if

a� b ∈ I iff a� b ∈ I
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for every a, b ∈ A. If I is a normal ideal then the relation ΘI defined via

(a, b) ∈ ΘI iff (a� b) ∨ (b � a) ∈ I

is a congruence with [0]ΘI = I, and conversely, for any congruence Θ on A,
I = [0]Θ is a normal ideal such that ΘI = Θ. Therefore, the congruence lattice
of A is isomorphic to the lattice of all normal ideals of A. For the sake of brevity,
we write A/I for the quotient algebra A/Θ, where I = [0]Θ, and the elements
of A/I are denoted by a/I rather than [a]Θ.

There are two basic kinds of DR�-monoids from which every DR�-monoid
can be built using direct products: �-groups and lower bounded DR�-monoids,
i.e., DR�-monoids having 0 as a least element.

Let A be an arbitrary DR�-monoid. Put

GA := {a ∈ A : a⊕ (0� a) = 0 = (0� a)⊕ a}

and
SA := {a ∈ A : 0� a = 0} = {a ∈ A : 0 � a = 0}.

Both GA and SA are ideals of A; obviously, the first one is an �-group and the
second one is a lower bounded DR�-monoid. T. Kovář proved in [6] that A is the
direct sum of GA and SA. The same result for GBL-algebras was independently
obtained by N. Galatos and C. Tsinakis (see [2]).

Assume that a DR�-monoid A has no non-trivial ideals. Since both GA and
SA are (normal) ideals of A, it is clear that either A = GA or A = SA. In the
former case, A is an �-group having no non-trivial convex �-subgroups, and hence
it is an Archimedean totally ordered group which is isomorphic to a subgroup
of the additive group of reals equipped with the usual order. Therefore, in the
sequel we concentrate on lower bounded DR�-monoids which have no non-trivial
ideals.

For every x, y ∈ A and n ∈ N0, we inductively define

0� x := 0, (n+ 1)� x := n� x⊕ x,

and
x�0 y := x, x�n+1 y := (x�n y)� y;

x�
n y is defined analogously.

Lemma 1 Let A be a lower bounded DR�-monoid. The following are equiva-
lent:

(a) A has no non-trivial ideals;

(b) for every a, b ∈ A, a �= 0, there exists n ∈ N such that b ≤ n� a;
(c) for every a, b ∈ A, a �= 0, there exists n ∈ N such that b�n a = 0;

(d) for every a, b ∈ A, a �= 0, there exists n ∈ N such that b�
n a = 0.
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Proof Obviously, (b)–(d) are equivalent. Moreover, since

I(a) := I({a}) = {b ∈ A : b ≤ n� a for some n ∈ N},
it follows that each of these conditons is equivalent to (a). �

Lemma 2 Let A be a lower bounded DR�-monoid and H be its normal ideal.
Then the ideal lattice I (A/H) of the quotient DR�-monoid A/H is isomorphic
to the interval [H,A] of the lattice I (A).

Proof If I ∈ I (A) and H ⊆ I then

φ(I) := {x/H : x ∈ I}
is an ideal of A/H . Conversely, if J ∈ I (A/H) then

ψ(J) := {x ∈ A : x/H ∈ J}
is an ideal of A such that H ⊆ ψ(J). It is easily seen that the mappings φ and
ψ are mutually inverse order-preserving bijections between I (A/H) and [H,A]
ordered by set-theoretical inclusion. �

An ideal I ∈ I (A) is called maximal if I ⊂ A and there is no ideal J ∈ I (A)
such that I ⊂ J ⊂ A. In view of Lemma 2 we have:

Proposition 3 Let A be a lower bounded DR�-monoid and H be a normal ideal
with H ⊂ A. Then H is maximal if and only if the quotient DR�-monoid A/H
has no non-trivial ideals.

Lemma 4 Let A be a lower bounded DR�-monoid that has no non-trivial ideals.
Then for every a, b ∈ A, a �= 0,

a� b = a =⇒ b = 0, a� b = a =⇒ b = 0.

Proof We show that the set

Ja := {x ∈ A : a� x = a}
is an ideal of A. Clearly, 0 ∈ Ja. If x, y ∈ Ja then a� (x⊕y) = (a�y)�x = a�
x = a, so that x⊕y ∈ Ja. Finally, if x ∈ Ja and y ≤ x then a = a�x ≤ a�y ≤ a,
and hence a = a� y.

However, since a /∈ Ja and A has no non-trivial ideals, it follows that Ja =
{0}, and consequently, a� b = a entails b = 0 as claimed. �

Lemma 5 Let A be a lower bounded DR�-monoid having no non-trivial ideals.
If 0 < x ≤ y < a and a� x = a� y or a� x = a� y, then x = y.

Proof We have y = x∨y = (y�x)⊕x, so that a�x = a�y = a�((y�x)⊕x) =
(a� x) � (y � x). Since a� x �= 0, we obtain y � x = 0 by Lemma 4, yielding
y ≤ x, so x = y. �
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Theorem 6 Let A be a DR�-monoid that has no non-trivial ideals. Then A
satisfies the identities

x ∧ y = x� ((x � y) ∨ 0) = x� ((x� y) ∨ 0). (3)

Proof In the case when A is an �-group the identities (3) evidently hold.
Hence assume that A is a lower bounded DR�-monoid. Note that x � ((x �

y) ∨ 0) = x � (x � y) and x � ((x � y) ∨ 0) = x � (x � y). If x ≤ y then
x � (x � y) = x � 0 = x = x ∧ y and also x � (x � y) = x = x ∧ y. Further,
let x � y, i.e., x ∧ y < x. Since both x � (x � y) and x � (x � y) are common
lower bounds of {x, y}, we may suppose that 0 < x ∧ y < x. In this case
we have 0 < x � (x � y) ≤ x ∧ y < x because x � (x � y) = 0 would mean
x = x� y yielding y = 0 which is impossible due to 0 < x ∧ y. Finally, we have
x � (x � (x � y)) = x � y = x � (x ∧ y) which entails x � (x � y) = x ∧ y by
Lemma 5. By replacing � and � we get x� (x� y) = x ∧ y. �

Therefore, a DR�-monoid without non-trivial ideals is either an �-group or
is lower bounded and verifies the identities

x ∧ y = x� (x� y) = x� (x� y). (4)

Such DR�-monoids were investigated in [8], [9] and called here generalized pseudo
MV -algebras (GPMV -algebras for short). The name is motived by the fact that
bounded GPMV -algebras are termwise equivalent to pseudo MV -algebras. In
the literature, there exist two classes of algebras that are equivalent to GPMV -
algebras, namely, integral GMV-algebras and Wajsberg pseudo-hoops (see [2]
and [3], respectively).

By [9], every GPMV -algebra A can be embedded into the positive cone
G(A)+ of an �-group G(A) such that, assuming A ⊆ G(A), A is a lattice ideal
of G(A)+ which generates G(A)+ as a semigroup, and the operations �, � on
A are given as follows:

a� b := (a− b) ∨ 0, a� b := (−b+ a) ∨ 0.

Moreover, the ideal lattice I (A) of A and the lattice C (G(A)) of all convex
�-subgroups of G(A) are isomorphic under the mapping assigning to each I ∈
I (A) the convex �-subgroup of G(A) generated by I. In view of the well-
known fact that an �-group is totally ordered exactly if its lattice of all convex
�-subgroups is a chain, this means that A is totally ordered if and only if so is
G(A), and hence we gain:

Corollary 7 Every DR�-monoid which has no non-trivial ideals is totally or-
dered.

In [9], the Archimedean property for GPMV -algebra is defined in the fol-
lowing way. Given a GPMV -algebra A, we introduce a partial addition + by
setting a+ b := a⊕ b iff (a⊕ b)� b = a, or equivalently, (a⊕ b)� a = b. Observe
that if A ⊆ G(A), then + is the restriction of the group addition to those pairs
of elements of A whose sum belongs to A.
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This partial operation is associative in the sense that a+ b and (a + b) + c
exist iff b+ c and a+ (b + c) exist and (a+ b) + c = a+ (b + c), and therefore,
for any a ∈ A, n ∈ N0, we may define

0 · a := 0, (n+ 1) · a := n · a+ a.

Accordingly, we write a� b whenever n·a exists and n·a ≤ b for all n ∈ N. Now,
we say that a GPMV -algebra A is Archimedean if a �� b for all a, b ∈ A \ {0}.

As proved in [9], a GPMV -algebraA is Archimedean if and only if G(A) is an
Archimedean �-group, hence all Archimedean GPMV -algebras are commutative.
Therefore we conclude:

Theorem 8 Let A be a DR�-monoid having no non-trivial ideals. Then A is
either an Archimedean totally ordered group or A is Archimedean totally ordered
GPMV -algebra.

In fact, if A is a totally ordered Archimedean GPMV -algebra then the �-
group G(A) is isomorphic to a subgroup of the additive group R of real numbers
with the usual order, and consequently, we may always assume that A is a subset
of R+; the operations � and � agree and we have a� b = a� b = max{a− b, 0}.

Corollary 9 Let A be a lower bounded DR�-monoid. If H is a normal ideal
of A which is simultaneously a maximal ideal, then A/H is a totally ordered
Archimedean GPMV -algebra.
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Abstract

The properties of the regular linear model are well known (see [1],
Chapter 1). In this paper the situation where the vector of the first
order parameters is divided into two parts (to the vector of the useful
parameters and to the vector of the nuisance parameters) is considered.
It will be shown how the BLUEs of these parameters will be changed by
constraints given on them. The theory will be illustrated by an example
from the practice.

Key words: Regular linear regression model; nuisance parameters;
BLUE; constraints.
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1 Introduction, notations

The following notation will be used throughout the paper:

Rn the space of all n-dimensional real vectors;
up, Am,n the real column p-dimensional vector, the real m × n matrix;
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A′, r(A) the transpose, the rank of the matrix A;
A[r,s] rs-th element of matrix A;
M (A),Ker(A) the column space, the null space of the matrix A;
A− a generalized inverse of a matrix A (satisfying AA−A = A);
A+ the Moore–Penrose generalized inverse of a matrix A (satisfying

AA+A = A, A+AA+ = A+, (AA+)′ = AA+, (A+A)′ = A+A);
P A the orthogonal projector in the Euclidean norm ontoM (A);
M A = I − P A the orthogonal projector in the Euclidean norm onto

M⊥
(A) = Ker(A′);

Ik the k × k identity matrix;
0m,n the m × n null matrix;
o the null vector;
1k = (1, . . . , 1)′ ∈ Rk.

If M (A) ⊂ M (S), S p.s.d., then the symbol P S−
A denotes the projector

projecting vectors in M (S) onto M (A) along M (SA⊥). A general representa-

tion of all such projectors P S−
A is given by A(A′S−A)−A′S− + B(I − SS−),

where B is arbitrary, (see [3], (2.14)). MS−
A = I − P S−

A .

Assertion 1 (see [1], Lemma 10.1.35) Let X be any n × k matrix and Σ an
n× n p.s.d. matrix.
(i) If Σ is p.d., then

(MXΣMX)+ = Σ−1 − Σ−1X(X ′Σ−1X)−X ′Σ−1 = Σ−1MΣ−1

X .

(ii) (MXΣMX)+ = MX(MXΣMX)+ = (MXΣMX)+MX

= MX(MXΣMX)+MX .

2 Best linear unbiased estimators

Let us consider the following linear model

Y = (X,S)
(
β
κ

)
+ ε, (1)

where Y = (Y 1, . . . ,Y n)′ is a random observation vector; β ∈ Rk is a vector
of the useful parameters; κ ∈ Rl is a vector of the nuisance parameters; Xn,k is
a design matrix belonging to the vector β; Sn,l is a design matrix belonging to
the vector κ.

We suppose that
1. E(Y ) = Xβ + Sκ, ∀β ∈ Rk, ∀κ ∈ Rl,
2. var(Y ) = Σ is a known matrix,
3. matrix Σ is not a function of the vector (β′, κ′)′.
If matrix Σ is positive definite and r(X ,S) = k + l < n, the model is said

to be regular, (see [1], p. 13).
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Theorem 1 In the regular model (1) the BLUEs of the parameters are given
as

β̂ = C−1X ′Σ−1Y

−C−1X ′Σ−1S[S′(MXΣMX)+S]−1S′Σ−1{I −XC−1X ′Σ−1}Y
= C−1X ′Σ−1{I − S[S′(MXΣMX)+S]−1S′(MXΣMX)+}Y , (2)

κ̂ = [S′(MXΣMX)+S]−1S′Σ−1{I −XC−1X ′Σ−1}Y
= [S′(MXΣMX)+S]−1S′(MXΣMX)+Y , (3)

where C = X ′Σ−1X.

Proof According to the Theorem 1.1.1 in [1] and using the following Rohde’s
formula for inverse of partitioned p.d. matrix (see [1], Lemma 10.1.40)(

F , G
G′, H

)−1

=
(

F−1 + F−1G(H −G′F−1G)−1G′F−1, −F−1G(H −G′F−1G)−1

−(H −G′F−1G)−1G′F−1, (H −G′F−1G)−1

)
(4)

the BLUE of the vector parameter (β′, κ′)′ is given by(
β̂
κ̂

)
=

[(
X ′

S′

)
Σ−1(X ,S)

]−1 (
X ′

S′

)
Σ−1Y

=
[

X ′Σ−1X, X ′Σ−1S
S′Σ−1X, S′Σ−1S

]−1 (
X ′Σ−1

S′Σ−1

)
Y =

(
11 , 12
21 , 22

)(
X ′Σ−1Y
S′Σ−1Y

)
,

where

11 = C−1 + C−1X ′Σ−1S[S′(MXΣMX)+S]−1S′Σ−1XC−1,

12 = −C−1X ′Σ−1S[S′(MXΣMX)+S]−1,

21 = −[S′(MXΣMX)+S]−1S′Σ−1XC−1,

22 = [S′(MXΣMX)+S]−1.

As Σ is supposed to be positive definite, we utilized Assertion 1, (i). The
rest of the proof is obvious. �

Theorem 2 For the estimators β̂, κ̂ is valid

var(β̂) = C−1 + C−1X ′Σ−1S[S′(MXΣMX)+S]−1S′Σ−1XC−1, (5)

var(κ̂) = [S′(MXΣMX)+S]−1, (6)

cov(β̂, κ̂) = −C−1X ′Σ−1S[S′(MXΣMX)+S]−1. (7)
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Proof

var(β̂) = C−1X ′Σ−1{I − S[S′(MXΣMX)+S]−1S′(MXΣMX)+}Σ
× {I − (MXΣMX)+S[S′(MXΣMX)+S]−1S′}Σ−1XC−1

= C−1 + C−1X ′Σ−1S[S′(MXΣMX)+S]−1S′Σ−1XC−1,

var(κ̂) = [S′(MXΣMX)+S]−1S′(MXΣMX)+MXΣMX(MXΣMX)+

× S[S′(MXΣMX)+S]−1 = [S′(MXΣMX)+S]−1,

cov(β̂, κ̂) = C−1X ′Σ−1{I − S[S′(MXΣMX)+S]−1S′(MXΣMX)+}
× Σ(MXΣMX)+S[S′(MXΣMX)+S]−1

= −C−1X ′Σ−1S[S′(MXΣMX)+S]−1.

In the course of the proof the Assertion 1, (ii) was used. �

Let us consider model (1) with constrains given on both parameters, i.e. the
model

Y = (X,S)
(
β
κ

)
+ ε, b + B1β + B2κ = o, (8)

where we suppose for the q × k matrix B1 and q × l matrix B2 that

r(B2) = l < q, r(B1,B2) = q < k + l.

Theorem 3 The BLUEs ˆ̂
β, ˆ̂κ of the parameters β, κ under the model (8) are

given by

ˆ̂
β = β̂ − (C−1B′

1 + C−1X ′Σ−1SZ−1U ′)

× [B1C
−1B′

1 + UZ−1U ′]−1(B1β̂ + B2κ̂+ b), (9)

ˆ̂κ = κ̂+ Z−1U ′ [B1C
−1B′

1 + UZ−1U ′]−1
(B1β̂ + B2κ̂+ b), (10)

where U = B1C
−1X ′Σ−1S −B2, Z = S′(MXΣMX)+S and where β̂, κ̂ are

given in Theorem 1.

Proof In the following regular model with constraints

Y ∼n (Aθ,Σ), b + Bθ = o,

r(An,k) = k < n, r(Bq,k) = q < k, Σ p.d.,

there is (according [2], theorem 4.3.1) for the BLUE of the parameter θ

ˆ̂
θ = {I − (A′Σ−1A)−1B′[B(A′Σ−1A)−1B′]−1B}θ̂

− (A′Σ−1A)−1B′[B(A′Σ−1A)−1B′]−1b,

where θ̂ = (A′Σ−1A)−1A′Σ−1Y , is the BLUE of θ without constraints.
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In the model (8) we have

A → (X,S), θ →
(
β
κ

)
, B → (B1,B2).

Thus analogously(
ˆ̂
β
ˆ̂κ

)
=

{(
I, 0
0, I

)
−

[(
X ′

S′

)
Σ−1(X ,S)

]−1 (
B′

1

B′
2

)

×
[
(B1,B2)

{(
X ′

S′

)
Σ−1(X ,S)

}−1 (
B′

1

B′
2

)]−1

(B1,B2)

}(
β̂
κ̂

)

−
[(

X ′

S′

)
Σ−1(X,S)

]−1(
B′

1

B′
2

)[
(B1,B2)

{(
X ′

S′

)
Σ−1(X,S)

}−1(
B′

1

B′
2

)]−1

b,

where β̂, κ̂ are given in Theorem 1.
Let us calculate first[

(B1,B2)
{(

X ′

S′

)
Σ−1(X ,S)

}−1 (
B′

1

B′
2

)]−1

=

[
(B1,B2)

(
11 12
21 22

)(
B′

1

B′
2

)]−1

=
(
B1C

−1B′
1 + U [S′(MXΣMX)+S]−1U ′)−1

,

where U = B1C
−1X ′Σ−1S −B2 and where 11 , 12 , 21 , 22 are given in

the proof of Theorem 1. Further[(
X ′

S′

)
Σ−1(X,S)

]−1 (
B′

1

B′
2

)
=

(
11 12
21 22

)(
B′

1

B′
2

)

=
(

C−1B′
1 + C−1X ′Σ−1S[S′(MXΣMX)+S]−1U ′

−[S′(MXΣMX)+S]−1U ′

)
.

Let us (for the sake of simplicity) use the notation Z = S′(MXΣMX)+S, then(
ˆ̂
β
ˆ̂κ

)
=

{(
I, 0
0, I

)
−

(
C−1B′

1 + C−1X ′Σ−1SZ−1U ′

−Z−1U ′

)

× [B1C
−1B′

1 + UZ−1U ′]−1(B1,B2)
}(

β̂
κ̂

)
−

(
C−1B′

1 + C−1X ′Σ−1SZ−1U ′

−Z−1U ′

)
[B1C

−1B′
1 + UZ−1U ′]−1b.
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Thus

ˆ̂
β =

{
I − (C−1B′

1 + C−1X ′Σ−1SZ−1U ′)[B1C
−1B′

1 + UZ−1U ′]−1B1

}
β̂

− (C−1B′
1 + C−1X ′Σ−1SZ−1U ′)[B1C

−1B′
1 + UZ−1U ′]−1B2κ̂

− (C−1B′
1 + C−1X ′Σ−1SZ−1U ′)[B1C

−1B′
1 + UZ−1U ′]−1b.

ˆ̂κ = Z−1U ′[B1C
−1B′

1 + UZ−1U ′]−1B1β̂

+
[
I + Z−1U ′(B1C

−1B′
1 + UZ−1U ′)−1B2

]
κ̂

+ Z−1U ′[B1C
−1B′

1 + UZ−1U ′]−1b.

The statement of the Theorem 3 is now obvious. �

Theorem 4 For the BLUEs ˆ̂
β, ˆ̂κ it is valid

var( ˆ̂
β) = var(β̂)− (C−1B′

1 + C−1X ′Σ−1SZ−1U ′)[B1C
−1B′

1 + UZ−1U ′]−1

× (B1C
−1 + UZ−1S′Σ−1XC−1), (11)

var(ˆ̂κ) = var(κ̂)−Z−1U ′[B1C
−1B′

1 + UZ−1U ′]−1UZ−1. (12)

Proof We have
var( ˆ̂

β) = var[Aβ̂ −Bκ̂],

where

A = I − (C−1B′
1 + C−1X ′Σ−1SZ−1U ′)[B1C

−1B′
1 + UZ−1U ′]−1B1,

B = (C−1B′
1 + C−1X ′Σ−1SZ−1U ′)[B1C

−1B′
1 + UZ−1U ′]−1B2.

Analologously
var(ˆ̂κ) = var[F β̂ + Gκ̂],

where

F = Z−1U ′[B1C
−1B′

1 + UZ−1U ′]−1B1,

G = I + Z−1U ′[B1C
−1B′

1 + UZ−1U ′]−1B2.

We get the expressions for var( ˆ̂
β) and var(ˆ̂κ) after longer but easy calculations.

�

Example 1 Consider the following situation. Let’s have points F1, F2 and
F3 of existing local network and points P1 and P2, for which it is necessary to
estimate their coordinates (see Figure 1). We have the measured values Y1, Y2 of
coordinates of the point F1 = (β1, β2), the measured values Y3, Y4 of coordinates
of the point F2 = (β3, β4) and the measured values Y5, Y6 of coordinates of the
point F3 = (β5, β6). Moreover, we have the measured values Y7, Y8, Y9, Y10 and
Y11 of angles β7 and β8 and distances β9, β10 and β11. Finally, we know the
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measured values Y12 and Y13 of angles κ1 and κ2. The values β and κ are in
meters and in radians, respectively.
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Figure 1: Layout of the situation in Example 1

We have the model (1), where (X,S) = I13.
Assume the results of measurements to be (see [4])

Y =

0BBBBBBBBBBBBBBBBBBBB@

1200.003 m
499.999 m

1200.001 m
1469.113 m
1629.649 m
1196.073 m

2.876604026 rad
4.207717253 rad

216.347 m
103.095 m
245.478 m

0.707031134 rad
1.080434554 rad

1CCCCCCCCCCCCCCCCCCCCA

.

We take the covariance matrix Σ from the model (1) in the form

Σ =

⎛⎝ ΣF 06,5 06,2

05,6 Σd,a 05,2

02,6 02,5 Σa

⎞⎠ .

We assume the coordinate accuracy of the points F1, F2 and F3 of exist-
ing local network to be approximately the same as the accuracy of measured
parameters βj , j = 7, . . . , 11, and as the accuracy of measured parameters κ1

and κ2.
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The accuracy of coordinates Yi, i = 1 . . . 6, of the points F1, F2 and F3 is
given by the covariance matrix ΣF :

ΣF = 0.0012 ×

0BBBBBB@

1.6987 1.5583 0.1928 1.0711 −1.8915 −2.6295
1.5583 7.3592 −1.4785 −3.895 −0.0798 −3.4642
0.1928 −1.4785 5.0406 −1.4122 −5.2334 2.8907
1.0711 −3.895 −1.4122 6.5277 0.341 −2.6328

−1.8915 −0.0798 −5.2334 0.341 7.125 −0.2613
−2.6295 −3.4642 2.8907 −2.6328 −0.2613 6.097

1CCCCCCA .

The accuracy of measured distances was 3 mm and the accuracy of measured
angles was 5 cc = 5π/(200 · 100 · 100) = 5/636620, (the standard deviation of
the theodolite is σt = 5 cc, i.e. that which corresponds to 5 centesimal seconds).
We thus suppose that the covariance matrix for (Y7, . . . , Y11) is

Σd,a =
(

0.0032 × I3,3 03,2

02,3 ( 5π
200·100·100 )2 × I2,2

)
=

(
0.0032 × I3,3 03,2

02,3 6.17× 10−11 × I2,2

)
.

Accordingly, we suppose that the covariance matrix of measured angles
(Y 12,Y 13) is

Σa =
(

5π
200 · 100 · 100

)2

× I2,2 =
(

5
636620

)2

× I2,2 = 6.17× 10−11 × I2,2 .

The aim is to find conditions for parameters β and κ.
To that end, we first determine (see Figure 1) the coordinates of points

P1 = (x1, y1), P2 = (x2, y2) and P3 = (x3, y3):

x1 = β3 + β9 cos
(
π
2 + κ1

)
,

y1 = β4 + β9 cos
(
π
2 + κ1

)
,

(it follows from the fact that the point P1 shall be situated on a circle with
circumference β9 and with center in point F2, and from the fact that the point
P1 is reached from the point F2 via the angle ∠F1, F2, P1 = κ1);

x2 = x1 + β10 cos
((

arctan β4−y1
β3−x1

+ 0 · π) + π + β7

)
,

y2 = y1 + β10 sin
((

arctan β4−y1
β3−x1

+ 0 · π) + π + β7

)
,

(it follows from the fact that the point P2 shall be situated on a circle with
circumference β10 and with center in point P1, and from the fact that the point
P2 is reached from the point P1 via the angle ∠F2, P1, P2 = β7);

x3 = x2 + β11 cos
((

arctan y1−y2
x1−x2

+ 0 · π) + π + β8

)
,

y3 = y2 + β11 sin
((

arctan y1−y2
x1−x2

+ 0 · π) + π + β8

)
,
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(it follows from the fact that the point P3 shall be situated on a circle with
circumference β11 and with center in point P2, and from the fact that the point
P3 is reached from the point P2 via the angle ∠P1, P2, P3 = β8).

It can be seen from Figure 1 that the conditions g(β, κ) = o for parameters
β and κ are (involving the conditions given above)

g1 = (x3 − β5)2 + (y3 − β6)2 = 0,

g2 =
(
π + arctan

y3 − β2

x3 − β1

)
−

(
π + arctan

y2 − y3
x2 − x3

)
− κ2 = 0.

The first constraint says that the point P3 is equivalent to F3.
The second constraint reflects the fact that ∠P2, P3, F1 = κ2.
Now we use the Taylor expansion—the linear version of the condition

g(β, κ) =
(
g1(β, κ)
g2(β, κ)

)
= o

is B1δβ+B2δκ+ b = o, where the matrix B1 = ∂g(β0,κ0)
∂β′ , B2 = ∂g(β0,κ0)

∂κ′ , and

b = g(β0, κ0) at the approximate point.
So we can consider the model (8).
In the linearized model we determine numerically the estimates and the

covariance matrices according to Theorem 3 and Theorem 4

ˆ̂β =

0BBBBBBBBBBBBBBBB@

1200.000 m
500.000 m

1200.000 m
1469.112 m
1629.651 m
1196.073 m

2.876605771 rad
4.207720046 rad

216.347 m
103.096 m
245.475 m

1CCCCCCCCCCCCCCCCA
and ˆ̂κ =

„
0.707030785 rad
1.080438743 rad

«
.

var(̂̂β) =
(
Q1 , Q2

)
and var(̂̂κ) =

(
4.90 · 10−11 −9.24 · 10−12

−9.24 · 10−12 4.30 · 10−11

)
,

where

Q1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.43 · 10−6 1.79 · 10−6 −4.45 · 10−7 8.08 · 10−7 −9.83 · 10−7 −2.60 · 10−6

1.79 · 10−6 7.14 · 10−6 −1.01 · 10−6 −3.60 · 10−6 −7.73 · 10−7 −3.54 · 10−6

−4.45 · 10−7 −1.01 · 10−6 3.34 · 10−6 −1.83 · 10−6 −2.90 · 10−6 2.85 · 10−6

8.08 · 10−7 −3.60 · 10−6 −1.83 · 10−6 6.07 · 10−6 1.02 · 10−6 −2.47 · 10−6

−9.83 · 10−7 −7.73 · 10−7 −2.90 · 10−6 1.02 · 10−6 3.88 · 10−6 −2.49 · 10−7

−2.60 · 10−6 −3.54 · 10−6 2.85 · 10−6 −2.47 · 10−6 −2.49 · 10−7 6.01 · 10−6

6.18 · 10−10 −1.03 · 10−9 1.19 · 10−10 1.96 · 10−9 −7.29 · 10−10 −9.31 · 10−10

1.03 · 10−9 −1.32 · 10−9 1.23 · 10−9 2.21 · 10−9 −2.26 · 10−9 −8.86 · 10−10

−2.36 · 10−7 −8.35 · 10−8 −1.30 · 10−6 5.29 · 10−7 1.54 · 10−6 −4.45 · 10−7

1.95 · 10−7 −3.96 · 10−7 −1.52 · 10−7 8.10 · 10−7 −4.31 · 10−8 −4.13 · 10−7

−1.32 · 10−6 8.08 · 10−7 −3.93 · 10−6 −4.53 · 10−7 5.26 · 10−6 −3.56 · 10−7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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Q2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6.18 · 10−10 1.03 · 10−9 −2.36 · 10−7 1.95 · 10−7 −1.32 · 10−6

−1.03 · 10−9 −1.32 · 10−9 −8.35 · 10−8 −3.96 · 10−7 8.08 · 10−7

1.11 · 10−10 1.23 · 10−9 −1.30 · 10−6 −1.52 · 10−7 −3.93 · 10−6

1.96 · 10−9 2.21 · 10−9 5.29 · 10−7 8.10 · 10−7 −4.53 · 10−7

−7.29 · 10−10 −2.26 · 10−9 1.54 · 10−6 −4.31 · 10−8 5.26 · 10−6

−9.31 · 10−10 −8.86 · 10−10 −4.45 · 10−7 −4.13 · 10−7 −3.56 · 10−7

5.11 · 10−11 −1.05 · 10−11 −4.57 · 10−9 −4.63 · 10−9 −2.57 · 10−9

−1.05 · 10−11 5.05 · 10−11 −3.63 · 10−9 −4.45 · 10−9 6.83 · 10−11

−4.57 · 10−9 −3.63 · 10−9 2.20 · 10−5 −2.15 · 10−6 −4.26 · 10−6

−4.63 · 10−9 −4.45 · 10−9 −2.15 · 10−6 2.30 · 10−5 −1.59 · 10−6

−2.57 · 10−9 6.83 · 10−11 −4.26 · 10−6 −1.59 · 10−6 1.51 · 10−5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

All computations in the example were performed in Matlab.
To make comparisons easier, the following table shows the results.

Y [i]

p
var(Y )

[i,i]

 
ˆ̂
β
ˆ̂κ

!
[i]

vuut
"
var

 
ˆ̂
β
ˆ̂κ

!#
[i,i]

Y [i] −

 
ˆ̂
β
ˆ̂κ

!
[i]

1200.003 m 4.12 mm 1200.000 m 1.13 mm 3 mm
499.999 m 8.58 mm 500.000 m 2.67 mm −1 mm

1200.001 m 7.10 mm 1200.000 m 1.83 mm 1 mm
1469.113 m 8.08 mm 1469.112 m 2.46 mm 1 mm
1629.649 m 8.44 mm 1629.651 m 1.97 mm −2 mm
1196.073 m 7.81 mm 1196.073 m 2.45 mm 0 mm

2.876604026 rad 5.00 cc 2.87605771 rad 4.55 cc −1.111 cc
4.207717253 rad 5.00 cc 4.20772005 rad 4.53 cc −1.778 cc

216.347 m 3.00 mm 216.347 m 4.69 mm 0 mm
103.095 m 3.00 mm 103.096 m 4.79 mm −1 mm
245.478 m 3.00 mm 245.475 m 3.89 mm 3 mm

0.707031134 rad 5.00 cc 0.707030785 rad 4.46 cc 0.222 cc
1.080434554 rad 5.00 cc 1.080438743 rad 4.17 cc −2.667 cc

The second column shows that the dispersions of elements of the measured
vector Y are different. We can see in the table that dispersions of some elements

of estimators
ˆ̂
β and ˆ̂κ have decreased and some have increased in the process

of estimation, which is due to the tendency to distribute the uncertainty of
measurements equally.
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Abstract

We study the existence of one-signed periodic solutions of the equa-
tions

x′′(t) − a2(t)x(t) + µf(t, x(t), x′(t)) = 0,

x′′(t) + a2(t)x(t) = µf(t, x(t), x′(t)),

where µ > 0, a : (−∞,+∞) → (0,∞) is continuous and 1-periodic, f is
a continuous and 1-periodic in the first variable and may take values of
different signs. The Krasnosielski fixed point theorem on cone is used.

Key words: Positive solutions; boundary value problems; cone;
fixed point theorem.

2000 Mathematics Subject Classification: 34G20, 34K10, 34B10,
34B15

1 Introduction

Nonnegative solutions to varius boundary value problems for ordinary differ-
ential equations have been considered by several authors (see for instance in

119
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[1]–[8]). This paper deals with existence of positive (negative) periodic solu-
tions of the nonlinear differential equations of the form

(1.1) x′′(t)− a2(t)x(t) + µf(t, x(t), x′(t)) = 0,
(1.2) x′′(t) + a2(t)x(t) = µf(t, x(t), x′(t)),

where a : (−∞,+∞) → (0,∞) is continuous, 1-periodic, µ > 0, f is a continu-
ous, 1-periodic function in t and may take values of different signs. Existence in
this paper will be established using Krasnosielski fixed point theorem in a cone,
which we state here for the convenience of the reader.

Theorem 1.1 (K. Deimling [4], D. Guo, V. Laksmikannthan [5]). Let E =
(E, ‖ · ‖) be a Banach space and let K ⊂ E be a cone in E. Assume Ω1

and Ω2 are bounded and open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2 and let
A : K ∩ (Ω2 \ Ω1) → K be continuous and completely continuous. In addition
suppose either ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖ for K ∩ ∂Ω2 or
‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2 hold. Then A
has a fixed point in K ∩ (Ω2 \ Ω1).

2 Preliminary results

First, we shall give some notation. We define Pm1 (R) (m ∈ N) to be the subspace
of BC(R) (bounded, continuous real functions on R) consisting of all 1-periodic
mapping x such that x(m) is an 1-periodic and continuous function on R. For
x ∈ P 1

1 (R) we define
‖x‖1 = sup

t∈[0,1]

[|x(t)|+ |x′(t)|].

Note P 1
1 (R, ‖ · ‖1) is a Banach space.

Let us consider the boundary value problems

(2.1) − (x′′(t)− a2(t)x(t)) = 0, x(0) = x(1), x′(0) = x′(1);
(2.2) x′′(t) + a2(t)x(t) = 0, x(0) = x(1), x′(0) = x′(1),

In this paper we assume conditions under which the only solution of the problem
(2.1) or (2.2) is the trivial one. In the proofs of theorems we will make use the
Green functions G1 and G2 of the boundary value problems (2.1) and (2.2).

Remark 2.1 If a ∈ C[0, 1] and a(t) > 0 for all t ∈ [0, 1], then the problem (2.1)
has only the trivial solution and G1(t, s) > 0 for all t, s ∈ [0, 1] (see [7]).

If a ∈ C[0, 1], a(t) > 0 for t ∈ [0, 1] and supt∈[0,1] a(t) < π, then the problem
(2.2) has only the trivial solution and G2(t, s) > 0 for all t, s ∈ [0, 1] (see [7]).

Remark 2.2 If a(t) ≡ k > 0 for t ∈ [0, 1], then

G1(t, s) =
1

2k(ek − 1)

{
ek(1−s+t) + ek(s−t), 0 ≤ t ≤ s ≤ 1
ek(t−s) + ek(1+s−t), 0 ≤ s ≤ t ≤ 1.
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Remark 2.3 If a(t) ≡ k > 0 for t ∈ [0, 1] and k �= 2lπ for all l ∈ N, then

G2(t, s) =
1

2k sin k/2
cos k[1/2− |s− t|].

Before giving the lemmas we shall introduce some notation. We denote

Mi = sup
t,s∈[0,1]

Gi(t, s), mi = inf
t,s∈[0,1]

Gi(t, s),

Mi
′
= sup

t,s∈[0,1]

∣∣∣∣∂Gi∂t
(t, s)

∣∣∣∣ , mi
′ = inf

t,s∈[0,1]

∣∣∣∣∂Gi∂t
(t, s)

∣∣∣∣
for i = 1, 2.

The properties of the functions Gi (i = 1, 2) needed later on are described
by the following lemmas.

Lemma 2.4 Suppose that

(2.3) f : R3 → R is continuous, a ∈ C[0, 1] and a(t) > 0 for t ∈ [0, 1].

Then x ∈ C2[0, 1] is a solution of the problem

(2.4)

{
x′′(t)− a2(t)x(t) + µf(t, x(t), x′(t)) = 0
x(0) = x(1), x′(0) = x′(1)

if and only if x satisfies the integral equation

(2.5) x(t) = µ

∫ 1

0

G1(t, s)f(s, x(s), x′(s)) ds.

Lemma 2.5 Suppose that a ∈ C[0, 1], a(t) > 0 for t ∈ [0, 1], supt∈[0,1] a(t) < π

and f : R3 → R is continuous. Then x ∈ C2[0, 1] is a solution of the problem

(2.6)

{
x′′(t) + a2(t)x(t) = µf(t, x(t), x′(t))
x(0) = x(1), x′(0) = x′(1)

if and only if x satisfies the integral equation

(2.7) x(t) = µ

∫ 1

0

G2(t, s)f(s, x(s), x′(s)) ds.

Lemma 2.6 Let a ∈ C[0, 1] and a(t) > 0 for t ∈ [0, 1]. Then

(2.8) inf
t,s∈[0,1]

G1(t, s) = inf
t∈[0,1]

G1(t, 1), (see [7])

(2.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d0G1(t, s)−
∣∣∂G1
∂t (t, s)

∣∣ ≥ G1(s, s) +
∣∣∂G1
∂t (s− 0, s)

∣∣
for s, t ∈ [0, 1] and

d0G1(t, s)−
∣∣∂G1
∂t (t, s)

∣∣ ≥ G1(s, s) +
∣∣∂G1
∂t (s+ 0, s)

∣∣
for s, t ∈ [0, 1] where ∂G1

∂t (s− 0, s)
(
∂G1
∂t (s+ 0, s)

)
denote the left-hand (the right-hand) side derivative of G1

at the point (s, s) and d0 ≥ 2M1
′
+M1

m1
,
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(2.10) G1(s, s) +
∣∣∣∣∂G1

∂t
(s− 0, s)

∣∣∣∣ ≥M0

(
G1(t, s) +

∣∣∣∣∂G1

∂t
(t, s)

∣∣∣∣)
for s, t ∈ [0, 1] and M0 ∈

(
0, m1+m1

′

M1+M1
′

]
,

(2.11) G1(s, s) +
∣∣∣∣∂G1

∂t
(s+ 0, s)

∣∣∣∣ ≥M0

(
G1(t, s) +

∣∣∣∣∂G1

∂t
(t, s)

∣∣∣∣) ,
where s, t ∈ [0, 1].

Lemma 2.7 Let a ∈ C[0, 1] and a(t) > 0 for t ∈ [0, 1] and supt∈[0,1] a(t) < π.
Then

(2.12) sup
t,s∈[0,1]

G2(t, s) = sup
t∈[0,1]

G2(t, 1) (see [7]),

(2.13) d0G2(t, s)−
∣∣∣∣∂G2

∂t
(t, s)

∣∣∣∣ ≥ G2(s, s) +
∣∣∣∣∂G2

∂t
(s− 0, s)

∣∣∣∣
for t, s ∈ [0, 1] and d0 ≥ 2M2

′
+M2

m2
,

(2.14) d0G2(t, s)−
∣∣∣∣∂G2

∂t
(t, s)

∣∣∣∣ ≥ G2(s, s) +
∣∣∣∣∂G2

∂t
(s+ 0, s)

∣∣∣∣ ,
where s, t ∈ [0, 1],

(2.15) G2(s, s) +
∣∣∣∣∂G2

∂t
(s− 0, s)

∣∣∣∣ ≥M0

(
G2(t, s) +

∣∣∣∣∂G2

∂t
(t, s)

∣∣∣∣)
for s, t ∈ [0, 1], M0 ∈

(
0, m2+m2

′

M2+M2
′

]
and

(2.16) G2(s, s) +
∣∣∣∣∂G2

∂t
(s+ 0, s)

∣∣∣∣ ≥M0

(
G2(t, s) +

∣∣∣∣∂G2

∂t
(t, s)

∣∣∣∣) ,
where s, t ∈ [0, 1].

It is not difficult to prove the following

Corollary 2.8 Let a(t) ≡ k > 0 for t ∈ [0, 1]. Then

(2.8)′

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

supt,s∈[0,1]G1(t, s) = ek+1
2k(ek−1)

,

inft,s∈[0,1]G1(t, s) = ek/2

k(ek−1) ,

G1(s, s) ≥ G1(t, s) for s, t ∈ [0, 1], supt,s∈[0,1]

∣∣∂G1
∂t (t, s)

∣∣ = 1
2 ,

inft,s∈[0,1]

∣∣∂G1
∂t (t, s)

∣∣ = 0,
∫ 1

0
G1(t, s) ds = 1

k2 for t ∈ [0, 1],

supt∈[0,1]

∫ 1

0 G1(t, s) ds+ supt∈[0,1]

∫ 1

0

∣∣∂G1
∂t (t, s)

∣∣ ds = m1 ≤ 1
k2 + 1

2 ,
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(2.9)′

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d0G1(t, s)−

∣∣∂G1
∂t (t, s)

∣∣ ≥ G1(s, s) +
∣∣∂G1
∂t (s− 0, s)

∣∣
for s, t ∈ [0, 1] and

d0G1(t, s)−
∣∣∂G1
∂t (t, s)

∣∣ ≥ G1(s, s) +
∣∣∂G1
∂t (s+ 0, s)

∣∣
for s, t ∈ [0, 1] and d0 ≥ ek+1+2k(ek−1)

2ek/2 ,

(2.10)′ G1(s, s) +
∣∣∣∣∂G1

∂t
(s− 0, s)

∣∣∣∣ ≥M0

(
G1(t, s) +

∣∣∣∣∂G1

∂t
(t, s)

∣∣∣∣)
for s, t ∈ [0, 1] and M0 ∈

(
0, 2ek/2

ek(1+k)+1−k
]
,

(2.11)′ G1(s, s) +
∣∣∣∣∂G1

∂t
(s+ 0, s)

∣∣∣∣ ≥M0

(
G1(t, s) +

∣∣∣∣∂G1

∂t
(t, s)

∣∣∣∣) ,
where s, t ∈ [0, 1].

Corollary 2.9 Let a(t) ≡ k for t ∈ [0, 1] and let 0 < k < π. Then

(2.12)′

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

inft,s∈[0,1]G2(t, s) = cot k/2
2k ,

supt,s∈[0,1]G2(t, s) = 1
2k sink/2 , supt,s∈[0,1]

∣∣ ∂G2
∂t(t,s) (t, s)

∣∣ = 1
2 ,

inft,s∈[0,1]

∣∣∂G2
∂t (t, s)

∣∣ = 0,
∫ 1

0 G2(t, s) ds = 1
k2 for t ∈ [0, 1],

supt∈[0,1]

∫ 1

0
G2(t, s) ds+ supt∈[0,1]

∫ 1

0

∣∣∂G2
∂t (t, s)

∣∣ ds
= m2 ≤ 1

k2 + 1
2 ,

(2.13)′ d0G2(t, s)−
∣∣∣∣∂G2

∂t
(t, s)

∣∣∣∣ ≥ G2(s, s) +
∣∣∣∣∂G2

∂t
(s− 0, s)

∣∣∣∣
for t, s ∈ [0, 1] and

(2.14)′ d0G2(t, s)−
∣∣∣∣∂G2

∂t
(t, s)

∣∣∣∣ ≥ G2(s, s) +
∣∣∣∣∂G2

∂t
(s+ 0, s)

∣∣∣∣ ,
where s, t ∈ [0, 1] and d0 ≥ 2k tank/2 + 1,

(2.15)′ G2(s, s) +
∣∣∣∣∂G2

∂t
(s− 0, s)

∣∣∣∣ ≥M0

(
G2(t, s) +

∣∣∣∣∂G2

∂t
(t, s)

∣∣∣∣)
for s, t ∈ [0, 1], M0 ∈

(
0, cosk/2

1+k sin k/2

]
and

(2.16)′ G2(s, s) +
∣∣∣∣∂G2

∂t
(s+ 0, s)

∣∣∣∣ ≥M0

(
G2(t, s) +

∣∣∣∣∂G2

∂t
(t, s)

∣∣∣∣) ,
where s, t ∈ [0, 1].
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Throughout the paper

D = (−∞,∞)× [0,∞)× (−∞,∞), D̃ = (−∞,∞)× (−∞, 0]× (−∞,∞),
µ > 0, a : (−∞,∞)→ (0,∞) is continuous and 1-periodic, L > 0,

φi(t) = µL

∫ 1

0

Gi(t, s)ds for i = 1, 2, t ∈ [0, 1],

φi : (−∞,∞)→ (−∞,∞), φi ∈ P 2
1 (R), φi(t) = φi(t) for i = 1, 2 and t ∈ [0, 1],

mi = sup
t∈[0,1]

∫ 1

0

Gi(t, s) ds+ sup
t∈[0,1]

∫ 1

0

∣∣∣∣∂Gi∂t
(t, s)

∣∣∣∣ ds
for i = 1, 2.

3 Positive periodic solutions

In this section we present results on existence of positive 1-periodic solutions of
the equations (1.1) and (1.2).

Theorem 3.1 Suppose that

(3.1)

⎧⎪⎪⎨⎪⎪⎩
f : D → (−∞,∞) is continuous,
f(t+ 1, v0, v1) = f(t, v0, v1) for all (t, v0, v1) ∈ D,
there exists a constant L > 0 with
f(t, v0, v1) + L ≥ 0 for all (t, v0, v1) ∈ D,

(3.2) there exists a function ψ(u) such that f(t, v0, v1)+L ≤ ψ(v0 + |v1|) on D,
where ψ : [0,∞) → [0,∞) is continuous and nondecreasing and ψ(u) > 0 for
u > 0,

(3.3)

{
there exist C1 > 0 and r > 0 such that r ≥ µLC1d0,∫ 1

0 G1(t, s)ds ≤M0C1 for t ∈ [0, 1] and r
ψ(r+‖φ1‖1) ≥ µm1,

where d0,M0 and m1 have properties (2.9)–(2.11),

(3.4)

⎧⎨⎩
f(t, v0, v1) + L ≥ τ(t)g(v0) on D, where τ : (−∞,∞)→ [0,∞)
is continuous and 1-periodic and g : [0,∞)→ [0,∞) is continuous,
g(u) > 0 for u > 0 and g is nondecreacing,

(3.5) there exists R > 0 such that R > r and

d0R ≤ µ

∫ 1

0

τ(s)
[
d0G1

(
1
2
, s

)
−

∣∣∣∣∂G1

∂t

(
1
2
, s

)∣∣∣∣] g(
εM0R

d0

)
ds,

where ε > 0 is any constant such that

1− µLC1d0

R
≥ ε.

Then (1.1) has a positive solution x ∈ P 2
1 (R).
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Proof The proof of Theorem is similar to that of Theorem 2.1 in the paper
[1]. To show (1.1) has a positive 1-periodic solution we will look at

(3.6) x(t) = µ

∫ 1

0

G1(t, s)f∗
+(s, x(s)− φ1(s), x′(s)− φ′1(s)) ds,

where

f∗
+(t, v0, v1) =

{
f(t, v0, v1) + L, if (t, v0, v1) ∈ D
f(t, 0, v1) + L, if (t, v0, v1) ∈ D̃.

We will show that there exists a solution x1 to (3.6) with x1(t) ≥ φ1(t) for
t ∈ [0, 1]. If this is true then u(t) = x1(t) − φ1(t) is a positive solution of (3.6)
since for t ∈ [0, 1] we have

u(t) = µ

∫ 1

0

G1(t, s)[f∗
+(s, x1(s)− φ1(s), x′1(s)− φ′1(s)) ds − µL

∫ 1

0

G1(t, s) ds

= µ

∫ 1

0

G1(t, s)f(s, u(s), u′(s)) ds.

We concentrate our study on (3.6). Let E = (P 1
1 (R), ‖ · ‖1) and

K1 = {u ∈ P 1
1 (R) : min

t∈[0,1]
[d0u(t)− |u′(t)| ≥M0‖u‖1}.

Obviously K1 is a cone of E. Let

(3.7) Ω1 = {u ∈ P 1
1 (R) : ‖u‖1 < r}

and

(3.8) Ω2 = {u ∈ P 1
1 (R) : ‖u‖1 < R}.

Now let A1 : K1 ∩ (Ω2 \ Ω1)→ P 1
1 (R) be defined by

A1ϕ = xϕ, where ϕ ∈ K1 ∩ (Ω2 \ Ω1)

and xϕ is the unique 1-periodic solution of the equation

(3.9) x′′(t)− a2(t)x(t) + µf∗
+(t, ϕ(t) − φ1(t), ϕ′(t)− φ1

′
(t)) = 0.

First we show A1 : K1 ∩ (Ω2 \ Ω1) → K1. If ϕ ∈ K1 ∩ (Ω2 \ Ω1) and t ∈ [0, 1],
then by Lemma 2.4 we have

(3.10) (A1ϕ)(t) = µ

∫ 1

0

G1(t, s)f∗
+(s, ϕ(s)− φ1(s), ϕ′(s)− φ1

′
(s)) ds.
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The relations (2.8)–(2.11) imply⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d0(A1ϕ)(t) − |(A1ϕ)′(t)| =
= µd0

∫ 1

0
G1(t, s)f∗

+(s, ϕ(s)− φ1(s), ϕ′(s)− φ1
′
(s)) ds

− µ
∣∣∣(∫ 1

0 G1(t, s)f∗
+(s, ϕ(s)− φ1(s), ϕ′(s)− φ1

′
(s)) ds

)′ ∣∣∣
≥ µ

∫ t
0

[
d0G1(t, s)−

∣∣∂G1
∂t (t, s)

∣∣] f∗
+(s, ϕ(s)− φ1(s), ϕ′(s)− φ1

′
(s)) ds

+ µ
∫ 1

t

[
d0G1(t, s)−

∣∣∂G1
∂t (t, s)

∣∣] f∗
+(s, ϕ(s)− φ1(s), ϕ′(s)− φ1

′
(s)) ds

≥ µ
∫ t
0

(
G1(s, s) +

∣∣∂G1
∂t (s+ 0, s)

∣∣) f∗
+(s, ϕ(s)− φ1(s), ϕ′(s)− φ1

′
(s)) ds

+ µ
∫ 1

t

(
G1(s, s) +

∣∣∂G1
∂t (s− 0, s)

∣∣) f∗
+(s, ϕ(s)− φ1(s), ϕ′(s)− φ1

′
(s)) ds

≥ µM0

∫ t
0

(
G1(t, s) +

∣∣∂G1
∂t (t, s)

∣∣) f∗
+(s, ϕ(s)− φ1(s), ϕ′(s)− φ1

′
(s)) ds

+
∫ 1

t

(
G1(t, s) +

∣∣∂G1
∂t (t, s)

∣∣) f∗
+(s, ϕ(s)− φ1(s), ϕ′(s)− φ1

′
(s)) ds

≥ µM0

(∫ 1

0

(
G1(t, s) +

∣∣∂G1
∂t (t, s)

∣∣)) f∗
+(s, ϕ(s) − φ1(s), ϕ′(s)− φ1

′
(s)) ds

≥M0

(
(A1ϕ)(t) + |(A1ϕ)′(t)|) , where t ∈ [0, 1].

Hence

(3.11) d0(A1ϕ)(t) ≥ d0(A1ϕ)(t)− |(A1ϕ)′(t)| ≥M0‖A1ϕ‖1.

Consequently A1ϕ ∈ K1. So A1 : K1 ∩ (Ω2 \ Ω1)→ K1. We now show

(3.12) ‖A1ϕ‖1 ≤ ‖ϕ‖1 for ϕ ∈ K1 ∩ ∂Ω1.

To see this let ϕ ∈ K1 ∩ ∂Ω1. Then

‖ϕ‖1 = r and ϕ(t) ≥ M0r

d0
for t ∈ R.

From (3.2)–(3.3) we have

(A1ϕ)(t) + |(A1ϕ)′(t)| ≤ µψ(r + ‖φ1‖1)m1 ≤ r ≤ ‖ϕ‖1.

So (3.12) holds. Next we show

(3.13) ‖A1ϕ‖1 ≥ ‖ϕ‖1 for ϕ ∈ K1 ∩ ∂Ω2.

To see it let ϕ ∈ K1 ∩ ∂Ω2. Then ‖ϕ‖1 = R and d0ϕ(t) ≥ RM0 for t ∈ R. Let
ε be as in (3.5). From (3.3) we have

ϕ(t)− φ1(t) = ϕ(t)− µL
∫ 1

0

G1(t, s)ds ≥ ϕ(t)− µLC1M0Rd0

d0R

≥ ϕ(t)
(

1− µLC1d0

R

)
≥ εϕ(t) ≥ εRM0

d0
> 0.



On the existence of one–signed periodic solutions . . . 127

This together with (3.4)–(3.5) yields

d0‖A1ϕ‖1 ≥ d0(A1ϕ)
(

1
2

)
−

∣∣∣∣(Aϕ)′
(

1
2

)∣∣∣∣
≥ µ

∫ 1

0

(
d0G1

(
1
2
, s

)
−

∣∣∣∣∂G1

∂t

(
1
2
, s

)∣∣∣∣) τ(s)g(ϕ(s) − φ1(s)) ds

≥ µ

∫ 1

0

τ(s)
(
d0G1

(
1
2
, s

)
−

∣∣∣∣∂G1

∂t

(
1
2
, s

)∣∣∣∣) g(
εM0R

d0

)
ds ≥ d0R.

Hence we have (3.13). We will show that A1 is continuous and compact. To see
it let

G1(t, s) =

{
a1(s)y1(t) + a2(s)y2(t), 0 ≤ t ≤ s ≤ 1

b1(s)y1(t) + b2(s)y2(t), 0 ≤ s ≤ t ≤ 1

where (y1, y2) is a fundamental system of equation (2.1) and ai, bi : [0, 1] → R
are continuous for i = 1, 2. From relations (3.1)–(3.3) and properties of the
function G1 it follows that A1 is a bounded and continuous operator. Notice
that for y ∈ K1 ∩ (Ω2 \ Ω1); t1, t2 ∈ [0, 1] and t1 < t2 that

|A1y)(t2)− (A1y)(t1)| ≤
∫ 1

0

|G1(t2, s)−G1(t1, s)|ψ(R + ‖φ1‖1) ds

and

|(A1y)′(t2)− (A1y)′(t1)| ≤

≤
∫ t1

0

|b1(s)(y′1(t2)− y′1(t1)) + b2(s)(y′2(t2)− y′2(t1))|ψ(R + ‖φ1‖1) ds

+
∫ t2

t1

|b1(s)y′1(t2)− a1(s)y′1(t1) + b2(s)y′2(t2)− a2(s)y′2(t1)|ψ(R + ‖φ1‖1) ds

+
∫ 1

t2

|a1(s)(y′1(t2)− y′1(t1)) + a2(s)(y′2(t2)− y′2(t1))|ψ(R + ‖φ1‖1) ds

≤
∫ 1

0

(|y′1(t2)− y′1(t1)|+ |y′2(t2)− y′2(t1)|)h(s)ψ(R + ‖φ1‖1) ds

+ 2
∫ t2

t1

(‖y1‖1 + ‖y2‖1)h(s)ψ(R + ‖φ1‖1) ds,

where h(s) = |a1(s)|+ |a2(s)|+ |b1(s)|+ |b2(s)|.
Using the Arzela–Ascoli theorem we conclude that A1 : K1∩(Ω2\Ω1)→ K1

is compact. Theorem 1.1 implies A1 has a fixed point x ∈ K1 ∩ (Ω2 \ Ω1),
i.e. r ≤ ‖x‖1 ≤ R and x(t) ≥ M0r

d0
for t ∈ R. This completes the proof of

Theorem 3.1. �



128 Jan LIGȨZA

Theorem 3.2 Suppose that
(3.14) f : D → [0,∞) is continuous

(3.15) f(t+ 1, v0, v1) = f(t, v0, v1) for all (t, v0, v1) ∈ D,

(3.16)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
there exist a function ψ(u) such that
f(t, v0, v1) ≤ ψ(v0 + |v1|) on D,
where ψ : [0,∞)→ [0,∞) is continuous and nondecreasing and
ψ(u) > 0 for u > 0,

(3.17) there exists r such that r ≥ ψ(r)µm1,

(3.18)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
there exist function τ and g such that f(t, v0, v1) ≥ τ(t)g(v0)
for all (t, v0, v1) ∈ D, where g : [0,∞)→ [0,∞), g(u) > 0
for u > 0, g is continuous and nondecreasing and
τ : (−∞,∞)→ [0,∞) is continuous and 1-periodic,

(3.19) there exists R > 0 such that R > r and

d0R ≤ µ

∫ 1

0

τ(s)
[
d0G1

(
1
2
, s

)
−

∣∣∣∣∂G1

∂t

(
1
2
, s

)∣∣∣∣] g(M0R

d0

)
ds.

Then (1.1) has a positive solution x ∈ P 2
1 (R).

Proof The proof of Theorem 3.2 is similar to that of Theorem 3.1. LetE,Ω1,Ω2

andK1 be as in Theorem 3.1. Now let ϕ ∈ K1∩(Ω2\Ω1) and let xϕ be the unique
1-periodic solution of the equation (3.9) and let A2 : K1∩(Ω2 \Ω1)→ P 1

1 (R) be
defined by A2ϕ = xϕ. It is easy to check that A2 : K1 ∩ (Ω2 \ Ω1)→ K1, A2 is
continuous and compact, ‖A2ϕ‖1 ≤ ‖ϕ‖1 for ϕ ∈ K1 ∩ ∂Ω1 and ‖A2ϕ‖ ≥ ‖ϕ‖1
for ϕ ∈ K1 ∩ ∂Ω2. Applying Theorem 1.1 we can show that the equation (1.1)
has a positive solution x ∈ P 2

1 (R) which implies our assertion. �

Example 3.3 To illustrate the applicabillity of Theorem 3.2 we consider the
following equation

(3.20) x′′(t)− x(t) + µ(x(t) + |x′(t)|)2 = 0.

Fix

a(t) ≡ 1, τ(t) = 1, d0 =
3e− 1
2
√
e
, M0 =

1√
e
, g(u) = ψ(u) = u2,

We claim that (3.17) holds for r ≤ 2
3µ . To see this notice that µm1 ≤ 3

2µ.
Clearly

g

(
RM0

d0

)
=
RM2

0

d2
0

=
4R2

(3e− 1)2
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and

µ

∫ 1

0

τ(s)
[
d0G1

(
1
2
, s

)
−

∣∣∣∣∂G1

∂t

(
1
2
, s

)∣∣∣∣] g(M0R

d0

)
ds

=
4µR2

(3e− 1)2

∫ 1

0

[
(3e− 1)

2
√
e

G1

(
1
2
, s

)
−

∣∣∣∣∂G1

∂t

(
1
2
, s

)∣∣∣∣] ds ≥ (3e− 1)
2
√
e

R

for sufficiently large R. Thus all conditions of Theorem 3.2 are satisfied and the
equation (3.20) has a positive solution x ∈ P 2

1 (R).
It is not difficult to verify that x(t) = 1

µ is a periodic and positive solution
of the equation (3.20).

Theorem 3.4 Assume conditions (3.1)–(3.2) and (3.4). Suppose that

(3.21) 0 < a(t) < π for t ∈ [0, 1],

(3.22)

⎧⎪⎨⎪⎩
there exists C2 > 0 and r > 0 such that r ≥ µLC2d0,∫ 1

0
G2(t, s) ds ≤ C2M0 for t ∈ [0, 1] and r ≥ ψ(r + ‖φ2‖1)µm2,

where d0 and M0 have properties (2.13)–(2.16),

(3.23)

⎧⎪⎪⎨⎪⎪⎩
there exists R > 0 such that R > r and

d0R ≤ µ
∫ 1

0 τ(s)
[
d0G2

(
1
2 , s

)− ∣∣∂G2
∂t

(
1
2 , s

)∣∣] g (
εM0R
d0

)
ds,

where ε > 0 is any constant such that 1− µLC2d0
R ≥ ε.

Then (1.2) has a positive solution x ∈ P 2
1 (R).

Proof Let E,Ω1 and Ω2 be as in Theorem 3.1. Let

K2 = {u ∈ P 1
1 (R) : min

t∈[0,1]
[d0u(t)− |u′(t)|] ≥M0‖u‖1}.

Then K2 is a cone of E. Now let ϕ ∈ K2 ∩ (Ω2 \ Ω1) and let xϕ be the unique
1-periodic solution of the equation

x′′(t) + a2(t)x(t) = µf∗
+(t, ϕ(t)− φ2(t), ϕ

′(t)− φ′
2(t)),

where f∗
+ is defined by (3.6). Finally let A3 : K2∩(Ω2 \Ω1)→ P 1

1 (R) be defined
by A3ϕ = xϕ. It is not difficult to prove that A3 : K2 ∩ (Ω2 \ Ω1) → K2, A3 is
continuous and compact. The similar arguments as in Theorem 3.1 gurantee
that ‖A3ϕ‖1 ≤ ‖ϕ‖1 for ϕ ∈ K2 ∩ ∂Ω1 and ‖A3ϕ‖1 ≥ ‖ϕ‖1 for ϕ ∈ K2 ∩ ∂Ω2.

Theorems 1.1 implies that A3 has a fixed point x ∈ K2∩(Ω2\Ω1) i.e. x(t) ≥ M0r

d0
for t ∈ R. This completes the proof of Theorem 3.4. �
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In a similar way we can prove

Corollary 3.5 Assume conditions (3.14)–(3.16) and (3.18). Suppose that
(3.24) there exists r > 0 such that r ≥ ψ(r)µm2,

(3.25) there exists R > 0 such that R > r and

d0R ≤ µ

∫ 1

0

τ(t)
[
d0G2

(
1
2
, s

)
−

∣∣∣∣∂G2

∂t

(
1
2
, s

)∣∣∣∣] g(
M0R

d0

)
ds.

Then (1.2) has a positive solution x ∈ P 2
1 (R).

Example 3.6 We consider the equation

(3.26) x′′(t) + x(t) = µ| sinπt|[(x(t) + |x′(t)|)2 − 1].

It is not difficult to verify that the equation (3.26) for 0 < µ ≤ 1/5 has a
solution x such that x(t) > 0 for t ∈ R and x ∈ P 2

1 (R). To see this we
apply Theorem 3.4 with a(t) ≡ 1, L = 1, τ(t) = | sinπt|, d0 = 2(tan1

2 + 1),
M0 = cos 1/2

1+sin 1/2 , g(u) = ψ(u) = u2, φ2 = µ, C2 = 2, r = 1 and with sufficiently
large R (R > 1).

4 Negative periodic solutions

In a similar way we can prove theorems on existence of negative periodic solu-
tions of the equations (1.1) and (1.2).

Theorem 4.1 Suppose that

(4.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f : D̃ → (−∞,∞) is continuous,
f(t+ 1, v0, v1) = f(t, v0, v1) for (t, v0, v1) ∈ D̃,
there exists a constant L > 0 with
f(t, v0, v1)− L ≤ 0 for (t, v0, v1) ∈ D̃,

(4.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
there exists a function ψ(u) such that
−f(t, v0, v1) + L ≤ ψ(|v0|+ |v1|) for (t, v0, v1) ∈ D̃,
where ψ : [0,∞)→ [0,∞) is continuous
and nondecreasing and ψ(u) > 0 for u > 0,

(4.3) L − f(t, v0, v1) ≥ τ(t)g(|v0|) for (t, v0, v1) ∈ D̃, where τ and g have
property (3.4),

(4.4) there exist R > 0 and r > 0 such that (3.3) and (3.5) hold.

Then (1.1) has a negative solution x ∈ P 2
1 (R).
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Proof Let

f∗
−(t, v0, v1) =

{
f(t, v0, v1)− L, if (t, v0, v1) ∈ D̃
f(t, 0, v1)− L, if (t, v0, v1) ∈ D.

We will show that there exists a solution x2 to the following equation

(4.5) x(t) = µ

∫ 1

0

G1(t, s)f∗
−(s, x(s) + φ1(s), x

′(s) + φ
′
1(s)) ds

with x2(t) + φ1(t) < 0 for t ∈ [0, 1]. If this is true, then u(t) = x2(t) + φ1(t) is
a negative solution of the equation (1.1) since for t ∈ [0, 1] we have

u(t) = µ

∫ 1

0

G1(t, s)f(s, u(s), u′(s)) ds.

Let Ω1,Ω2 and E be as in Theorem 3.1. Now let

K3 = {u ∈ P 1
1 (R) : max

t∈[0,1]
[d0u(t) + |u′(t)|] ≤ −M0‖u‖1}.

Then K3 is a cone of E. Let ϕ ∈ K3 ∩ (Ω2 \ Ω1) and let xϕ be the unique
1-periodic solution of the equation

x′′(t)− a2(t)x(t) + µf∗
−(t, ϕ(t) + φ1(t), ϕ

′(t) + φ
′
1(t)) = 0.

Finally let A4 : K3 ∩ (Ω2 \ Ω1)→ P 1
1 (R) be defined by A4ϕ = xϕ. Then

(A4ϕ)(t) = µ

∫ 1

0

G1(t, s)f∗
−(s, ϕ(s) + φ1(s), ϕ

′(s) + φ
′
1(s)) ds

for t ∈ [0, 1]. By Lemma 2.6 we have.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d0(A4ϕ)(t) + |(A4ϕ)′(t)|
≤ µ

∫ 1

0

[
d0G1(t, s)−

∣∣∂G1
∂t (t, s)

∣∣] f∗
−(s, ϕ(s) + φ1(s), ϕ

′(s) + φ
′
1(s)) ds

= µ
∫ t
0

[
d0G1(t, s)−

∣∣∂G1
∂t (t, s)

∣∣] f∗
−(s, ϕ(s) + φ1(s), ϕ′(s) + φ1

′
(s)) ds

+ µ
∫ 1

t

[
d0G1(t, s)−

∣∣∂G1
∂t (t, s)

∣∣] f∗
−(s, ϕ(s) + φ1(s), ϕ′(s) + φ1

′
(s)) ds

≤ µ
∫ t
0

[
G1(s, s) +

∣∣∂G1
∂t (s+ 0, s)

∣∣] f∗
−(s, ϕ(s) + φ1(s), ϕ′(s) + φ1

′
(s)) ds

+ µ
∫ 1

t

[
G1(s, s) +

∣∣∂G1
∂t (s− 0, s)

∣∣] f∗
−(s, ϕ(s) + φ1(s), ϕ

′(s) + φ
′
1(s)) ds.

Hence, by (2.10)–(2.11) we get

d0(A4ϕ)(t) + |(A4ϕ)′(t)|

≤ −µM0

∫ 1

0

[
G1(t, s) +

∣∣∣∣∂G1

∂t
(t, s)

∣∣∣∣] (−f∗
−(s, ϕ(s) + φ1(s), ϕ

′(s) + φ
′
1(s))) ds,

where t ∈ [0, 1]. So

d0(A4ϕ)(t) + |(A4ϕ)′(t)| ≤ −M0‖A4ϕ‖1.
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Consequently A4 : K3 ∩ (Ω2 \ Ω1) → K3. Using arguments similar to those in
the proof of Theorem 3.1 we conclude that A4 is continuous and compact. Let
ϕ ∈ K3 ∩ ∂Ω1. Then ‖A4ϕ‖1 ≤ ‖ϕ‖1. If ϕ ∈ K3 ∩ ∂Ω2, then ‖ϕ‖1 = R and
d0ϕ(t) ≤ −RM0.

Now let ε be as in (3.5). Then by (3.3) we have⎧⎨⎩ ϕ(t) ≤ ϕ(t) + φ1(t) ≤ ϕ(t) + µL
∫ 1

0 G1(t, s) ds ≤ ϕ(t) + µLM0C1

≤ −RM0
d0

+ µLM0C1Rd0
d0R

= −RM0
d0

(
1− µLC1d0

R

)
≤ − εRM0

d0
< 0.

(for t ∈ [0, 1]). This together with (3.5) and (4.3) yields⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−d0‖A4ϕ‖1 ≤ d0(A4ϕ)
(

1
2

)
+

∣∣(A4ϕ)′
(

1
2

)∣∣
≤ µ

∫ 1

0

[
d0G1

(
1
2 , s

)− ∣∣∂G1
∂t

(
1
2 , s

)∣∣] [f(s, ϕ(s) + φ1(s), ϕ
′(s) + φ

′
1(s))− L

]
ds

≤ −µ ∫ 1

0

[
d0G1

(
1
2 , s

)− ∣∣∂G1
∂t

(
1
2 , s

)∣∣] τ(s)g(|ϕ(s) + φ1(s)|) ds
≤ −µ ∫ 1

0

[
d0G1

(
1
2 , s

)− ∣∣∂G1
∂t

(
1
2 , s

)∣∣] τ(s)g (
εRM0
d0

)
ds ≤ −d0R.

So ‖A4ϕ‖1 ≥ R = ‖ϕ‖1. By Theorem 1.1 the operator A4 has at least one fixed
point in the set K3 ∩ (Ω2 \Ω1), which means that (1.1) has a negative solution
x such that x ∈ P 2

1 (R). This completes the proof of Theorem 4.1. �

By the same way we can prove the following

Corollary 4.2 Suppose that

(4.6) f : D̃ → (−∞, 0] is continuous

(4.7) f(t+ 1, v0, v1) = f(t, v0, v1) for all (t, v0, v1) ∈ D̃,
(4.8) there exists a function ψ such that

|f(t, v0, v1)| ≤ ψ(v0 + |v1|) on D̃,

where ψ : [0,∞)→ [0,∞) is continuous and nondecreasing and ψ(u) > 0
for u > 0,

(4.9) there exist functions τ and g such that

−f(t, v0, v1) ≥ τ(t)g(|v0|) for (t, v0, v1) ∈ D̃,

where τ and g have property (3.4),

(4.10) there exist constants r and R having properties (3.17) and (3.19).

Then (1.1) has a negative solution x ∈ P 2
1 (R).

Theorem 4.3 Assume that conditions (4.1)–(4.3), (3.21)–(3.23) are satisfied.
Then (1.2) has a negative solution x ∈ P 2

1 (R).
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Proof The proof of Theorem 4.3 is similar to that of Theorem 4.1. Let Ω1,Ω2,
f∗− and E be as in Theorem 4.1. Let

K4 =
{
u ∈ P 1

1 (R) : max
t∈[0,1]

[d0u(t) + |u′(t)|] ≤ −M0‖u‖1
}
.

Obviously K4 is a cone of E. We will show there exists a solution x3 of the
equation

x(t) = µ

∫ 1

0

G2(t, s)f∗
−(s, x(s) + φ2(s), x

′(s) + φ
′
2(s)) ds

with x3(t) + φ2(t) < 0 for t ∈ [0, 1]. Let ϕ ∈ K4 ∩ (Ω2 \ Ω1) and let xϕ be the
unique 1-periodic solution of the equation

x′′(t) + a2(t)x(t) = µf∗
−(t, ϕ(t) + φ2(t), ϕ

′(t) + φ
′
2(t)).

Finally, let A5 : K4 ∩ (Ω2 \ Ω1)→ P 1
1 (R) be defined by A5ϕ = xϕ. Then

(A5ϕ)(t) = µ

∫ 1

0

G2(t, s)f∗
−(s, ϕ(s) + φ2(s), ϕ

′(s) + φ
′
2(s)) ds

for t ∈ [0, 1]. By Lemma 2.7 we have

d0(A5ϕ)(t) + |(A5ϕ)′(t)|

≤ −µM0

∫ 1

0

[
G2(t, s) +

∣∣∣∣∂G2

∂t
(t, s)

∣∣∣∣] (−f∗
−(s, ϕ(s) + φ2(s), ϕ

′(s) + φ2(s))
)
ds,

where t ∈ [0, 1]. So

d0(A5ϕ)(t) + |(A5ϕ)′(t)| ≤ −M0‖A5ϕ‖1.
Consequently A5 : K4 ∩ (Ω2 \ Ω1) → K4. Also A5 is continuous and compact.
Let ϕ ∈ K4∩∂Ω1. Then ‖A5ϕ‖1 ≤ ‖ϕ‖1. If ϕ ∈ K4∩∂Ω2, then d0ϕ(t) ≤ −RM0

and

ϕ(t) ≤ ϕ(t) + φ2(t) ≤
−RM0

d0

(
1− µLC2d0

R

)
≤ −εRM0

d0

< 0,

where ε is as in (3.22). This together with (4.3) yields

−d0‖A5ϕ‖1 ≤ d0(A5ϕ)
(

1
2

)
+

∣∣∣∣(A5ϕ)′
(

1
2

)∣∣∣∣
≤ −µ

∫ 1

0

[
d0G2

(
1
2
, s

)
−

∣∣∣∣∂G2

∂t

(
1
2
, s

)∣∣∣∣] [f(s, ϕ(s)+φ2(s), ϕ
′(s)+φ2(s))−L] ds

≤ −µ
∫ 1

0

[
d0G2

(
1
2
, s

)
−

∣∣∣∣∂G2

∂t

(
1
2
, s

)∣∣∣∣] τ(s)g(
εRM0

d0

)
ds ≤ −d0R.

Thus ‖A5ϕ‖1 ≥ ‖ϕ‖1. By Theorem 1.1 the operator A5 has at least on fixed
point in the set K4 ∩ (Ω2 \ Ω1) which means that (1.2) has a negative solution
x such that x ∈ P 2

1 (R). This completes the proof of Theorem 4.3. �
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In the simlar way we can prove the following

Corollary 4.4 Assume that conditions (4.6)–(4.9), (3.24)–(3.25) are satisfied.
Then (1.2) has a negative solution x ∈ P 2

1 (R).
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Abstract

In this paper we consider a method by which a skew-symmetric tensor
field of type (1,2) in Mn can be extended to the tensor bundle T 0

q (Mn)
(q > 0) on the pure cross-section. The results obtained are to some extend
similar to results previously established for cotangent bundles T 0

1 (Mn).
However, there are various important differences and it appears that the
problem of lifting tensor fields of type (1,2) to the tensor bundle T 0

q (Mn)
(q > 1) on the pure cross-section presents difficulties which are not en-
countered in the case of the cotangent bundle.

Key words: Lift; tensor bundle; pure tensor; operator Yano–Ako.
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1 Introduction

Let Mn be a differentiable manifold of class C∞ and finite dimension n, and let
T 0
q (Mn) (q > 0) be the bundle over Mn of tensors of type (0, q):

T 0
q (Mn) =

⋃
P∈Mn

T 0
q (P ),

where T 0
q (P ) denotes the tensor spaces of tensors of type (0, q) at P ∈Mn.

*Supported by The Scientific and Technological Council of Turkey with number 105T551.
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i. π : T 0
q (Mn)→Mn is the projection T 0

q (Mn) onto Mn.

ii. The indices i, j, . . . run from 1 to n, the indices ı̄, j̄, . . . from n + 1 to
n + nq = dimT 0

q (Mn) and the indices I = (i, ı̄), J = (j, j̄), . . . from 1 to
n+ nq. The so-called Einsteins summation convention is used.

iii. !(M) is the ring of real-valued C∞ functions on Mn. T pq (Mn) is the
module over !(M) of C∞ tensor fields of type (p, q).

iv. Vector fields in Mn are denoted by V,W, . . . The Lie derivation with re-
spect to V is denoted by LV .

Denoting by xj the local coordinates of P = π(P̃ ) (P̃ ∈ T 0
q (Mn)) in a

neighborhood U ⊂ Mn and if we make (xj , tj1...jq) = (xj , xj̄) correspond to
the point P̃ ∈ π−1(U), we can introduce a system of local coordinates (xj , xj̄)
in a neighborhood π−1(U) ⊂ T 0

q (Mn), where tj1...jq
def= xj̄ are components of

t ∈ T 0
q (P ) with respect to the natural frame ∂i.

If α ∈ T 0
q (Mn), it is regarded, in a natural way (by contraction), as a function

in T 0
q (Mn), which we denote by iα. If α has the local expression α = αj1...jq∂j1⊗

. . . ⊗ ∂jq in a coordinate neighborhood U(xi) ⊂ Mn, then iα has the local
expression iα = α(t) = αj1...jq tj1...jq with respect to the coordinates (xj , xj̄) in
π−1(U).

Suppose that A ∈ T 0
q (Mn). We define the vertical lift VA ∈ T 1

0 (T 0
q (Mn)) of

A to T 0
q (Mn) (see [1]) by VA(iα) = α(A) ◦ π = V (α(A)), where V (α(A)) is the

vertical lift of the function α(A) ∈ !(Mn). The vertical lift VA of A to T 0
q (Mn)

has components
VA =

(
VAj

V Aj̄

)
=

(
0

Aj1...jq

)
(1.1)

with respect to the coordinates (xj , xj̄) in T 0
q (Mn).

We define the complete lift CV = L̄V of V to T 0
q (Mn) (see [1]) by CV (iα) =

i(LV α), α ∈ T q0 (Mn). The complete lift CV of V to T 0
q (Mn) has components

CV k = V k, CV k̄ = −
q∑

λ=1

tk1...s...kq∂kλ
V s (1.2)

with respect to the coordinates (xk, xk̄) in T 0
q (Mn).

Suppose that there is given a tensor field ξ ∈ T 0
q (Mn). Then the corre-

spondence x → ξx, ξx being the value of ξ at x ∈ Mn, determines a mapping
σξ : Mn → T 0

q (Mn) such that π ◦ σξ = idMn , and the n dimensional submani-
fold σξ(Mn) of T 0

q (Mn) is called the cross-section determined by ξ. If the tensor
field ξ has the local components ξk1...kq (xk), the cross-section σξ(Mn) is locally

expressed by xk = xk, xk̄ = ξk1...kq (xk) with respect to the coordinates (xk, xk̄)
in T 0

q (Mn). Differentiating by xj , we see that the n tangent vector fields Bj to
σξ(Mn)have components

(BKj ) =
(
∂xK

∂xj

)
=

(
δkj

∂jξk1...kq

)
(1.3)
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with respect to the natural frame {∂k, ∂k̄} in T 0
q (Mn).

On the other hand, the fibre is locally expressed by xk = const, tk1...kq =
tk1...kq , tk1...kq being consider as parameters. Thus, on differentiating with re-
spect to xj̄ = tj1...jq , we see that the nq tangent vector fields Cj̄ to the fibre
have components

(CKj̄ ) =
(
∂xK

∂xj̄

)
=

(
0

δj1k1 . . . δ
jq
kq

)
(1.4)

with respect to the natural frame {∂k, ∂k̄} in T 0
q (Mn).

We consider in π−1(U) ⊂ T 0
q (Mn), n+nq local vector fields Bj and Cj̄ along

σξ(Mn). They form a local family of frames {Bj, Cj̄} along σξ(Mn), which is
called the adapted (B,C)-frame of σξ(Mn) in π−1(U). Taking account of (1.2),
we can easily prove that , the complete lift CV has along σξ(Mn) components
of the form

CV =
(
C Ṽ j

C Ṽ j̄

)
=

(
V j

−(LV ξ)j1...jq

)
(1.5)

with respect to the adapted (B,C)-frame [2], where (LV ξ)j1...jq are local com-
ponents of LV ξ in Mn.

2 The vertical-vector lift of a tensor field of type (1,1)

Let ϕ ∈ T 1
1 (Mn). Making use of the Jacobian matrix of the coordinate trans-

formation in T 0
q (Mn):

xi
′
= xi

′
(xi), xī

′
= t(i′) = A

(i)
(i′)t(i)

= A
(i)
(i′)x

ı̄
(
t(i) = ti1...iq , A

(i)
(i′) = Ai1i′1

. . . A
iq
i′q
, Aii′ =

∂xi
∂xi′

)
we can define a vector field γϕ ∈ T 1

0 (T 0
q (Mn)) [3]:

γϕ = ((γϕ)J ) =
(

0
tji2...iqϕ

j
i1

)
,

where ϕji1 are local components of ϕ in Mn. Clearly, we have (γϕ)(Vf) = 0 for
any f ∈ !(Mn), so that γϕ is a vertical vector field. We call γϕ the vertical-
vector lift of the tensor field ϕ ∈ T 1

1 (Mn) to T 0
q (Mn). We can easily verify that

the vertical-vector lift γϕ has along σξ(Mn) components

γϕ = ((γϕ̃)I) =
(

0
ξji2...iqϕ

j
i1

)
with respect to the adapted (B,C)-frame, where ξi1...iq are local components of
ξ in Mn.

Let S be an element of T 1
2 (Mn) with local components Skij in Mn. In a

similar way, if γ((LV1S)V2), γ((LV2S)V1) and γ(S[V1,V2]) are vertical-vector lifts
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of (LV1S)V2 = (vm2 (LV1S)jim) ∈ T 1
1 (Mn), (LV2S)V1 = (vm1 (LV2S)jim) ∈ T 1

1 (Mn)
and S[V1,V2] = (Sjim[V1, V2]m) ∈ T 1

1 (Mn), respectively, then γ((LV1S)V2),
γ((LV2S)V1) and γ(S[V1,V2]) have along σξ(Mn) respectively components of the
form

γ((LV1S)V2) = (γ((L̃V1S)V2)
I) =

(
0

ξji2...iqv
m
2 (LV1S)ji1m

)
,

γ((LV2S)V1) = (γ((L̃V2S)V1)
I) =

(
0

ξji2...iqv
m
1 (LV2S)ji1m

)
,

γ(S[V1,V2]) = (γ(S̃[V1,V2])
I) =

(
0

ξji2...iqS
j
i1m

[V1, V2]m

)
with respect to the adapted (B,C)-frame, where [V1, V2] = LV1V2.

3 The complete lift of a skew-symmetric tensor field of
type (1,2)

Suppose now that S ∈ T 1
2 (Mn) is a skew-symmetric tensor field of type (1,2)

with local components Skij , that is S(V,W ) = −S(W,V ), ∀V,W ∈ T 1
0 (Mn). A

tensor field ξ ∈ T 0
q (Mn) is called pure with respect to S ∈ T 1

2 (Mn), if [4]:

{
Srk1j1ξr...jq = . . . = Srk1jqξj1...r,

Srj1k2ξr...jq = . . . = Srjqk2ξj1...r.

In particular, covector fields will be considered to be pure. Let
∗
T 0
q (Mn)denotes a

module of all the tensor fields ξ ∈ T 0
q (Mn) which are pure with respect to S. We

consider a pure cross-section σSξ (Mn) determined by ξ ∈
∗
T 0
q (Mn). We observe

that the local vector fields

CX(i) =C (
∂

∂xi
) =C (δhi

∂

∂xh
) =

(
δhi
0

)
and

VX(ı̄) = V (dxi1 ⊗ . . .⊗ dxiq ) = V (δi1h1
. . . δ

iq
hq
dxh1 ⊗ . . .⊗ dxhq) =

(
0

δi1h1
. . . .δ

iq
hq

)
i = 1, . . . , n, ı̄ = n+ 1, . . . , n+ nq

span the module of vector fields in π−1(U) ⊂ T 0
q (Mn). Hence any tensor field

is determined in π−1(U) by its action of CX(i) and VX(ı̄). Then we define a
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tensor field CS ∈ T 1
2 (T 0

q (Mn)) along the pure cross-section σSξ (Mn) by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

CS(CV1,
CV2) = C(S(V1, V2))− γ((LV2S)V1)

+ γ((LV1S)V2) + γ(S[V1,V2]), ∀V1, V2 ∈ T 1
0 (Mn) (i)

CS(V A,C V2) = V (SV2(A)), ∀A ∈ T 1
q (Mn), (ii)

CS(CV1,
VB) = V (SV1(B)), ∀B ∈ T 1

q (Mn), (iii)
CS(V A,V B) = 0, (iv)

(3.1)

where SV2(A), SV1(B) ∈ T 0
q (Mn) and call CS the complete lift of S ∈ T 1

2 (Mn)
to T 0

q (Mn) along σSξ (Mn).
Let C S̃JL1L2

be components of CS with respect to the adapted (B,C)-frame of

the pure cross-section σSξ (Mn). From (1.1), (1.3), (1.4) and VA = VÃjBj+VÃj̄Cj̄,

we easily obtain VÃj = 0, VÃj̄ = VAj̄ = Aj1...jq . Thus the vertical lift VA also
has components of the form (1.1) with respect to the adapted (B,C)-frame of
σSξ (Mn). Then, from (3.1) we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C S̃JL1L2
C Ṽ L1C

1 Ṽ L2
2 =C (S̃(V1, V2))J − γ((L̃V2S)V1)

J

+ γ((L̃V1S)V2)J + γ(S̃[V1,V2])J , (i)
C S̃JL1L2

V ÃL1C Ṽ L2
2 =V (SV2(Ã))J (ii)

C S̃JL1L2
C Ṽ L1V

1 B̃L2 =V (SV1(B̃))J , (iii)
C S̃JL1L2

V ÃL1V B̃L2 = 0, (iv)

(3.2)

where

V (SV2 (̃A))J =
(

0
Smj1lV

l
2Amj2...jq

)
, V (SV1 (̃B))J =

(
0

Smlj1V
l
1Bmj2...jq

)
.

When J = j, from (i) of (3.2) we have

C S̃jl1l2 = Sjl1l2 ,
C S̃j

l̄1l2
= C S̃j

l1 l̄2
= C S̃j

l̄1 l̄2
= 0,

where xl̄a = tr1...rq , a = 1, 2.
When J = j̄, (i) of (3.2) reduces to

CS̃ j̄l1l2
C Ṽ l11

C Ṽ l22 +C S̃ j̄
l̄1l2

C Ṽ l̄11
C Ṽ l22 +C S̃ j̄

l1 l̄2
C Ṽ l11

C Ṽ l̄22

+ C S̃ j̄
l̄1 l̄2

C Ṽ l̄11
C Ṽ l̄22 + ξij2...jqv

m
1 (LV2S)ij1m

− ξij2...jqvm2 (LV1S)ij1m − ξij2...jqSij1m[V1, V2]m = C(S̃(V1, V2))j̄
(3.3)

Now, using the Generalized Yano–Ako operator we will investigate components
CS̃ j̄l1l2 . The Generalized Yano–Ako operator on the pure module

∗
T 0
q (Mn) is

given by [4], [5].

(ΦSξ)l1l2j1...jq = Sml1l2∂mξj1...jq − ∂l1(Smj1l2ξmj2...jq )− ∂l2(Sml1j1ξmj2...jq )

+
q∑

a=1

(∂jaS
m
l1l2)ξj1...m...jq .
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After some calculations we have

V l22 V l11 (ΦS(V1,V2)ξ)l1l2j1...jq + V l11 Sml1j1LV2ξmj2...jq + V l22 Smj1l2LV1ξmj2...jq

+ V l22 (LV1S
m
j1l2)ξmj2...jq − V l11 (LV2S

m
j1l1)ξmj2...jq + (LV1V2)l1Smj1l1)ξmj2...jq

= LS(V1,V2)ξj1...jq (3.4)

for any V1, V2 ∈ T 1
0 (Mn). Using (1.5), from (3.4) we have

((ΦS(V1,V2)ξ)l1l2j1...jq)
C Ṽ l11

C Ṽ l22 − Sr1l1j1δr2j2 . . . δ
rq

jq
C Ṽ l11

C Ṽ l̄22

− Sr1j1l2δr2j2 . . . δ
rq

jq
C Ṽ l̄11

C Ṽ l22 + V l22 (LV1S
m
j1l2)ξmj2...jq − V l11 (LV2S

m
j1l1)ξmj2...jq

+ (LV1V2)l1Smj1l1ξmj2...jq = −C(S̃(V1, V2))j̄. (3.5)

Comparing (3.3) and (3.5), we get

C S̃ j̄l1l2 = −(ΦSξ)l1l2j1...jq .

By similar devices, from (ii)–(iv) of (3.2) we have also

C S̃ j̄
l̄1 l̄2

= 0, C S̃ j̄
l̄1l2

= Sr1j1l2δ
r2
j2
. . . δ

rq

jq
, C S̃ j̄

l1 l̄2
= Sr1l1j1δ

r2
j2
. . . δ

rq

jq
.

Thus the complete lift CS of S ∈ T 1
2 (Mn) (S(V,W ) = −S(W,V )) has along the

pure cross-section σSξ (Mn) components⎧⎪⎨⎪⎩
C S̃jl1l2 = Sjl1l2 ,

CS̃j
l̄1l2

= C S̃j
l1 l̄2

= C S̃j
l̄1 l̄2

=C S̃ j̄
l̄1 l̄2

= 0
C S̃ j̄

l̄1l2
= Sr1j1l2δ

r2
j2
. . . δ

rq

jq
, C S̃ j̄

l1 l̄2
= Sr1l1j1δ

r2
j2
. . . δ

rq

jq
,

C S̃ j̄l1l2 = −(ΦSξ)l1l2j1...jq

(3.6)

with respect to the adapted (B,C)-frame of σSξ (Mn), where ΦSξ is the Gener-
alized Yano–Ako operator.

Remark 1 CS in the form (3.6) is unique solution of (3.1). Therefore, if
∗
S is

element of T 1
2 (T 0

q (Mn)), such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C
∗
S(CV1,

C V2) =C (S(V1, V2))− γ((LV2S)V1)
+ γ((LV1S)V2) + γ(S[V1,V2]),
C

∗
S(V A,C V2) =V (SV2(A)),

C
∗
S(CV1,

V B) =V (SV1(B)),
C

∗
S(V A,V B) = 0,

then
∗
S = CS.

Remark 2 The equation (3.1) is a useful extension of the equation CV (iα) =
i(LV α), α ∈ T q0 (Mn) (see §1) to tensor fields of type (1,2) along the pure cross-
section σSξ (Mn).
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In the case ∂mξj1...jq = 0, (B,C)-frame is considered as a natural frame
{∂h, ∂h̄} of σSξ (Mn). Then, from (3.6) we obtain components of CS along the
pure cross-section with respect to the natural frame {∂h, ∂h̄} of σSξ (Mn) in
π−1(U) (see [5]). The diagonal and horizontal lifts for tensor fields of special
kinds to the tensor bundle have been studied in [6]–[8].
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Abstract

The measurability of the family, made up of the family of plane pairs
and the family of lines in 3-dimensional space A3, is stated and its density
is given.
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1 Introduction

A measure on a family of geometric objects can be introduced by assigning to
each object a point of an auxiliary space and considering a suitable measure
on that space. In general the dimension of the auxiliary space is equal to the
number of parameters on which the geometric objects depend. A basic problem
is to specify measures which are invariant with respect to a given group of
transformations which map the family onto itself.

This problem was first considered by Crofton [3] who specified the invariant
measure on the family of all straight lines in Euclidean 2-space E2. This was
extended to E3 by Deltheil [4] and Chern [1] first considered families of geometric
objects in projective space.

Santaló [9] calculated measures of certain families of varieties with respect
to three different groups and found that these were equal. Stoka [10] studied the
family of parabolas. He proved that a family is measurable if it is measurable
with respect to its maximal group of invariance

*This work has been subsidized by the M.U.R.S.T.

143



144 Grazia RAGUSO, Luigia RELLA

However Cirlincione [2] found a measurable family of varieties even though
the family was not measurable with respect to the maximal group of invariance.
This proves that the Stoka’s condition is not necessary.

In Section 2 we provide background and definitions and in Section 3 we
prove that the family of varieties, where each variety is a pair consisting of two
hyperplanes and a straight line in 3-dimensional affine space A3 is measurable.

2 Background

Let Hn be an n-dimensional space with coordinates x1, x2, . . . , xn in which a
Lie group of transformations acts.

Let Gr be one of its subgroups defined by the equations

yi = fi(x1,x2, . . . , xn; a1, a2, . . . , ar) (i = 1, 2, . . . , n) (#)

where a1, a2, . . . , ar are basic parameters.

Definition 1 The function F (x1,x2, . . . , xn) is an integral invariant function of
the group (#), if∫

Ax

F (x1, x2, . . . , xn) dx1dx2 . . . dxn =
∫
Ay

F (y1y2, . . . , yn) dy1dy2 . . . dyn)

for each measurable set of points Ax of the space Hn.

Theorem 1 The integral invariant functions of the group (#) are the solutions
of the following Deltheil’s system of partial differential equations:

n∑
i=1

∂

∂xi

[
ξih(x)F (x)

]
= 0 (h = 1, 2, . . . , r),

where ξih(x) are the coefficients of the infinitesimal transformations of the group
(#) (see [4], p. 28).

Definition 2 A measurable Lie group of transformations is a group which ad-
mits only one integral invariant function (up to a multiplicative constant).

Let G be a group which leaves globally invariant a family ! of varietes in
Hn. To G there is associated a group H (isomorphic to G) of transformations
acting on the (auxiliary) space of parameters of the family.

Definition 3 A family ! is measurable with respect to G if H is measurable in
the sense of Definition 2. If Φ is its integral invariant function, then the measure
of ! with respect to the group G is given by

µG =
∫
Aα

Φ(α1, α2, . . . , αq) dα1dα2 . . . dαq,

where Aα is the set of points of the auxiliary space which corresponds to the
family !.
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Definition 4 A family ! of varieties is measurable if the measures with respect
to every group of invariance of the family are equal, if they exist.

Theorem 2 (Stoka’s first condition) If the group H associated to the max-
imal group of invariance of ! (where the only transformation, which leaves
invariant each element of the family, is the identity) is measurable, the family
is measurable.

Theorem 3 (Stoka’s second condition) If H is not measurable and there
are two measurable subgroups with different integral invariant functions, then !
is not measurable.

3 Measurability of the family !10

Theorem 4 The family of varieties,where each variety is consisted of two planes
and a straight line in 3-dimensional affine space A3, is measurable.

Let us consider the family of plane pairs and the family of lines in the affine
space A3 (suppose that planes and lines are in general position)

!10 :

⎧⎪⎪⎨⎪⎪⎩
b1x1 + b2x2 + b3x3 = 1,
c1x1 + c2x2 + c3x3 = 1,
x1 = l1x3 + q1
x2 = l2x3 + q2

which depend on 10 parameters b1, b2, b3, c1, c2, c3, l1, l2, q1, q2.
Let G12 be the affinity group given by the equations

G12 :

⎧⎨⎩ x1 = p11x
′
1 + p12x

′
2 + p13x

′
3 + α1

x2 = p21x
′
1 + p22x

′
2 + p23x

′
3 + α2

x3 = p31x
′
1 + p32x

′
2 + p33x

′
3 + α3

and let
∑3

i=1 biαi �= 1,
∑3

i=1 ciαi �= 1.
We put

X =

⎛⎝ x1

x2

x3

⎞⎠ , B =

⎛⎝ b1
b2
b3

⎞⎠ , C =

⎛⎝ c1
c2
c3

⎞⎠ ,

L =

⎛⎝ l1
l2
1

⎞⎠ , Q =

⎛⎝ q1
q2
0

⎞⎠ , X ′ =

⎛⎝ x′1
x′2
x′3

⎞⎠ ,

P = (pij) (i, j = 1, 2, 3) with detP �= 0, A =

⎛⎝ α1

α2

α3

⎞⎠
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so that we obtain

!10 : tB ·X = 1, tC ·X = 1, X = L · x3 +Q (1)

G12 : X = P ·X ′ +A

Now we see how the 10 parameters of the family !10 change by applying
any transformation T of G12.

With a similar meaning of B′, C′, L′, Q′ the new variety is given by the
equations

tB′ ·X ′ = 1, tC′ ·X ′ = 1 (2)

X ′ = L′ · x′3 +Q′. (3)

From (1) we have

tB ·X = tB · (P ·X ′ +A) = tB · P ·X ′ + tB · A = 1
tC ·X = tC · (P ·X ′ +A) = tC · P ·X ′ + tC ·A = 1

hence
tB · P ·X ′ = 1− tB ·A, tC · P ·X ′ = 1− tC · A.

Finally, dividing by 1− tB · A and 1− tC ·A respectively, we obtain

1
1− tB · A (tB · P )X ′ = 1,

1
1− tC · A (tC · P )X ′ = 1. (4)

In the same way we obtain

X = L · x3 +Q⇒ P ·X ′ +A = L · (p31x
′
1 + p32x

′
2 + p33x

′
3 + α3) +Q

⇒ P ·X ′ = L · (p31x
′
1 + p32x

′
2 + p33x

′
3 + α3) +Q−A

i.e.⎛⎝ p11 p12 p13

p21 p22 p23

p31 p32 p33

⎞⎠ ·
⎛⎝ x′1
x′2
x′3

⎞⎠ =

⎛⎝ l1
l2
1

⎞⎠ · (p31x
′
1 + p32x

′
2 + p33x

′
3 + α3)+

⎛⎝ q1 − α1

q2 − α2

0− α3

⎞⎠
or equivalently

p11x
′
1 + p12x

′
2 + p13x

′
3 = l1(p31x

′
1 + p32x

′
2 + p33x

′
3) + l1α3 + (q1 − α1)

p21x
′
1 + p22x

′
2 + p23x

′
3 = l2(p31x

′
1 + p32x

′
2 + p33x

′
3) + l2α3 + (q2 − α2)

p33x
′
3 = p33x

′
3 + α3 + (0− α3)

hence

(p11 − l1p31)x′1 + (p12 − l1p32)x′2 = (l1p33 − p13)x′3 + l1α3 + (q1 − α1)
(p21 − l2p31)x′1 + (p22 − l2p32)x′2 = (l2p33 − p23)x′3 + l2α3 + (q2 − α2)

p33x
′
3 = p33x

′
3
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Omitting the last identity and using the matrix form, we have(
p11 − l1p31 p12 − l1p32

p21 − l2p31 p22 − l2p32

)(
x′1
x′2

)
=

(
l1p33 − p13

l2p33 − p23

)
x′3+

(
l1
l2

)
α3+

(
q1 − α1

q2 − α2

)
(5)

Putting

R =
(
p11 − l1p31 p12 − l1p32

p21 − l2p31 p22 − l2p32

)
,

we have

R−1 =
1
�

(
p22 − l2p32 −p12 + l1p32

−p21 + l2p31 p22 − l1p31

)
where

" = ‖R‖ = (p11 − l1p31)(p22 − l2p32)− (p12 − l2p32)(p21 − l2p31).

Then we can write (5) as(
x′1
x′2

)
= R−1

(
l1p33 − p13

l2p33 − p23

)
x′3 +R−1

[(
l1
l2

)
α3 +

(
q1 − α1

q2 − α2

)]
or (

x′1
x′2

)
=

1
�

(
p22 − l2p32 −p12 + l1p32

−p21 + l2p31 p11 − l1p31

)
·
(
l1p33 − p13

l2p33 − p23

)
x′3

+
1
�

(
p22 − l2p32 −p12 + l1p32

−p21 + l2p31 p11 − l1p31

)
·
(
l1α3 + q1 − α1

l2α3 + q2 − α2

)
(6)

By comparing (2) and (3) with (4) and (6) respectively, we have the con-
nections between the new parameters b′1, b′2, b′3, c′1, c′2, c′3, l′1, l′2, q′1, q′2 and the
initial ones:

b′1 =
3∑
i=1

bipi1 · 1
1−∑3

i=1 biαi
b′2 =

3∑
i=1

bipi2 · 1
1−∑3

i=1 biαi

b′3 =
3∑
i=1

bipi3 · 1
1−∑3

i=1 biαi
c′1 =

3∑
i=1

cipi1 · 1
1−∑3

i=1 ciαi

c′2 =
3∑
i=1

cipi2 · 1
1−∑3

i=1 ciαi
c′3 =

3∑
i=1

cipi3 · 1
1−∑3

i=1 ciαi
(7)

l′1 =
1
� [(p22 − l2p32)(l1p33 − p13) + (−p12 + l1p32)(l2p33 − p23)]

l′2 =
1
� [(−p21 + l2p31)(l1p33 − p13) + (p11 − l1p31)(l2p33 − p23)]

q′1 =
1
� [(p22 − l2p32)(l1α3 + q1 − α1) + (−p12 + l1p32)(l2α3 + q2 − α2)]

q′2 =
1
� [(−p21 + l2p31)(l1α3 + q1 − α1) + (p11 − l1p31)(l2α3 + q2 − α2)]
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In the 10-dimensional parameter space A10, (7) are the equations of group
H12 which is associated to G12 (operating in 3-dimensional space A3).

Also group H12 depends on twelve parameters p11, p21, p31, p12, p22, p32,
p13, p23, p33, α1, α2, α3 and the unit o ∈ H12 (as for G12) corresponds to the
values of the parameters

pij =
{

1 if i = j
0 if i �= j

and αi = 0 (i, j = 1, 2, 3).

Now we construct the matrix whose elements are the coefficients of the in-
finitesimal transfomations of H12 and we note that the columns of this matrix
are the derivates of b′1, b′2, b′3, c′1, c′2, c′3, l′1, l′2, q′1, q′2 with respect to parameters
pij , i, j = 1, 2, 3 and αi, i = 1, 2, 3:(

∂b′1
∂p11

)
o

= b1,
(
∂b′2
∂p11

)
o

= 0,
(
∂b′3
∂p11

)
o

= 0,(
∂b′1
∂p21

)
o

= b2,
(
∂b′2
∂p21

)
o

= 0,
(
∂b′3
∂p21

)
o

= 0,(
∂b′1
∂p31

)
o

= b3,
(
∂b′2
∂p31

)
o

= 0,
(
∂b′3
∂p31

)
o

= 0,(
∂b′1
∂p12

)
o

= 0,
(
∂b′2
∂p12

)
o

= b1,
(
∂b′3
∂p12

)
o

= 0,(
∂b′1
∂p22

)
o

= 0,
(
∂b′2
∂p22

)
o

= b2,
(
∂b′3
∂p22

)
o

= 0,(
∂b′1
∂p32

)
o

= 0,
(
∂b′2
∂p32

)
o

= b3,
(
∂b′3
∂p32

)
o

= 0,(
∂b′1
∂p13

)
o

= 0,
(
∂b′2
∂p13

)
o

= 0,
(
∂b′3
∂p13

)
o

= b1,(
∂b′1
∂p23

)
o

= 0,
(
∂b′2
∂p23

)
o

= 0,
(
∂b′3
∂p23

)
o

= b2,(
∂b′1
∂p33

)
o

= 0,
(
∂b′2
∂p33

)
o

= 0,
(
∂b′3
∂p33

)
o

= b3,(
∂b′1
∂α1

)
o

= b21,
(
∂b′2
∂α1

)
o

= b2b1,
(
∂b′3
∂α1

)
o

= b3b1,(
∂b′1
∂α2

)
o

= b1b2,
(
∂b′2
∂α2

)
o

= b22,
(
∂b′3
∂α2

)
o

= b3b2,(
∂b′1
∂α3

)
o

= b1b3,
(
∂b′2
∂α3

)
o

= b2b3,
(
∂b′3
∂α3

)
o

= b23,(
∂c′1
∂p11

)
o

= c1,
(
∂c′2
∂p11

)
o

= 0,
(
∂c′3
∂p11

)
o

= 0,(
∂c′1
∂p21

)
o

= c2,
(
∂c′2
∂p21

)
o

= 0,
(
∂c′3
∂p21

)
o

= 0,(
∂c′1
∂p31

)
o

= c3,
(
∂c′2
∂p31

)
o

= 0,
(
∂c′3
∂p31

)
o

= 0,(
∂c′1
∂p12

)
o

= 0,
(
∂c′2
∂p12

)
o

= c1,
(
∂c′3
∂p12

)
o

= 0,(
∂c′1
∂p22

)
o

= 0,
(
∂c′2
∂p22

)
o

= c2,
(
∂c′3
∂p22

)
o

= 0,(
∂c′1
∂p32

)
o

= 0,
(
∂c′2
∂p32

)
o

= c3,
(
∂c′3
∂p32

)
o

= 0,(
∂c′1
∂p13

)
o

= 0,
(
∂c′2
∂p13

)
o

= 0,
(
∂c′3
∂p13

)
o

= c1,
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(
ϑc′1
∂p23

)
o

= 0,
(
∂c′2
∂p23

)
o

= 0,
(
∂c′3
∂p23

)
o

= c2,(
∂c′1
∂p33

)
o

= 0,
(
∂c′2
∂p33

)
o

= 0,
(
∂c′3
∂p33

)
o

= c3,(
∂c′1
∂α1

)
o

= c21,
(
∂c′2
∂α1

)
o

= c2c1,
(
∂c′3
∂α1

)
o

= c3c1,(
c′1
∂α2

)
o

= c1c2,
(
∂c′2
∂α2

)
o

= c22,
(
∂c′3
∂α2

)
o

= c3c2,(
∂c′1
∂α3

)
o

= c1c3,
(
∂c′2
∂α3

)
o

= c2c3,
(
∂c′3
∂α3

)
o

= c23,(
∂l′1
∂p11

)
o

= −l1,
(
∂l′2
∂p11

)
o

= 0,
(
∂q′1
∂p11

)
o

= −q1,
(
∂q′2
∂p11

)
o

= 0,(
∂l′1
∂p21

)
o

= 0,
(
∂l′2
∂p21

)
o

= −l1,
(
∂q′1
∂p21

)
o

= 0,
(
∂q′2
∂p21

)
o

= −q1,(
∂l′1
∂p31

)
o

= l21,
(
∂l′2
∂p31

)
o

= l1l2,
(
∂q′1
∂p31

)
o

= l1q1,
(
∂q′2
∂p31

)
o

= l2q1,(
∂l′1
∂p12

)
o

= −l2,
(
∂l′2
∂p12

)
o

= 0,
(
∂q′1
∂p12

)
o

= −q2,
(
∂q′2
∂p12

)
o

= 0,(
∂l′1
∂p22

)
o

= 0,
(
∂l′2
∂p22

)
o

= −l2,
(
∂q′1
∂p22

)
o

= 0,
(
∂q′2
∂p22

)
o

= −q2,(
∂l′1
∂p32

)
o

= l1l2,
(
∂l′2
∂p32

)
o

= l22,
(
∂q′1
∂p32

)
o

= l1q2,
(
∂q′2
∂p32

)
o

= l2q2,(
∂l′1
∂p13

)
o

= −1,
(
∂l′2
∂p13

)
o

= 0,
(
∂q′1
∂p13

)
o

= 0,
(
∂q′2
∂p13

)
o

= 0,(
∂l′1
∂p23

)
o

= 0,
(
∂l′2
∂p23

)
o

= −1,
(
∂q′1
∂p23

)
o

= 0,
(
∂q′2
∂p23

)
o

= 0,(
∂l′1
∂p33

)
o

= l1,
(
∂l′2
∂p33

)
o

= l2,
(
∂q′1
∂p33

)
o

= 0,
(
∂q′2
∂p33

)
o

= 0,(
∂l′1
∂α1

)
o

= 0,
(
∂l′2
∂α1

)
o

= 0,
(
∂q′1
∂α1

)
o

= −1,
(
∂q′2
∂α1

)
o

= 0,(
∂l′1
∂α2

)
o

= 0,
(
∂l′2
∂α2

)
o

= 0,
(
∂q′1
∂α2

)
o

= 0,
(
∂q′2
∂α2

)
o

= −1,(
∂l′1
∂α3

)
o

= 0,
(
∂l′2
∂α3

)
o

= 0,
(
∂q′1
∂α3

)
o

= l1,
(
∂q′2
∂α3

)
o

= l2.

So, the matrix of the coefficients of the infinitesimal transformations of H12

is given by

ζij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 0 0 c1 0 0 −l1 0 −q1 0
b2 0 0 c2 0 0 0 −l1 0 −q1
b3 0 0 c3 0 0 l21 l1l2 l1q1 l2q1
0 b1 0 0 c1 0 −l2 0 −q2 0
0 b2 0 0 c2 0 0 −l2 0 −q2
0 b3 0 0 c3 0 l1l2 l22 l1q2 l2q2
0 0 b1 0 0 c1 −1 0 0 0
0 0 b2 0 0 c2 0 −1 0 0
0 0 b3 0 0 c3 l1 l2 0 0
b21 b2b1 b3b1 c21 c2c1 c3c1 0 0 −1 0
b1b2 b22 b3b2 c1c2 c22 c3c2 0 0 0 −1
b1b3 b2b3 b23 c1c3 c2c3 c23 0 0 l1 l2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)



150 Grazia RAGUSO, Luigia RELLA

Our aim is to find functions Φ(b1, b2, b3, c1, c2, c3, l1, l2, q1, q2) which satisfy
the following (Deltheil) system:

b1
∂Φ
∂b1

+ c1
∂Φ
∂c1

+ (−l1) ∂Φ
∂l1

+ (−q1) ∂Φ
∂q1

= 0

b2
ϑΦ
ϑb1

+ c2
ϑΦ
ϑc1

+ (−l1) ∂Φ
∂l2

+ (−q1) ∂Φ
∂q2

= 0

b3
∂Φ
∂b1

+ c3
∂Φ
∂c1

+ l21
∂Φ
∂l1

+ l1l2
∂Φ
∂l2

+ l1q1
∂Φ
∂q1

+ l2q1
∂Φ
∂q2

= −4l1Φ

b1
∂Φ
∂b2

+ c1
∂Φ
ϑc2

+ (−l2) ∂Φ
∂l1

+ (−q2) ∂Φ
∂q1

= 0

b2
∂Φ
∂b2

+ c2
∂Φ
∂c2

+ (−l2) ∂Φ
∂l2

+ (−q2) ∂Φ
∂q2

= 0

b3
∂Φ
∂b2

+ c3
∂Φ
∂c2

+ l1l2
∂Φ
∂l1

+ l22
∂Φ
∂l2

+ l1q2
∂Φ
∂q1

+ l2q2
∂Φ
∂q2

= −4l2Φ

b1
∂Φ
∂b3

+ c1
∂Φ
∂c3

+ (− ∂Φ
∂l1

) = 0 (9)

b2
∂Φ
∂b3

+ c2
∂Φ
∂c3

+ (− ∂Φ
∂l2

) = 0

b3
∂Φ
∂b3

+ c3
∂Φ
∂c3

+ l1
∂Φ
∂l1

+ l2
∂Φ
∂l2

= −4Φ

b21
∂Φ
∂b1

+ b1b2
∂Φ
∂b2

+ b1b3
∂Φ
∂b3

+ c21
∂Φ
∂c1

+ c1c2
∂Φ
∂c2

+ c1c3
∂Φ
∂c3

+ (− ∂Φ
∂q1

) = −4(b1 + c1)Φ

b1b2
∂Φ
∂b1

+ b22
∂Φ
∂b2

+ b2b3
∂Φ
∂b3

+ c1c2
∂Φ
∂c1

+ c22
∂Φ
∂c2

+ c2c3
∂Φ
∂c3

+ (− ∂Φ
∂q2

) = −4(b2 + c2)Φ

b1b3
∂Φ
∂b1

+b2b3 ∂Φ
∂b2

+b23
∂Φ
∂b3

+c1c3 ∂Φ
∂c1

+c2c3 ∂Φ
∂c2

+c23
∂Φ
∂c3

+l1 ∂Φ
∂q1

+l2 ∂Φ
∂q2

= −4(b3+c3)Φ

System (9) has Φ = 0 as the trivial solution, obviously. Then by dividing
any equation of (12) by Φ, it becomes a (linear non-homogeneous) system of 12
algebraic equations with ten unknown quantities:

∂ ln Φ
∂b1

,
∂ ln Φ
∂b2

,
∂ ln Φ
∂b3

,
∂ ln Φ
∂c1

,
∂ ln Φ
∂c2

,
∂ ln Φ
∂c3

,
∂ ln Φ
∂l1

,
∂ ln Φ
∂l2

,
∂ ln Φ
∂q1

,
∂ ln Φ
∂q2

.

The incomplete and complete matrix (respectively) of the previous system are
given by:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 0 0 c1 0 0 −l1 0 −q1 0
b2 0 0 c2 0 0 0 −l1 0 −q1
b3 0 0 c3 0 0 l21 l1l2 l1q1 l2q1
0 b1 0 0 c1 0 −l2 0 −q2 0
0 b2 0 0 c2 0 0 −l2 0 −q2
0 b3 0 0 c3 0 l1l2 l22 l1q2 l2q2
0 0 b1 0 0 c1 −1 0 0 0
0 0 b2 0 0 c2 0 −1 0 0
0 0 b3 0 0 c3 l1 l2 0 0
b21 b2b1 b3b1 c21 c2c1 c3c1 0 0 −1 0
b2b1 b22 b3b2 c2c1 c22 c3c2 0 0 0 −1
b3b1 b3b2 b23 c3c1 c3c2 c23 0 0 l1 l2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 0 0 c1 0 0 −l1 0 −q1 0 0
b2 0 0 c2 0 0 0 −l1 0 −q1 0
b3 0 0 c3 0 0 l21 l1l2 l1q1 l2q1 −4l1
0 b1 0 0 c1 0 −l2 0 −q2 0 0
0 b2 0 0 c2 0 0 −l2 0 −q2 0
0 b3 0 0 c3 0 l1l2 l22 l1q2 l2q2 −4l2
0 0 b1 0 0 c1 −1 0 0 0 0
0 0 b2 0 0 c2 0 −1 0 0 0
0 0 b3 0 0 c3 l1 l2 0 0 −4
b21 b2b1 b3b1 c21 c2c1 c3c1 0 0 −1 0 −4(b1 + c1)
b2b1 b22 b3b2 c2c1 c22 c3c2 0 0 0 −1 −4(b2 + c2)
b3b1 b3b2 b23 c3c1 c3c2 c23 0 0 l1 l2 −4(b3 + c3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We consider the 10 × 10 submatrix of the incomplete matrix which is ob-
tained by deleting the ninth and the twelfth rows. Its determinant is not zero.
Therefore, the incomplete matrix has rank 10. As that submatrix is also con-
tained in the complete matrix, adding first the ninth row and then the twelfth
row ( always considering the last column, obviously), we obtain two 11 × 11
submatrices.Their determinants are both zero; therefore the complete matrix
has rank 10.

We conclude that system (9) is solvable, so there exsists only one not trivial
solution given by the function

Φ = k(σ2ρ1 − σ1ρ2)−4 with k ∈ R∗

where σ1 = b1q1 + b2q2 − 1, ρ2 = c1q1 + c2q2 − 1, σ1 = l1b1 + l2b2 + b3,
σ2 = l1c1 + l2c2 + c3.

We leave out the calculus.
So group H12 associated to G12 is measurable by Theorem 2. Hence family

!10 is measurable and its density is given by

dΦ = (σ2ρ1 − σ1ρ2)−4db1 ∧ db2 ∧ db3 ∧ dc1 ∧ dc2 ∧ dc3 ∧ dl1 ∧ dl2 ∧ dq.
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Abstract

In the paper an additive closure operator on an abelian unital l-group
(G, u) is introduced and one studies the mutual relation of such operators
and of additive closure ones on the MV -algebra Γ(G, u).
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1 Introduction

In [6] additive closure (and multiplicative interior) operators on MV -algebras
were introduced as a natural generalization of topological closure (and interior)
operators on Boolean algebras. Closure and interiorMV -algebras (MV -algebras
endowed with additive closure or multiplicative interior operators) generalize
topological boolean algebras in a natural way.

Let us recall the notions of an MV -algebra and of an additive closure oper-
ator on an MV -algebra.

Definition 1.1 An algebra A = (A,⊕,¬, 0) of the signature 〈2, 1, 0〉 is called
an MV-algebra iff for each x, y, z ∈ A:

(MV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;

(MV2) x⊕ y = y ⊕ x;

153
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(MV3) x⊕ 0 = x;

(MV4) ¬¬x = x;

(MV5) x⊕ ¬0 = ¬0;

(MV6) ¬(¬x ⊕ y)⊕ y = ¬(x ⊕ ¬y)⊕ x.

Definition 1.2 Let us consider an MV-algebraA = (A,⊕,¬, 0) and a mapping
Cl : A → A. Then Cl is called an additive closure operator on A iff for each
a, b ∈ A

1. Cl(a⊕ b) = Cl(a)⊕ Cl(b),

2. a ≤ Cl(a),

3. Cl(Cl (a)) = Cl(a),

4. Cl(0) = 0.

MV -algebras, which are an algebraic counterpart of the �Lukasiewicz infinite
valued logic, are by [3], Chapters 2, 7 in a very close connection with abelian
unital l-groups.

Definition 1.3 An algebra G = (G,+, 0,∨,∧) of the signature 〈2, 0, 2, 2〉 is
called an l-group iff

1. (G,+, 0) is a group,

2. (G,∨,∧) is a lattice,

3. x+ (y ∨ z) + w = (x+ y + w) ∨ (x+ z + w) ∀x, y, z, w ∈ G,

x+ (y ∧ z) + w = (x+ y + w) ∧ (x+ z + w) ∀x, y, z, w ∈ G.

An element u ∈ G (u > 0) is called a strong unit of the l-group G iff

(∀a ∈ G)(∃n ∈ N) (a ≤ nu),

where
nu

def= u+ u+ · · ·+ u︸ ︷︷ ︸
n

.

If an l-group G contains a strong unit u, then (G, u) is called a unital l-
group. Moreover, if the operation ”+“ of the l-group G is commutative, then G
is called an abelian l-group.

In the following remark we will describe the mutual relation of abelian unital
l-groups and MV -algebras.

Remark 1.4
a) Let (G,+, 0,∨,∧) be an abelian l-group and let u ∈ G, u ≥ 0. If

x⊕ y := (x+ y) ∧ u, ¬x := u− x,
then Γ(G, u) = ([0, u],⊕,¬, 0, u) is an MV-algebra.
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b) On the other hand, Daniele Mundici [5] proved that for every MV-
algebra A there exists such an abelian unital l-group (G, u) that
A ∼= Γ(G, u).

The aim of this paper is to introduce an additive closure operator on an
abelian unital l-group (G, u). That means, we will investigate in introducing of
such an operator on abelian unital l-groups that it will preferably form a natural
counterpart of additive closure operators on MV -algebras.

2 Relation between additive closure operators on
MV -algebras and on abelian unital l-groups

Definition 2.1 Let (G, u) be an abelian unital l-group. A mapping ψ+ : G+ →
G+ such that for each x, y ∈ G+ it holds

1. ψ+(x+ y) = ψ+(x) + ψ+(y),

2. ψ+(x ∧ u) = ψ+(x) ∧ u,

3. x ≤ ψ+(x),

4. ψ+(ψ+(x)) = ψ+(x),

will be called an additive closure operator on G+, where G+ = {x ∈ G; x ≥ 0}.
Lemma 2.2 Let (G, u) be an abelian unital l-group and let ψ+ be an additive
closure operator on G+. Then we have for each k ∈ N, k > 1 and for each
x, y ∈ G+

(i) ψ+(u) = u,

(ii) ψ+(ku) = ku,

(iii) x ≤ y ⇒ ψ+(x) ≤ ψ+(y).

Proof

(i) From the axiom 3 of Definition 2.1 it follows that u ≤ ψ+(u). Moreover,
from the second axiom of the same definition we get

ψ+(u) = ψ+(u ∧ u) = ψ+(u) ∧ u
and further ψ+(u) ≤ u. Together we have u = ψ+(u).

(ii) It follows from the first axiom of Definition 2.1 and from (i).

(iii) Let x, y ∈ G+, x ≤ y. Since −x+ (x ∨ y) ∈ G+, it must also be

ψ+(y) = ψ+(x∨y) = ψ+(x+(−x+(x∨y))) = ψ+(x)+ψ+(−x+(x∨y)),
But since

ψ+(−x+ (x ∨ y)) ∈ G+,

we finally get
ψ+(x) ≤ ψ+(y). �
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Definition 2.3 Let (G, u) be an abelian unital l-group. A mapping ψ : G→ G
is called an additive closure operator on G iff there exists such an additive
closure operator ψ+ on G+, that it holds for each element a ∈ G

1. ψ |G+= ψ+,

2. ψ(a) = ψ+(a+)− ψ+(a−), where a+ = a ∨ 0, a− = −a ∨ 0.

Remark 2.4 It is known that in each l-group G we have a = a+− a− for each
element a ∈ G. So G = G+ − G+ holds in each l-group G. Let us show now
that in each l-group G all representations of ψ(a) in the form of the difference
of ψ+(x) and ψ+(y), where x, y ∈ G+ such that a = x− y, are the same as the
representation of ψ(a) in the form of the difference of ψ+(a+) and ψ+(a−).

Lemma 2.5 Let (G, u) be an abelian unital l-group and let ψ be an additive
closure operator on G. Then it holds for each element a ∈ G and for each
elements x, y ∈ G+

[a = x− y] =⇒ [ψ(a) = ψ+(a+)− ψ+(a−) = ψ+(x) − ψ+(y)].

Proof If a = x− y, then x− y = a+− a−. From that we have x+ a− = a+ + y
and so ψ+(x) + ψ+(a−) = ψ+(a+) + ψ+(y), and finally ψ+(x) − ψ+(y) =
ψ+(a+)− ψ+(a−) = ψ(a). �

In the sequel we will study the mutual relation of additive closure operators
on abelian unital l-groups and on MV -algebras. The properties of additive
closure operators on MV -algebras were studied in [6].

Theorem 2.6 Let us consider an abelian unital l-group (G, u) and further an
additive closure operator ψ+ on G+. Then ϕ = ψ+ |[ 0,u] is an additive closure
operator on the MV-algebra A = Γ(G, u).

Proof Since ψ+ is isotone and ψ+(u) = u, it is obvious that ϕ is a mapping
from [0, u] into [0, u]. We will check now validity of 1.–4. from Definition 1.2.
Therefore, let us choose two arbitrary elements a, b ∈ [0, u] and we have

1. ϕ(a ⊕ b) = ϕ((a + b) ∧ u) = ψ+((a + b) ∧ u) = ψ+(a + b) ∧ u =
(ψ+(a) + ψ+(b)) ∧ u = (ϕ(a) + ϕ(b)) ∧ u = ϕ(a) ⊕ ϕ(b),

2. a ≤ ψ+(a) = ϕ(a),

3. ϕ(ϕ(a)) = ψ+(ϕ(a)) = ψ+(ψ+(a)) = ψ+(a) = ϕ(a),

4. ϕ(0) = ψ+(0) = 0, because of ψ+(0) = ψ+(0 + 0) = ψ+(0) + ψ+(0).
�

Let A = Γ(G, u) be the MV-algebra constructed on an abelian unital
l-group (G, u). Then by [3], Lemma 7.1.3 each element a ∈ G+ can be uniquely
represented in the form

a = a1 + a2 + · · ·+ an,

where the n-tuple (a1, a2, . . . , an) ∈ [0, u]n is determined by relations

a1 = a ∧ u, a2 = (a− a1) ∧ u, . . . , an = (a− a1 − · · · − an−1) ∧ u.
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Remark 2.7 The introduced n-tuple (a1, a2, . . . , an) is a good sequence of ele-
ments of MV-algebra Γ(G, u)—see [3, Lemma 7.1.3]. Let us recall that a good
sequence of elements of an MV-algebra A is such a sequence (a1, a2, . . . , an, . . . )
of elements of this algebra that for each i = 1, 2, . . . the identity

ai ⊕ ai+1 = ai

holds and at the same time there exists such n ∈ N that ar = 0 for all r > n.

Now, let ϕ be an additive closure operator on the MV-algebra A = Γ(G, u)
and let us define a mapping ϕ : G+ → G+, where

ϕ(a) def= ϕ(a1) + ϕ(a2) + · · ·+ ϕ(an) ∀a ∈ G+.

Remark 2.8 Let us notice the prescription for the introduced mapping ϕ. By
Remark 2.5 we know that (a1, a2, . . . , an) is a good sequence of elements of
Γ(G, u) and for each i = 1, 2, . . . , n − 1 we have therefore ai ⊕ ai+1 = ai. But
then also for each i = 1, 2, . . . , n− 1

ϕ(ai)⊕ ϕ(ai+1) = ϕ(ai ⊕ ai+1) = ϕ(ai).

That means, (ϕ(a1), ϕ(a2), . . . , ϕ(an)) is a good sequence of elements of Γ(G, u)
again.

Lemma 2.9 Let us consider an MV -algebra A = Γ(G, u) constructed on an
abelian unital l-group (G, u) and an additive closure operator ϕ on A. Then the
mapping ϕ is isotone.

Proof Let us choose arbitrary elements a, b ∈ G+, a ≤ b. It holds ([3, Lemma
7.1.3])

a = a1 + a2 + · · ·+ am, b = b1 + b2 + · · ·+ bn,

where a1, a2, . . . , am, b1, b2, . . . , bn ∈ [0, u] and m,n are some integers, not nec-
essarily the same. If for example m > n, then we put bm−n+1 = · · · = bm = 0.
So we can consider m = n. Now, if a ≤ b, then for each integer k

((a− ku) ∨ 0) ∧ u ≤ ((b− ku) ∨ 0) ∧ u.
Further by [3, Lemma 7.1.3] we have from the last inequality

(a− a1 − a2 − · · · − ak) ∧ u ≤ (b− b1 − b2 − · · · − bk) ∧ u,
that means ak+1 ≤ bk+1 for each integer k. From that it follows that ϕ(ak+1) ≤
ϕ(bk+1) for each integer k and finally

ϕ(a) = ϕ(a1) + ϕ(a2) + · · ·+ ϕ(an) ≤ ϕ(b1) + ϕ(b2) + · · ·+ ϕ(bn) = ϕ(b).

Theorem 2.10 Let A = Γ(G, u) be the MV-algebra constructed on an abelian
unital l-group (G, u) and let ϕ be an additive closure operator on A. Then for
the mapping ϕ and an arbitrary element a ∈ G+
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• ϕ(a ∧ u) = ϕ(a) ∧ u,
• a ≤ ϕ(a),

• ϕ(ϕ(a)) = ϕ(a).

Proof Let a ∈ G+ is chosen arbitrarily. Then there exists an n-tuple (a1, a2, . . . ,
an) of elements from [0, u], where a = a1 + a2 + · · · + an, a1 = a ∧ u, a2 =
(a− a1) ∧ u, . . . , an = (a− a1 − · · · − an−1) ∧ u. We have:

• ϕ(a)∧u = (ϕ(a1)+ϕ(a2)+ · · ·+ϕ(an))∧u = ϕ(a1)⊕ϕ(a2)⊕· · ·⊕ϕ(an) =
= ϕ(a1⊕a2⊕· · ·⊕an) = ϕ((a1 +a2 + · · ·+an)∧u) = ϕ(a∧u) = ϕ(a∧u);

• a = a1 + a2 + · · ·+ an ≤ ϕ(a1) + ϕ(a2) + · · ·+ ϕ(an) = ϕ(a);

• ϕ(ϕ(a)) = ϕ(ϕ(a1) + ϕ(a2) + · · ·+ ϕ(an)) = ϕ(ϕ(a1)) + ϕ(ϕ(a2)) + · · ·+
ϕ(ϕ(an)) = ϕ(a1) + ϕ(a2) + · · · + ϕ(an) = ϕ(a), because of c = ϕ(a1) +
ϕ(a2)+ · · ·+ϕ(an) is just the unique decomposition of the element c ∈ G+

onto a sum of elements from [0, u], which form a good sequence of Γ(G, u).
�

Remark 2.11 (open problem) In Theorem 2.10, we have proven in fact that
the operator ϕ fulfils conditions 2, 3 and 4 from Definition 2.1. Not answered
stays now the problem, in which condition does ϕ fulfil moreover the axiom 1
from Definition 2.1, that means in which condition does ϕ become an additive
closure operator on G+.
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Abstract

The aim of the paper is to show some possible statistical solution of the
estimation of the dispersion of the GPS receiver. The presented method
(based on theory of linear model with additional constraints of type I)
can serve for an improvement of the accuracy of estimators of coordinates
acquired from the GPS receiver.
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the type A and B; confidence ellipsoids; variance components.
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1 Introduction

The aim of this paper is to make one keep in view that the geographical coordi-
nates, obtained with the help of a GPS receiver cannot be regarded as accurate
data. Based on the results of one exemplary measurement, we will show that it
is always necessary to take into account an uncertainty of data acquired from
the GPS receiver. The user of the GPS receiver should always consider carefully
if the measured values are sufficiently accurate with respect to the particular
purposes. This conclusion can be drawn only in cases when an estimation of a
dispersion of the GSP receiver is known in a given place and time.

159
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In order to lower the uncertainty of the measurement, various measuring
approaches are used. A repeated (multistage) measurement is one of such pro-
cedures. In addition, it is also well-known how to determine the estimation of
the dispersion of the GPS receiver.

However, a possible situation can arise when the user of the device is not
in a position to repeat the measurement several times during longer time in-
terval. This can be caused either by a physical principle of a given design of
the measurement or by practical aspects (e.g. expensiveness of the repeated
measurement carried out for several days).

To avoid this difficulty, we will show another possible approach which leads
to the estimation of the dispersion of the GPS receiver. Moreover, the presented
method can serve for an improvement of the accuracy of data acquired from the
GPS receiver.

In the following text, an algorithm based on the theory of estimation is
introduced which would eventually decrease the uncertainty of the coordinates
obtained from the GPS receiver with an utilization of an additional measurement
(in our case, by a measuring tape). Even for an amateur measurement, the
dispersion of the measured lengths is approximately about 0.12 m2. From here
and on, the uncertainty of the first-stage measurement is considered as the B-
type uncertainty (in our case, the B-type uncertainty represents the uncertainty
of the measurement by the measuring tape) and the lengths obtained in the first-
stage measurement are denoted by a symbol Θ. On the contrary, the uncertainty
of the second-stage mesurement is considered as the A-type uncertainty (in our
case, the A-type uncertainty represents the uncertainty of the measurement by
the GPS receiver) and the coordinates acquired in the second-stage measurement
are denoted by a symbol β.

Motivation

Let us suppose the following situation. The goal was to determine a stochastic
distribution of a chemical element in the soil. The coordinates of the positions,
where the value of the chemical element was intended to be measured, have
been acquired by the GPS receiver. The obtained values are depicted in Figure
1 where every point corresponds to the place where the sample was taken.
According to the design of the measurement and principle of the utilized device,
it was then expected that the acquired data would create an accumulation in
the form of a ring.

As it is evident from Figure 1, the ring was generated from data for one
“locality”. However, the expected ring for the second locality was extended in
comparison with the previous one. One may therefore ask the following ques-
tions. What were the reasons for such an anomalous behaviour of the measured
data? Was it a consequence of the uncertainty of the acquired coordinates?

In the next example from another area of interest, it will be shown that
the estimation of the dispersion of the GPS device is 0.3542 m2. This value
may greatly differ depending on a number of available satellites, surrounding
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landscape and sedulity of the person performing the measurement. Therefore,
the values acquired by the GPS receiver can exhibit different accuracy.

Figure 1: Coordinates of the measured points.

In the above-discussed example describing the measurement of the location
points in the soil, it was found out that the student carrying out the mea-
surement did not respect the instructions for a given measurement. The mea-
surement was not performed all at once but there was a time delay between
particular steps of the measurement.

Notation

The following notations will be used throughout the paper:
Rn space of all n-dimensional real vectors;
Θ real column vector—from the first stage;
β real column vector—from the second stage;
Im,m, Am,n m×m identity matrix; real m× n matrix;
Ar1:s1,r2:s2 (s1 − r1)× (s2 − r2) block matrix with elements of A;
A′, r(A),Tr(A) transpose, rank and trace of the matrix A;
A = diag(u) diagonal matrix with diagonal equal elements of vector u;
M(A) column space of the matrix A;

M(A) = {Au : u ∈ Rn} ⊂ Rm;
Ker(A) null space of the matrix A;

Ker(A) = {u : u ∈ Rn,Au = 0} ⊂ Rn;
A− generalized inverse of the matrix A (satisfying AA−A = A),

(see [4]);
PA orthogonal projector onto M(A) in Euclidean norm;

PA = A(A′A)−A′;
MA orthogonal projector onto M⊥(A) = Ker(A′) in Euclidean

norm; MA = I− PA;
Y ∼ (AΘ,T) observation vector Y with mean value AΘ and covariance

matrix T.
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2 Model of measurements

Definition 1 Let us consider the following linear model Y−DΘ̂ ∼n (Xβ,Σ0),
where Σ0 = σ2V1 + DV0D′ and where Y ∼n (DΘ + Xβ, σ2V1) is a random
observation vector, β ∈ Rk stands for a vector of the useful parameters and
Xn,k denotes a design matrix belonging to the vector β. We suppose that an
estimator Θ̂ ∼k1 (Θ,V0) of Θ is at our disposal only.

Theorem 1 The standard estimator σ̂2 of the parameter σ2 for the model de-
fined in Definition 1 is given by the expression in the form of

σ̂2 = λ[(Y −DΘ̂)′(MXΣ0MX)+V1(MXΣ0MX)+(Y −DΘ̂)]
−Tr[(MXΣ0MX)+V1(MXΣ0MX)+V0] ,

where the value of the parameter λ is expressed by the following equation

S(MXΣ0MX)+λ = 1 ,

where the 1×1 matrix S(MXΣ0MX)+ takes the form of

S(MXΣ0MX)+ = Tr[(MXΣ0MX)+V1(MXΣ0MX)+V1] .

Proof Firstly, we have the model in the form of

Y ∼ (Xβ,V0 + σ2V1),

where the estimator σ̂2 of the parameter σ2 takes the form of

σ̂2 = Y′AY + a,

where A is a suitable matrix. Let E[σ̂2] = σ2, which is equivalent to E[σ̂2] =
Tr(AV0)+σ2 Tr(AV1)+β′X′AXβ+a = σ2. This implies that a = −Tr(AV0),
Tr(AV1) = 1 and X′AX = 0.

It is known (see [1]) that the matrix A in the form of A = MXSMX, where
S = S′, satisfies the conditions AX = 0 and A = A′. This leads to the
minimalization of the functional Φ defined as Φ = Tr(AΣ0AΣ0)−2λTr(AV1).
This can be rewritten as

Φ(S) = Tr(SMXΣ0MXSMXΣ0MX)− 2λTr(SMXV1MX).

As ∂Φ(S)
∂S = 0, we arrive at 4(MXΣ0MX)S(MXΣ0MX) = 4λMXV1MX. Now

we have the matrix system in the form of AXB = C. The general solution of
this matrix system is X = A−CB− + Z −A−AZBB− It is possible to show,
that X = A+CB+ is also the solution (see [4]).
As MXSMX = A, it follows that

A = λ(MXΣ0MX)+V1(MXΣ0MX)+ .

With regard to the condition that Tr(AV1) = 1, we arrive at

λTr[(MXΣ0MX)+V1(MXΣ0MX)+V1] = 1.
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From this relation, we can obtain the result for the matrix A and the equa-
tion for the Lagrange parameter λ. We then get

λ =
1

Tr[(MXΣ0MX)+V1(MXΣ0MX)+V1]
,

A =
(MXΣ0MX)+V1(MXΣ0MX)+

Tr[(MXΣ0MX)+V1(MXΣ0MX)+V1]
.

Finally, the estimator σ̂2 of the parameter σ2 for the matrix Σ0 can be now
written as

σ̂2 = Y′AY − Tr(AV0) =
Y′(MXΣ0MX)+V1(MXΣ0MX)+Y

Tr[(MXΣ0MX)+V1(MXΣ0MX)+V1]

− Tr[(MXΣ0MX)+V1(MXΣ0MX)+V0]
Tr[(MXΣ0MX)+V1(MXΣ0MX)+V1]

. �

Hereafter we will focus on the same model but from a different point of view.
We will consider the model of the measurement and then we will present how
to determine the estimators of the fundamental parameters.

Definition 2 The model of connecting measurement will be represented by

(i)
(

Y1

Y2

)
∼

[(
X1, 0
D, X2

)(
Θ
β

)
,

(
Σ11, 0
0, Σ22

)]
,

where X1,D,X2 are known n1×k1, n2×k1, n2×k2 matrices, respectively, such
that M(D′) ⊂ M(X′

1); Θ and β are unknown k1- and k2-dimensional vectors;
Σ22 = σ2V1, where Σ11 and V1 are known matrices.

In this model, the parameter Θ is estimated on the basis of the vector Y1

of the first stage and parameter β on the basis of the vectors Y2 −DΘ̂ and Θ̂.
At this point, it should be mentioned that the results of the measurement

from the second stage (i.e. Y2) cannot be used for a modification of the esti-
mator Θ̂.

The parametric space Θ of this model of connecting measurement Y is de-
fined as

(ii) Θ = {(Θ′, β′)′ : Bβ + CΘ + a = 0} ,
where B and C are q × k2 and q × k1 matrices, a is q-dimensional vector,
r(B) = q < k2.

Definition 3 The model in the parametric space Θ (see Definition 2) is regular
provided that r(X1) = k1, r(X2) = k2, Σ11,Σ22 are positively definite matrices,
r(B) = q.

Remark 1 The vector Θ represents the parameter of the first stage (connect-
ing) whereas the vector β denotes the parameter of the second stage (con-
nected). In the second stage, we then start with the unbiased estimator Θ̂ =
(X′

1Σ
−1
11 X1)−1X′

1Σ
−1
11 Y1 originating from the first stage whose covariance ma-

trix is expressed in the form of Var(Θ̂) = V0 = (X′
1Σ

−1
11 X1)−1.
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Definition 4 The least-square estimator of the parameter β, obtained under
the condition that Σ11 = 0 (⇒ Var(Θ̂) = 0), is called the standard estimator if
the vector Θ is substituted by Θ̂ in this estimator.

Theorem 2 The standard estimator β̂ of the parameter β in the model (i) and
(ii) postulated in Definition 2 and given by

β̂ = (X′
2Σ

−1
22 X2)−1X′

2Σ
−1
22 (Y2 −DΘ̂)

− (X′
2Σ

−1
22 X2)−1B′[B(X′

2Σ
−1
22 X2)−1B′]−1

× {a + CΘ̂ + B(X′
2Σ

−1
22 X2)−1X′

2Σ
−1
22 (Y2 −DΘ̂)},

is unbiased.

Proof See [3], p. 72–73. �

Theorem 3 If Var(Θ̂) �= 0 then the covariance matrix of the standard estima-
tor β̂ is composed of two uncertainties, i.e. the “uncertainty of type A” and
“uncertainty of type B”, as

Var(β̂) = Var0(β̂) +〈{I− (X′
2Σ

−1
22 X2)−1B′[B(X′

2Σ
−1
22 X2)−1B′]−1B}

× (X′
2Σ

−1
22 X2)−1X′

2Σ
−1
22 D− (X′

2Σ
−1
22 X2)−1

×B′[B(X′
2Σ

−1
22 X2)−1B′]−1C〉

×Var(Θ̂)
× 〈{I− (X′

2Σ
−1
22 X2)−1B′[B(X′

2Σ
−1
22 X2)−1B′]−1B}

× (X′
2Σ

−1
22 X2)−1X′

2Σ
−1
22 D− (X′

2Σ
−1
22 X2)−1

×B′[B(X′
2Σ

−1
22 X2)−1B′]−1C〉′︸ ︷︷ ︸

uncertainty of
︸ ︷︷ ︸

uncertainty of
type A type B

where

Var0(β̂) = (MB′X′
2Σ22X2MB′)+ = (X′

2Σ
−1
22 X2)−1− (X′

2Σ
−1
22 X2)−1B′

×[B(X′
2Σ

−1
22 X2)−1B′]−1B(X′

2Σ
−1
22 X2)−1.

Proof See [3], p. 74. �

Corollary 1 For the case of the model with X2 = I and D = 0, the covariance
matrix of the standard estimator is given by

Var(β̂) = [I−Σ22B′(BΣ22B′)−1B]Σ22[I−B′(BΣ22B′)−1BΣ22]
+ Σ22B′(BΣ22B′)−1C Var(Θ̂)C′(BΣ22B′)−1BΣ22 .

Proof See [3], p. 73–74. �
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Theorem 4 The (1 − α)-confidence domain for the parameter β, β ∈ Θ (see
Definition 2), based on the standard BLUE β̂, is a set expressed by

E1−α(β) =
{
u : u ∈ Θβ ⊂ Rk2 , (u− β̂)′[Var(β̂)]−(u− β̂) ≤ χ2

r[Var(bβ)]
(1− α)

}
.

Here the symbol χ2
r[Var(bβ)]

(1 − α) denotes (1 − α)-quantile of χ2-distribution

with r[Var(β̂)] degrees of freedom.

Proof See [2], p. 158–159. �

3 Illustrative example

The aim of this example is to find a dispersion for a CARMIN GPS 12XL
navigator and estimate the plane coordinates β of the points A1, A2, A3 in
the Situation I and plane coordinates of the points A1, A2, A3 and P in the
Situation II using the theory of basic linear models of the measurement.

Situation I:

Θ
3
=21.613 m

Θ
1
=16.683 m

Θ
2
=12.453 m

A
1
=[β

1
,β

2
]

A
2
=[β

3
,β

4
]

A
3
=[β

5
,β

6
]

P

A
1
=[536622.292 m, 1118095.276 m]

A
2
=[536605.521 m, 1118109.327 m]

A
3
=[536621.495 m, 1118107.768 m]

Situation II:

Θ
1
=12.816 m

Θ
3
=6.98 m

Θ
2
=10.244 m

A
1
=[β

1
,β

2
]

A
2
=[β

3
,β

4
]

A
3
=[β

5
,β

6
]

P=[β
7
,β

8
]

A
1
=[536622.292 m, 1118095.276 m]

A
2
=[536605.521 m, 1118109.327 m]

A
3
=[536621.495 m, 1118107.768 m]

P=[536615.205 m, 1118105.278 m]

Figure 2: The polygonometric measurement.

We have given four points A1, A2, A3 and P and their geographical specifi-
cations, i.e. their latitudes and longitudes, which have been obtained from a
CARMIN GPS 12XL navigator. All points have been visualized on Fig. 2.
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For our purposes, the geographical coordinates were transformed to the plane
system known as S-JTSK (where +x-axes . . . south, +y-axes . . . west). For
details on S-JTSK coordinates, see [5].

So we have estimated values of Ai = (Y2i−1, Y2i), i = 1, 2, 3 and measured
values of Θ̂I = (Θ̂I

1, Θ̂I
2, Θ̂I

3)′ in the Situation I or we have estimated values
of Ai = (Y2i−1, Y2i), i = 1, 2, 3, and P = (Y7, Y8) and measured values of
Θ̂II = (Θ̂II

1 , Θ̂
II
2 , Θ̂

II
3 )′ in the Situation II.

Let the result from the first and the second stage of measurement in the
Situation I be (Θ̂I

1, Θ̂
I
2, Θ̂

I
3)

′ = (16.683 m, 12.453 m, 21.613 m)′ and

YIg =

⎛⎜⎜⎜⎜⎜⎜⎝
Y1

Y2

Y3

Y4

Y5

Y6

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
49◦38′02.2′′

17◦23′35.1′′

49◦38′01.8′′

17◦23′36.0′′

49◦38′01.8′′

17◦23′35.2′′

⎞⎟⎟⎟⎟⎟⎟⎠→ YI =

⎛⎜⎜⎜⎜⎜⎜⎝
536622.292 m

1118095.276 m
536605.521 m

1118109.327 m
536621.495 m

1118107.768 m

⎞⎟⎟⎟⎟⎟⎟⎠ .

In the Situation II, let the result from the first and the second stage of
measurement be (Θ̂II

1 , Θ̂II
2 , Θ̂II

3 )′ = (12.816 m, 10.244 m, 6.980 m)′ and

YIIg =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

49◦38′02.2′′

17◦23′35.1′′

49◦38′01.8′′

17◦23′36.0′′

49◦38′01.8′′

17◦23′35.2′′

49◦38′01.9′′

17◦23′35.5′′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→ YII =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

536622.292 m
1118095.276 m
536605.521 m

1118109.327 m
536621.495 m

1118107.768 m
536614.788 m

1118105.885 m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The accuracy of the measurement is given by the covariance matrix
(

V0 0
0 σ2V1

)
.

Let Θ̂1, Θ̂2, Θ̂3 be the random variables with the mean values Θ1, Θ2, Θ3, then

Y1 =

⎛⎜⎝ Θ̂1

Θ̂2

Θ̂3

⎞⎟⎠ ∼ N3

⎡⎣X1

⎛⎝ Θ1

Θ2

Θ3

⎞⎠ ;V0

⎤⎦ .
In our case, we will consider the covariance matrices in the form of

V0 = σ2
d ×

⎛⎝ 1, 0, 0
0, 1, 0
0, 0, 1

⎞⎠ ,

where σ2
d = 0.012m2 and X1 = I3,3. Note that σ2

d = 0.012m2, especially the
value of 0.01 m, is usually used for the value of the standard deviation of the
measuring tape.
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Let Y1, Y2, Y3, Y4, Y5, Y6 be the random variables with the mean values β1,
β2, β3, β4, β5, β6, respectively, and dispersions σ2V1.

Y2 =

⎛⎜⎜⎜⎜⎜⎜⎝
Y1

Y2

Y3

Y4

Y5

Y6

⎞⎟⎟⎟⎟⎟⎟⎠ ∼ N6

⎡⎢⎢⎢⎢⎢⎢⎣X2

⎛⎜⎜⎜⎜⎜⎜⎝
β1

β2

β3

β4

β5

β6

⎞⎟⎟⎟⎟⎟⎟⎠ ;σ2V1

⎤⎥⎥⎥⎥⎥⎥⎦ .

We can use the covariance matrix in the form of

Σ22 = σ2V1 =

⎛⎜⎜⎜⎜⎜⎜⎝
cos2 ϕ, 0, 0, 0, 0, 0

0, 1, 0, 0, 0, 0
0, 0, cos2 ϕ, 0, 0, 0
0, 0, 0, 1, 0, 0
0, 0, 0, 0, cos2 ϕ, 0
0, 0, 0, 0, 0, 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where σ2 = 3.12m2, cos(ϕ) = cos(49◦) = 0.6564 and X2 = I6,6. For the
parameter σ2 we will use the following value, calculated from

σ2
GPS =

2 · π · 6378 · 1000
360 · 60 · 60 · 10

= 3.12m2,

where the expression above, especially the value of 3.1 m, denotes the stan-
dard deviation, derived from the smallest decimal digit which the GPS reciever
displays.

The angle ϕ = 49◦ stands for the value of the latitude where the measure-
ment has been carried out.

Finally, we have the model given by

(
Y1

Y2

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θ̂1

Θ̂2

Θ̂3

Y1

Y2

Y3

Y4

Y5

Y6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼ N9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
X1, 0
0, X2

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θ1

Θ2

Θ3

β1

β2

β3

β4

β5

β6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;
(

V0, 0
0, σ2V1

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Now, we can briefly describe the core of the example. We are in the position
when we have the model expressed by

Y = f(θ) + ε, (1)

Var(ε) = Σ0, (2)
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where Σ0 = σ2V1 + V0. Here we can more closely rewrite the relation (1), i.e.

Y = f(β) + ε =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
(β1 − β3)2 + (β2 − β4)2√
(β3 − β5)2 + (β4 − β6)2√
(β1 − β5)2 + (β2 − β6)2

β1

β2

β3

β4

β5

β6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ ε. (3)

In our example, we will consider the covariance matrices W0 = (0.1)2 ×(
I3,3, 03,6
06,3, 06,6

)
and σ2W1 = σ2 × diag((0, 0, 0, 1, cos2 ϕ, 1, cos2 ϕ, 1, cos2 ϕ)′) with

σ2 = 3.12m2 and cos(ϕ) = cos(49◦) = 0.6564.
For the function f , we will generate the Taylor expansion at the suitable

point which is given by

f(β1) = f(β0) + A(β1 − β0).

According to the theory of the measurement, we have to define the matrix A
that is given by A =

(
∂f
∂Θ′

)
. As an illustration, the expression for A3,6 takes

the form of A3,6 = β6−β2√
β2
5−2β5β1+β2

1+β2
6−2β6β2+β2

2

. The derivation of the other

elements, i.e., A1,1, A1,2, A1,3, A1,4, A2,3, A2,4, A2,5, A2,6, A3,1, A3,2 and A3,5,
is analogous.

Now we will determine the estimator σ̂2 of the parameter σ2 according to
the Theorem 2.1. The whole process of determining the estimator σ̂2 can be
now, according to the Theorem 2.1, written as

σ̂2 = λ
{
[(Y −DΘ̂)′(MAΣ0MA)+W1(MAΣ0MA)+(Y −DΘ̂)] (4)

− Tr[(MAΣ0MA)+W1(MAΣ0MA)+W0]
}
, (5)

where the value of the parameter λ is expressed by the following equation

S(MAΣ0MA)+λ = 1, (6)

where the 1×1 matrix S(MAΣ0MA)+ takes the form of

S(MAΣ0MA)+ = Tr[(MAΣ0MA)+W1(MAΣ0MA)+W1]. (7)

By solving equations (5),(6) and (7) we have obtained λ = 4.1751e−27 and
σ̂2 = (0.3540 m)2.

We can say that the estimator of the uncertainty in GPS–coordinates is
σ̂2 = 0.35402 m2. Hereafter, we will focus on the same model but from a
different point of view. We will consider the model of the measurement (i) and
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condition (ii) from Definition 2.2. Finally, we have in the Situation I the model
given by

(
Y1

Y2

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θ̂1

Θ̂2

Θ̂3

Y1

Y2

Y3

Y4

Y5

Y6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼ N9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
X1, 0
0, X2

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θ1

Θ2

Θ3

β1

β2

β3

β4

β5

β6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;
(

Σ11, 0
0, Σ22

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In our case, X1 = I, X2 = I, Σ11 = (W0)1:3,1:3 and Σ22 = (σ2W1)4:9,4:9
(see W0 and σ2W1 on p. 168).

One can observe from Figure 2 in the Situation I that the condition g(Θ, β) =
0 is implied for the parameters Θ and β, where

g1(Θ, β) = (β5 − β3)2 + (β6 − β4)2 −Θ2
1,

g2(Θ, β) = (β5 − β1)2 + (β6 − β2)2 −Θ2
2,

g3(Θ, β) = (β3 − β1)2 + (β4 − β2)2 −Θ2
3.

The linear version of the condition g(Θ, β) = 0, obtained using the Taylor
expansion at the approximate point (Θ0, β0) = (Θ̂1, Θ̂2, Θ̂3, Y1, Y2, Y3, Y4, Y5,
Y6), is in the form of Bδβ + CδΘ + a = 0, where δβ = β − β0, δΘ = Θ − Θ0,

B = ∂g(Θ0,β0)
∂β′ , C = ∂g(Θ0,β0)

∂Θ′ and a = g(Θ0, β0).

Here we present the values of the vector of the estimator β̂I (calculated
according to Theorem 2.2) based on the model with the measurement of all
triangular lengths by the measuring tape. They are as follows:

β̂I =

⎛⎜⎜⎜⎜⎜⎜⎝
536621.930 m

1118095.923 m
536604.643 m

1118108.123 m
536622.735 m

1118108.324 m

⎞⎟⎟⎟⎟⎟⎟⎠ .

Its covariance matrix was calculated (see Corollary 2.1) leading to

Var(β̂I) =

⎛⎜⎜⎜⎜⎜⎜⎝
1.2455 0.5064 0.0300 −0.9437 0.1645 0.4373
0.5064 3.3361 −0.2980 2.3743 −0.2084 3.2896
0.0300 −0.2980 0.7453 0.5556 0.6647 −0.2576
−0.9437 2.3743 0.5556 4.1672 0.3881 2.4585

0.1645 −0.2084 0.6647 0.3881 0.6108 −0.1797
0.4373 3.2896 −0.2576 2.4585 −0.1797 3.2519

⎞⎟⎟⎟⎟⎟⎟⎠ .
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As Tr[Var(β̂I)] < Tr(Σ22) (see p. 169) it is evident that we get a better estimator
of the coordinates of points A1, A2 and A3.

Furthermore, in the same way, we will find estimator β̂II for model for the
Situation II. In this situation, one can observe that the condition g(Θ, β) = 0
is implied for the parameters Θ and β, where

g1(Θ, β) = (β1 − β7)2 + (β2 − β8)2 −Θ2
1,

g2(Θ, β) = (β3 − β7)2 + (β4 − β8)2 −Θ2
2,

g3(Θ, β) = (β5 − β7)2 + (β6 − β8)2 −Θ2
3.

The linear version of the condition g(Θ, β) = 0, obtained using the Taylor
expansion at the approximate point (Θ0, β0) = (Θ̂1, Θ̂2, Θ̂3, Y1, Y2, Y3, Y4, Y5,
Y6), is in the form of Bδβ + CδΘ + a = 0, where δβ = β − β0, δΘ = Θ − Θ0,

B = ∂g(Θ0,β0)
∂β′ , C = ∂g(Θ0,β0)

∂Θ′ and a = g(Θ0, β0).

Here we present the values of the vector of the estimator β̂II (calculated
according to Theorem 2.2) based on the model with the measurement of 3
distances from triangular points to the inner point P by the measuring tape.
The result is

β̂II =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

536622.416 m
1118094.184 m
536605.578 m

1118109.178 m
536621.752 m

1118108.403 m
536614.768 m

1118105.885 m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Its covariance matrix (see Corollary 2.1) is given by

Var(bβII) =

=

0BBBBBBBBBB@

1.3685 0.6308 0.0797 −0.2083 −0.0443 −0.1096 0.0361 −0.3129
0.6308 3.4356 −0.7031 1.8373 0.3907 0.9667 −0.3185 2.7604
0.0797 −0.7031 1.0072 1.1309 0.0464 0.1147 0.3067 −0.5426

−0.2083 1.8373 1.1309 6.0447 −0.1212 −0.2998 −0.8014 1.4179
−0.0443 0.3907 0.0464 −0.1212 1.0490 −0.9674 0.3889 0.6979
−0.1096 0.9667 0.1147 −0.2998 −0.9674 6.6065 0.9623 1.7267

0.0361 −0.3185 0.3067 −0.8014 0.3889 0.9623 0.7083 0.1576
−0.3129 2.7604 −0.5426 1.4179 0.6979 1.7267 0.1576 3.0951

1CCCCCCCCCCA
.

As it has already been said before, we can use the outputs from the second
step of our example as the input for the third part of the computation. This
innovation of the algorithm could result in better estimators of our parameters.

Our task is to find the estimator of the coordinates of the point P and their
covariance matrix and to determine the confidence ellipses for the coordinates
of all points.
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We now apply the same model like in the Situation II. We can consider
another covariance matrix Var(β̂I)—the result from the Situation I, where we
have better estimator of parameters than in the first stage of the measurement
because of Tr[Var(β̂I)] < Tr(Σ22) . Here we present the values of the vector of
the estimator β̂II

′
(calculated according to Theorem 2.2). They are as follows:

β̂II
′
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

536622.473 m
1118094.363 m
536605.361 m

1118109.341 m
536622.071 m

1118107.489 m
536614.607 m

1118106.183 m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In this case, Corollary 2.1 gives the covariance matrix in the form of

Var(bβII′
) =

=

0BBBBBBBBBB@

1.1699 0.5461 −0.0752 −0.9390 0.0624 0.4752 0.2828 −0.0823
0.5461 2.6197 −0.2931 1.6152 −0.2011 2.5707 −0.0519 2.1943

−0.0752 −0.2931 0.5958 0.5062 0.5187 −0.2560 0.4006 0.0429
−0.9390 1.6152 0.5062 3.3453 0.3448 1.6967 0.0880 2.3429

0.0624 −0.2011 0.5187 0.3448 0.4706 −0.1745 0.3882 0.0308
0.4752 2.5707 −0.2560 1.6967 −0.1745 2.5309 −0.0447 2.2017
0.2828 −0.0519 0.4006 0.0880 0.3882 −0.0447 0.3684 0.0086

−0.0823 2.1943 0.0429 2.3429 0.0308 2.2017 0.0086 2.2611

1CCCCCCCCCCA
.

As we can see, it is possible to use estimator β̂I from the model for the
Situation I for finding the estimator in the model for the Situation II.

We have taken into account three different cases in which we have determined
the possible way, how to obtain the coordinates from the GPS receiver, which
shows a lesser uncertainty. These results, especially variances and residuals, for
the first calculated situation are quite satisfactory. In the second situation we
have not obtain better results because we have measured shorter distances. We
have corrected this imperfection in the Situation II’, where we have arrived at
the best results. The essence of this method is based on the use of outputs of
the Situation II as the input for the Situation II’.

The confidence ellipses obtained from calculated covariance matrix (based
on Theorem 2.4) for α = 5 % are depicted in Fig. 3.
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Situation I:
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Situation II’:
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Figure 3: The (1-α) confidence ellipses for points A1, A2 and A3 (solid line),
for point P̂ (bold solid line), for point Â1 (dash line), for point
Â2 (dashdot line) and for point Â3 (dot line).
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4 Concluding remarks

We hope that our contribution has evidently pointed out a necessity to inves-
tigate the dispersion of the measuring device (the GPS receiver in our case)
before the initiation of the measurement itself. In reality, a finding of the esti-
mation of the dispersion can be complicated and infeasible in some cases. It may
happen that the measurement cannot be repeated several times. Our proposed
procedure, however, allows to estimate the dispersion without the measurement
being repeated but with the help of the additional measurement (in our case,
by a measure tape).

In the example worked out in this paper, we have calculated the values of
the uncertainty of the GPS receiver which may have at the latitude of ϕ = 49◦.
Furthermore, our contribution have shown how the theory of estimation is a
powerful tool for a modification of inaccurate data acquired by a measuring
device (the GPS receiver in our case) with the utilization of the additional
measurement. The example has also demonstrated a possibility of a successive
improvement of the estimation by a further additional measurement.
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