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Metric of Special 2F-flat Riemannian
Spaces

Raad J. AL LAMY

Dept. of Basic Science, Fac. of Sci. & IT., Al Balqa’ Applied Univ., Jordan
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Abstract

In this paper we find the metric in an explicit shape of special 2F -flat
Riemannian spaces Vn, i.e. spaces, which are 2F -planar mapped on flat
spaces. In this case it is supposed, that F is the cubic structure: F 3 = I .

Key words: 2F -flat (pseudo-)Riemannian spaces, 2F -planar map-
ping, cubic structure.

2000 Mathematics Subject Classification: 53B20, 53B30, 53B35

1 Introduction

2F - and pF -planar mappings are studied in these papers [4, 5, 17]. The men-
tioned mappings are the generalization of geodesic, holomorphically projective
and F -planar mappings [1, 2, 6, 7, 8, 9, 10, 11, 14, 15, 16, 18].
As it is known, the Riemannian space with the constant curvature, resp. the

Kählerian space with the constant holomorphically projective curvature, admits
a geodesic, resp. holomorphically projective, mapping onto a flat space, i.e. the
space with a vanishing curvature tensor.
The consideration in the present paper is perfomed in the tensor form, lo-

cally, in a class of substantial real smooth functions. The dimension n of the
spaces under consideration, as a rule, is greater then 3. All the spaces are
supposed to be connected.
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8 Raad J. AL LAMY

We consider a (pseudo-) Riemannian space Vn with a metric tensor g and
an affinor structure F , i.e. a tensor field of type

(
1
1

)
. We supposed, that F is

the cubic affinor structure, for which it holds

F 3 = I.

In our paper we find the metric in an explicit shape of special 2F -flat Rie-
mannian spaces Vn, i.e. spaces, which are 2F -planar mapped on flat spaces.
It was proved, that the Riemannian tensor of these spaces has the following

form [4]:

Rh
ijk =

2∑
σ=0

(
σ

F h
i

σ

S jk+
σ

F h
j

σ

T ik−
σ

F h
k

σ

T ij),

where
σ

S jk and
σ

T ik are tensors. Here and after

0

F h
i = δh

i ,
1

F h
i = Fh

i ,
2

F h
i = Fh

α Fα
i ,

where δh
i is the Kronecker symbol, R

h
ijk and Fh

i are components of the Rieman-
nian tensor and the structure F , respectively.
Among other things it is known, that 2F -flat Riemannian spaces Vn are

symmetric, i.e. their Riemannian tensor is covariantly constant.

2 On special 2F -flat Rimannian space

As it was mentioned, the aim of our interest was to find the metric tensor of the
2F -flat Riemannian spaces Vn. This problem is considerably extensive, therefore
we narrow it by following assumptions.
In the following we study the 2F -flat Riemannian spaces Vn, for which the

Riemannian tensor has the form:

Rh
ijk = B (Gh

kGij − Gh
j Gik), (1)

where
Gh

k = δh
i + Fh

i + Fh
α Fα

i , Gij = giαGα
j , B − const.

There gij are components of the metric g and Fh
i are components of the structure

F , which satisfies the conditions:

F 3 = I, trF = trF 2 = 0, (2)

as well the following characteristic is joined with the metric tensor:

1

F ij =
1

F ji and
2

F ij =
2

F ji, (3)

where
1

F ij = giαFα
j and

2

F ij = giα

2

F α
j .



Metric of special 2F-flat Riemannian spaces 9

It is clear, that Vn with this Riemannian tensor is symmetric. Therefore we
use for the computation procedure of the metric tensor the formula by P. A. Shi-
rokov [14], in accordance with this formula the metric tensor of the symmetric
space in some point M(x0) ∈ Vn is calculate by sequences:

gij(y) =g
◦ ij +

1
2

∞∑
k=1

(−1)k 2k

(2k + 2)!
(k)
mij , (4)

where

(1)
m ij = mij ,

(k+1)
m ij =

(k)
m iαmjβ g

◦
αβ , mij =R◦ iαβjy

αyβ , (5)

g
◦ ij , g◦

ij , R◦ iαβj are values of components of the metric, inverse and Riemannian

tensors in a point x0, y ≡ (y1, y2, . . . , yn) are Riemannian coordinates in the
point x0.

3 The computation procedure of the metric of the 2F-flat
space

We substitute (1) to (5) in some point M(x0) and obtain:

mij =
(1)
m ij = B (yij+

1
y ij+

2
y ij),

where

yij = yiyj+
1
y i

2
y j+

2
y i

1
y j − y g

◦ ij−
2
y

1

F◦ ij−
1
y

2

F◦ ij ,

1
y ij = yαj F◦

α
i ,

2
y ij =

1
yαj F◦

α
i ,

yi =g
◦ iαyα,

1
y i = yα F◦

α
i ,

2
y j =

1
yα F◦

α
i ,

y =g
◦ αβyαyβ,

1
y =

1

F◦ αβyαyβ,
2
y =

2

F◦ αβyαyβ,

and F◦
h
i ,

1

F◦
h
i ,

2

F◦
h
i are components of the corresponding tensors in the point x0.

We notice, that

yij = yji,
1
y ij =

1
y ji,

2
y ij =

2
y ji,

yiα g
◦

αβyβj = −y yij−
1
y

2
y ij−

2
y

1
y ij .

Therefore

(2)
m ij = −3B2(y+

1
y+

2
y )(yij+

1
y ij+

2
y ij) = A

(1)
m ij = Amij ,
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where
A = −3B (y+

1
y+

2
y ).

By analogy we obtain

(3)
m ij = A

(2)
m ij = A2 mij , · · · ,

(k)
m ij = Ak−1 mij .

Then we substitute this one to (4) and we obtain

gij(y) = g
◦ ij +

1
2

mij

∞∑
k=1

(−1)k2kAk−1

(2k + 2)!
.

We make sure of the convergency of the sequences for an arbitrary value of
coordinates yh.
These sequences can be introduced in the following form

gij(y) = g
◦ ij +

1
4A2

mij

(
1 − A −

∞∑
k=0

(−2A)k

(2k)!

)
,

which is easy to express such as

gij(y) =g
◦ ij +

1
4A2

mij

(
1 − A −

{
cos

√
2A, A > 0,

ch
√

2|A|, A < 0,

})
. (6)

We can easily see that
lim
y→0

gij(y) =g
◦ ij

and above functions gij(y) are analytical onto domain.

Theorem 1 Let Vn be a 2F -flat Riemannian space and y its Riemannian co-
ordinates. Suppose that the conditions (1), (2) and (3) hold. Then the metric
Vn is expressed by the formula (6).
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A Groupoid Characterization
of Orthomodular Lattices *
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Abstract

We prove that an orthomodular lattice can be considered as a groupoid
with a distinguished element satisfying simple identities.

Key words: Orthomodular lattice, ortholattice, orthocomplemen-
tation, OML-algebra.

2000 Mathematics Subject Classification: 06C15

A bounded lattice is called an ortholattice if there is a unary operation
x �→ x⊥ called orthocomplementation such that

x ∨ x⊥ = 1 and x ∧ x⊥ = 0 (i.e. x⊥ is a complement of x)
x⊥⊥ = x (it is an involution)
x ≤ y implies y⊥ ≤ x⊥ (it is antitone).

An ortholattice is thus considered as an algebra L = (L;∨,∧,⊥, 0, 1) of type
(2, 2, 1, 0, 0). Due to the above mentioned properties of orthocomplementation,
it satisfies the De Morgan laws, i.e.

(x ∨ y)⊥ = x⊥ ∧ y⊥ and (x ∧ y)⊥ = x⊥ ∨ y⊥.
Hence, it can be considered also in the signature (∨,⊥, 0) of type (2, 1, 0) because
∧ can be expressed by De Morgan laws as a term function in ∨ and ⊥ and 1 = 0⊥.
An ortholattice L = (L;∨,∧,⊥, 0, 1) is called orthomodular if it satisfies the

implication
x ≤ y ⇒ x ∨ (x⊥ ∧ y) = y (the orthomodular law)

which is equivalent to x ≤ y ⇒ y ∧ (y⊥ ∨ x) = x.

*Supported by the Research Project MSM 6198959214.
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14 Ivan CHAJDA

The orthomodular law is apparently equivalent to the following identity

x ∨ (x⊥ ∧ (x ∨ y)) = x ∨ y (OMI)

or, equivalently,
(x ∨ y) ∧ ((x ∨ y)⊥ ∨ x) = x.

In what follows we will show that an orthomodular lattice can be discern as
an algebra of type (2, 0) in the signature (◦, 0), i.e. as a groupoid with a distin-
gushed element. Let us note that Boolean algebras were characterized in this
way already by the author in [4].

Definition 1 An algebra A = (A; ◦, 0) of type (2, 0) is called an OI-algebra if
it satisfies the following identities

(I0) 0 ◦ x = 1, where 1, denotes 0 ◦ 0

(I1) (x ◦ y) ◦ x = x

(I2) (x ◦ y) ◦ y = (y ◦ x) ◦ x

The proofs of the following lemmas are taken from [1].

Lemma 1 Every OI-algebra satisfies the following identities

(a) x ◦ (x ◦ y) = x ◦ y

(b) x ◦ x = (x ◦ y) ◦ (x ◦ y)

Proof Applying (I1) twice, we obtain x ◦ (x ◦ y) = ((x ◦ y) ◦ x) ◦ (x ◦ y) = x ◦ y,
proving (a). For (b), we apply (I1), (I2) and (a):

x ◦ x = ((x ◦ y) ◦ x) ◦ x = (x ◦ (x ◦ y)) ◦ (x ◦ y) = (x ◦ y) ◦ (x ◦ y). �

Lemma 2 Every OI-algebra satisfies the identities

x ◦ x = 1, 1 ◦ x = x, x ◦ 1 = 1.

Proof By Lemma 1(b) used twice we conclude x ◦ x = (x ◦ y) ◦ (x ◦ y) =
((x ◦ y) ◦ y) ◦ ((x ◦ y) ◦ y) = ((y ◦ x) ◦ x) ◦ ((y ◦ x) ◦ x)(y ◦ x) ◦ (y ◦ x) = y ◦ y.
For y = 0 we obtain x ◦ x = 0 ◦ 0 = 1.
Now, 1 ◦ x = (x ◦ x) ◦ x = x by (I1) and x ◦ 1 = x ◦ (x ◦ x) = x ◦ x = 1 by

Lemma 1 and the firstly proved identity. �

Definition 2 An OI-algebra A = (A; ◦, 0) is called antitone if it satisfies the
identity

(I3) (((x ◦ y) ◦ y) ◦ z) ◦ (x ◦ z) = 1 (where 1 = 0 ◦ 0).
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Lemma 3 Let A = (A; ◦, 0) be an antitone OI-algebra. Define a binary relation
≤ on A as follows

x ≤ y if and only if x ◦ y = 1.

Then ≤ is an order on A such that 0 ≤ x ≤ 1 for each x ∈ A and

x ≤ y implies y ◦ z ≤ x ◦ z for all x, y, z ∈ A.

Proof Due to Lemma 2, ≤ is reflexive.
Suppose x ≤ y and y ≤ x. Then x ◦ y = 1 and y ◦ x = 1 thus, by (I2),

y = 1 ◦ y = (x ◦ y) ◦ y = (y ◦ x) ◦ x = 1 ◦ x = x, i.e. ≤ is antisymmetric. Prove
transitivity of ≤. Let x ≤ y and y ≤ z. Then x ◦ y = 1, y ◦ z = 1 and, by (I3),

1 = (((x ◦ y) ◦ y) ◦ z) ◦ (x ◦ z) = ((1 ◦ y) ◦ z) ◦ (x ◦ z)
= (y ◦ z) ◦ (x ◦ z) = 1 ◦ (x ◦ z) = x ◦ z

thus x ≤ z. Hence, ≤ is an order on A. Due to (I0), 0 ≤ x and, by Lemma 2,
x ≤ 1 for each x ∈ A.
Suppose x ≤ y. Then x ◦ y = 1 and, by (I3),

(y ◦ z) ◦ (x ◦ z) = (((x ◦ y) ◦ y) ◦ z) ◦ (x ◦ z) = 1,

whence y ◦ z ≤ x ◦ z. �

In spite of Lemma 3, the relation ≤ on an antitone OI-algebra A will be
called the induced order of A.

Theorem 1 Let A = (A; ◦, 0) be an antitone OI-algebra, ≤ the induced order
on A. Then (A;≤) is a bounded lattice where x∨y = (x◦y)◦y, and the mapping
x �→ x ◦ 0, is an antitone involution on (A;≤).

Proof Since y ≤ 1 for each y ∈ A, Lemma 3 yields x = 1 ◦ x ≤ y ◦ x, i.e. A
satisfies the identity

x ◦ (y ◦ x) = 1. (B)

Suppose now a, b ∈ A. Then, by (B), b ◦ ((a ◦ b) ◦ b) = 1 and, by (B) and (I2),
a ◦ ((a ◦ b) ◦ b) = a ◦ ((b ◦ a) ◦ a) = 1, i.e. a ≤ (a ◦ b) ◦ b and b ≤ (a ◦ b) ◦ b.
Suppose further a ≤ c and b ≤ c. Then b◦c = 1 and, by Lemma 3, c◦b ≤ a◦b.

Hence
(a ◦ b) ◦ b ≤ (c ◦ b) ◦ b = (b ◦ c) ◦ c = 1 ◦ c = c.

We have shown that (a ◦ b) ◦ b is the least common upper bound of a, b, i.e.

a ∨ b = (a ◦ b) ◦ b

and (A;∨) is a ∨-semilattice.
Consider the mapping x �→ x ◦ 0. Then (x ◦ 0) ◦ 0 = x ∨ 0 = x, i.e. it is

an involution on A. By Lemma 3, this involution is antitone. Hence, we can
apply De Morgan law to prove a∧ b = ((a ◦ 0)∨ (b ◦ 0)) ◦ 0 for each a, b ∈ A, i.e.
(A;∨,∧) is a bounded lattice. �
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Definition 3 An antitone OI-algebra is called an OML-algebra if it satisfies
the identity

(I4) (x ◦ y) ◦ y = (((x ◦ y) ◦ y) ◦ 0) ◦ x.

Remark 1 By Theorem 1, (I4) can be read as

x ∨ y = ((x ∨ y) ◦ 0) ◦ x (C)

which being equivalent to

x ≤ y ⇒ y = (y ◦ 0) ◦ x. (D)

Let A be an antitone OI-algebra, ≤ its induced order. By Theorem 1, (A;≤) is
a bounded lattice. Denote this lattice by L(A) and call it the assigned lattice
of A.

Theorem 2 Let A = (A; ◦, 0) be an OML-algebra. Then its assigned lattice
L(A) is an orthomodular lattice where the orthocomplement of x ∈ A is

x⊥ = x ◦ 0.

Proof Take y = 0 in (I4). We obtain

x = (x ◦ 0) ◦ 0 = (((x ◦ 0) ◦ 0) ◦ 0) ◦ x = (x ◦ 0) ◦ x,

thus
1 = x ◦ x = ((x ◦ 0) ◦ x) ◦ x = (x ◦ 0) ∨ x.

By Theorem 1, x �→ x ◦ 0 is an antitone involution, thus, due to De Morgan
laws,

0 = (x ◦ 0) ∧ x

and hence x⊥ = x ◦ 0 is an orthocomplement of x ∈ A.
By Theorem 1, we obtain immediately

x ◦ y = ((x ◦ y) ◦ y) ◦ y. (E)

It remains to prove the orthomodular law. Let x ≤ y. Then x ◦ y = 1 and,
by (I4), (I2) and (E), we derive

y = (y ◦ 0) ◦ x = (((y ◦ 0) ◦ x) ◦ x) ◦ x = ((x ◦ (y ◦ 0)) ◦ (y ◦ 0)) ◦ x

= ((((x ◦ (y ◦ 0)) ◦ (y ◦ 0)) ◦ 0) ◦ x) ◦ x = (((((y ◦ 0) ◦ x) ◦ x) ◦ 0) ◦ x) ◦ x

= (y⊥ ∨ x)⊥ ∨ x = (y ∧ x⊥) ∨ x.

Thus the assigned lattice L(A) is an orthomodular lattice. �

Also, conversely, to every orthomodular lattice L = (L;∨,∧,⊥, 0, 1) an OML-
algebra can be assigned as follows.
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Theorem 3 Let L = (L;∨,∧,⊥, 0, 1) be an orthomodular lattice. Consider the
term function

x ◦ y = (x ∨ y)⊥ ∨ y.

Then A(L) = (L; ◦, 0) is an OML-algebra.

Proof Of course, 0 ◦ 0 = 0⊥ ∨ 0 = 1 ∨ 0 = 1. Further,

0 ◦ x = (0 ∨ x)⊥ ∨ x = x⊥ ∨ x = 1

proving (I0). To prove (I2), we use the identity (OMI) equivalent to the ortho-
modular law:

(x ◦ y) ◦ y = (((x ∨ y)⊥ ∨ y) ∨ y)⊥ ∨ y = ((x ∨ y)⊥ ∨ y)⊥ ∨ y

= ((x ∨ y) ∧ y⊥) ∨ y = x ∨ y,

i.e. also (y ◦ x) ◦ x = y ∨ x = x ∨ y = (x ◦ y) ◦ y. We prove (I1):

(x ◦ y) ◦ x = (((x ∨ y)⊥ ∨ y) ∨ x)⊥ ∨ x = 1⊥ ∨ x = 0 ∨ x = x.

For (I3), we firstly prove the following

Claim: x ≤ y if and only if x ◦ y = 1.

Proof: If x ≤ y then x ◦ y = (x ∨ y)⊥ ∨ y = y⊥ ∨ y = 1. Conversely, suppose
x ◦ y = 1. Then (x ∨ y)⊥ ∨ y = 1, hence by the orthomodular law

x ∨ y = (x ∨ y) ∧ ((x ∨ y)⊥ ∨ y) = y,

i.e. x ≤ y. �

Due to the previous part and the Claim, (I3) can be rewritten as

(x ∨ y) ◦ z ≤ x ◦ z.

However,

(x ∨ y) ◦ z = (x ∨ y ∨ z)⊥ ∨ z ≤ (x ∨ z)⊥ ∨ z = x ◦ z

thus (I3) is valid in A(L).
It remains to prove (I4). We have by (OMI)

(x ◦ y) ◦ y = x ∨ y = ((x ∨ y) ∧ x⊥) ∨ x = ((x ∨ y)⊥ ∨ x)⊥ ∨ x

= ((x ∨ y) ◦ 0) ◦ x = (((x ◦ y) ◦ y) ◦ 0) ◦ x. �

Remark 2 Since ◦ is a term function in ∨ and ⊥ and ∨,∧,⊥ are term func-
tions in ◦ and 0, one can easily verify that the assigning of an OML-algebra
to an orthomodular lattice and conversely are mutual inverse correspondences,
hence we have

L(A(L)) = L and A(L(A)) = A.
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Abstract

We introduce the concept of Sheffer operation in ortholattices and,
more generally, in lattices with antitone involution. By using this, all
the fundamental operations of an ortholattice or a lattice with antitone
involution are term functions built up from the Sheffer operation. We list
axioms characterizing the Sheffer operation in these lattices.

Key words: Ortholattice, orthocomplementation, lattice with an-
titone involution, Sheffer operation.
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The concept of Sheffer operation (the so-called Sheffer stroke in [1]) was
introduced by H. M. Sheffer in 1913. H. M. Sheffer [3] showed that all Boolean
functions could be obtained from a single binary operation as term operations.
In what follows, we are going to show that this works also in ortholattices
and, more generally, in lattices with antitone involution and we will set up
an equational axiomatization of this Sheffer operation.
Our basic concepts are taken from [1] and [2]. By a bounded lattice we mean

a lattice with least element 0 and greatest element 1. Let L = (L;∨,∧) be
a lattice. A mapping x �→ x⊥ is called an antitone involution on L if

x ≤ y implies y⊥ ≤ x⊥ (antitone)

x⊥⊥ = x (involution).

*Supported by the Research Project MSM 6198959214.
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The fact that an antitone involution ⊥ is a unary operation of L will be expressed
by the notation L = (L;∨,∧,⊥). If L is a bounded lattice with an antitone
involution which is, moreover, a complementation on L, i.e. it satisfies

x ∨ x⊥ = 1 and x ∧ x⊥ = 0,

then x⊥ is called an orthocomplement of x and L = (L;∨,∧,⊥,0,1) an ortho-
lattice.
It is worth noticing that if ⊥ is an antitone involution on L, then L =

(L;∨,∧,⊥) satisfies the De Morgan laws

x⊥ ∨ y⊥ = (x ∧ y)⊥ and x⊥ ∧ y⊥ = (x ∨ y)⊥.

Our basic concept is the following.

Definition 1 Let A = (A; ◦) be a groupoid. The operation ◦ is called Sheffer
operation if it satisfies the following identities:

(S1) x ◦ y = y ◦ x (commutativity)

(S2) (x ◦ x) ◦ (x ◦ y) = x (absorption)

(S3) x ◦ ((y ◦ z) ◦ (y ◦ z)) = ((x ◦ y) ◦ (x ◦ y)) ◦ z

(S4) (x ◦ ((x ◦ x) ◦ (y ◦ y))) ◦ (x ◦ ((x ◦ x) ◦ (y ◦ y))) = x (absorption)

If, moreover, it satisfies

(S5) y ◦ (x ◦ (x ◦ x)) = y ◦ y,

it is called an ortho-Sheffer operation.

Remark 1 (S2) implies also weak idempotency (x ◦ x) ◦ (x ◦ x) = x.

Lemma 1 Let A = (A; ◦) be a groupoid with a Sheffer operation. Define a bi-
nary relation ≤ on A as follows

x ≤ y if and only if x ◦ y = x ◦ x.

Then ≤ is an order on A.

Proof Reflexivity of ≤ is evident. Suppose x ≤ y and y ≤ x. Then x◦y = x◦x
and x◦y = y◦x = y◦y, i.e. x◦x = y◦y and hence by (S2) also x = (x◦x)◦(x◦x) =
(y ◦ y) ◦ (y ◦ y) = y. Thus ≤ is antisymmetric. Suppose x ≤ y and y ≤ z. Then
x ◦ y = x ◦ x, y ◦ z = y ◦ y and hence (x ◦ y) ◦ (x ◦ y) = (x ◦ x) ◦ (x ◦ x) = x, i.e.
by (S3) and (S2) also

(x ◦ z) = ((x ◦ y) ◦ (x ◦ y)) ◦ z = x ◦ ((y ◦ z) ◦ (y ◦ z))
= x ◦ ((y ◦ y) ◦ (y ◦ y)) = x ◦ y = x ◦ x

proving x ≤ z. Thus ≤ is also transitive and hence it is an order on A. �

Because of Lemma 1, ≤ will be called the induced order of A = (A; ◦).
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Lemma 2 Let ◦ be a Sheffer operation on A and ≤ the induced order of A =
(A; ◦). Then
(a) x ≤ y if and only if y ◦ y ≤ x ◦ x;

(b) x ◦ (y ◦ (x ◦ x)) = x ◦ x is the identity of A;
(c) x ≤ y implies y ◦ z ≤ x ◦ z;

(d) a ≤ x and a ≤ y imply x ◦ y ≤ a ◦ a.

Proof (a) If x ≤ y then x ◦ y = x ◦ x and, by (S2),

(x ◦ x) ◦ (y ◦ y) = (x ◦ y) ◦ (y ◦ y) = y = (y ◦ y) ◦ (y ◦ y)

thus y ◦ y ≤ x ◦ x.
Conversely, if y ◦ y ≤ x ◦ x then, analogously, we can prove

(x ◦ x) ◦ (x ◦ x) ≤ (y ◦ y) ◦ (y ◦ y)

which, by (S2), yields x ≤ y.

(b) This identity follows directly by (S2) if x ◦ x is considered instead of x:

x ◦ x = ((x ◦ x) ◦ (x ◦ x)) ◦ ((x ◦ x) ◦ y) = x ◦ ((x ◦ x) ◦ y) = x ◦ (y ◦ (x ◦ x)).

(c) Let x ≤ y. Then x ◦ y = x ◦ x, i.e.

(x ◦ y) ◦ (x ◦ y) = (x ◦ x) ◦ (x ◦ x) = x

and hence, by (S3),

(y ◦ z) ◦ (x ◦ z) = (y ◦ z) ◦ (((x ◦ y) ◦ (x ◦ y)) ◦ z)
(y ◦ z) ◦ (x ◦ ((y ◦ z) ◦ (y ◦ z))) = (y ◦ z) ◦ (y ◦ z)

by the previous identity (b). Thus y ◦ z ≤ x ◦ z.

(d) Suppose a ≤ x and a ≤ y. Then by (c),

a ◦ a ≥ x ◦ a and x ◦ a = a ◦ x ≥ y ◦ x.

Using transitivity of ≤, we conclude a ◦ a ≥ y ◦ x = x ◦ y. �

Theorem 1 Let ◦ be a Sheffer operation on A and ≤ the induced order on
A = (A, ◦). Define

x ∨ y = (x ◦ x) ◦ (y ◦ y), x⊥ = x ◦ x and x ∧ y = (x⊥ ∨ y⊥)⊥.

Then L(A) = (A;∨,∧,⊥) is a lattice with antitone involution.

Proof By (S2) and (S4) we obtain

x ◦ ((x ◦ x) ◦ (y ◦ y)) = ((x ◦ ((x ◦ x) ◦ (y ◦ y))) ◦ (x ◦ ((x ◦ x) ◦ (y ◦ y))))
◦ ((x ◦ ((x ◦ x) ◦ (y ◦ y))) ◦ (x ◦ ((x ◦ x) ◦ (y ◦ y)))) = x ◦ x
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and, analogously y ◦ ((x ◦ x) ◦ (y ◦ y)) = y ◦ y, thus x ≤ (x ◦ x) ◦ (y ◦ y) and
y ≤ (x◦x)◦(y◦y). Suppose now x ≤ c and y ≤ c. Then x◦c = x◦x, y◦c = y◦y
and, by Lemma 2 (c) and (d), c = (c◦c)◦(c◦c) ≥ (x◦c)◦(y◦c) = (x◦x)◦(y◦y).
Hence, (x ◦ x) ◦ (y ◦ y) is the least common upper bound of x, y, i.e. x ∨ y =
(x ◦ x) ◦ (y ◦ y).
By (S2), x⊥⊥ = (x ◦ x) ◦ (x ◦ x) = x and, by Lemma 2(c), the mapping

x �→ x⊥ = x ◦ x is antitone, i.e. it is an antitone involution on (A,≤). Applying
the De Morgan laws we conclude x∧y = (x⊥∨y⊥)⊥. Hence, L(A) = (A;∨,∧,⊥)
is a lattice with antitone involution. �

Because of Theorem 1, we call L(A) the induced lattice of A = (A, ◦).

Theorem 2 Let ◦ be an ortho-Sheffer operation on A and L(A) = (A;∨,∧,⊥)
the induced lattice. Then L(A) is an ortholattice (A;∨,∧,⊥,0,1) where 1 =
x ◦ (x ◦ x) and 0 = 1 ◦ 1.

Proof Due to Theorem 1, we only need to verify that x ◦ (x ◦ x) is the great-
est element 1 of (A,≤), 0 = 1 ◦ 1 is the least element of (A;≤) and x⊥ is
a complement of x.
By (S5) we obtain immediately y ≤ x ◦ (x ◦ x) for all x, y ∈ A. Hence

x ◦ (x ◦ x) = z ◦ (z ◦ z) for all x, z ∈ A, i.e. it is a constant of (A, ◦) which is
greater than each element y ∈ A. Denote this constant by 1. Hence, 0 = 1 ◦ 1
is an algebraic constant of (A; ◦) and, due to Lemma 2(a), 0 = 1 ◦ 1 ≤ y ◦ y.
Taking y = x ◦ x, we have 0 ≤ (x ◦ x) ◦ (x ◦ x) = x for each x ∈ A, i.e. 0 is the
least element of (A;≤).
Applying the operations ∨,∧,⊥ introduced in Theorem 1 we have immedi-

ately
x⊥ ∨ x = ((x ◦ x) ◦ (x ◦ x)) ◦ (x ◦ x) = x ◦ (x ◦ x) = 1.

By the De Morgan law also x ∧ x⊥ = 0, i.e. x⊥ is a complement and hence
an orthocomplement of x. �

Theorem 3 Let L = (L;∨,∧,⊥ ) be a lattice with antitone involution. Define

x ◦ y = x⊥ ∨ y⊥.

Then ◦ is Sheffer operation on L. If L = (L;∨,∧,⊥ ,0,1) is an ortholattice
then this Sheffer operation ◦ satisfies also (S5).

Proof (S1) is evident. We prove (S2):

x = x ∨ (x ∧ y) = x ∨ (x⊥ ∨ y⊥)⊥ = (x ◦ x) ◦ (x ◦ y).

For (S3) we compute

x ◦ ((y ◦ z) ◦ (y ◦ z)) = x⊥ ∨ (y⊥ ∨ z⊥)⊥⊥ = x⊥ ∨ (y⊥ ∨ z⊥) = (x⊥ ∨ y⊥) ∨ z⊥

= (x⊥ ∨ y⊥)⊥⊥ ∨ z⊥ = ((x ◦ y) ◦ (x ◦ y)) ◦ z.
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We prove (S4):

(x ◦ ((x ◦ x) ◦ (y ◦ y))) ◦ (x ◦ ((x ◦ x) ◦ (y ◦ y))) = (x⊥ ∨ (x ∨ y)⊥)⊥

= x ∧ (x ∨ y) = x.

Suppose now that x⊥ is an orthocomplement of x, then

y ◦ (x ◦ (x ◦ x)) = y⊥ ∨ (x⊥ ∨ x)⊥ = y⊥ ∨ (x ∧ x⊥) = y⊥ ∨ 0 = y⊥ = y ◦ y

thus ◦ satisfies also (S5). �

Let A = (A; ◦) be a groupoid with ortho-Sheffer operation. We denoted by
L(A) the ortholattice induced by A as considered in Theorems 1 and 2. Anal-
ogously, when given an ortholattice L = (L;∨,∧,⊥,0,1) denote by A(L) the
groupoid (L, ◦) where ◦ is the ortho-Sheffer operation defined as in Theorem 3.
Using Theorems 1, 2, 3 and easy computations, one can prove the following
correspondence theorem.

Theorem 4 Let L = (L;∨,∧,⊥,0,1) be an ortholattice and A = (A, ◦)
a groupoid with ortho-Sheffer operation. Then

A(L(A)) = A and L(A(L)) = L.

Proof The proof is an easy exercise left to the reader. �
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Abstract

We prove a converse of the well-known Kelly’s Lemma. This moti-
vates the introduction of the general notions of K-table, K-congruence
and control-class.

Key words: Graph; Kelly’s Lemma; Reconstruction.
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1 Introduction

An Ulam-subgraph of a (finite, simple, undirected, labelled) graph G of order n
is a subgraph of order n − 1 obtained from G by deleting a vertex of G and the
edges incident to it. Such a subgraph can also be defined as a maximal induced
subgraph of G or, simply, as a subgraph induced by n − 1 vertices of G.
Thus, a graph G of order n gives rise to n distinct Ulam-subgraphs, the set

of which is sometimes called the Ulam-deck of G. We shall denote by G(v) the
Ulam-subgraph of G obtained by deleting the vertex v of G. Note that distinct
Ulam-subgraphs may be isomorphic.
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We say that two graphsX, Y have the same Ulam-deck if there is a one-to-one
correspondence between the Ulam-decks of X and Y , such that corresponding
subgraphs are isomorphic.
It is clear that two isomorphic graphs must have the same Ulam-deck. Ulam

and Kelly, in 1941, have conjectured that having the same deck is a sufficient
condition for isomorphism for all graphs of order n ≥ 3.
Since that time, the conjecture has been verified forX, Y belonging to several

classes of graphs and many other related problems have been considered (fairly
recent surveys are [2] and [9]).
In Section 2, for the benefit of a reader not too familiar with Reconstruction

Theory, we make a few remarks explaining (and improving) current terminology.
In Section 3 we state without proof Kelly’s Lemma and one of its well-known

generalizations due to Greenwell and Hemminger.
In Section 4 we prove the converse of Kelly’s Lemma, a result which—

although fairly easy to establish—does not seem to appear in the literature.
In Section 5 we define, for a given class K of graphs, the notions of K-table

of a graph G, of K-homogeneous graphs, and of K-congruent graphs. These
notions suggest that we call a class K an overall (resp. pointwise) control-class,
if two graphs X, Y are isomorphic whenever they are K-homogeneous (resp. K-
congruent). We point out that the class of paths is not a pointwise control-class
for the trees, and suggest a few classes that might be.
In Section 6 we discuss a possible strengthening of the Kelly–Ulam’s conjec-

ture.

2 Remarks on terminology and subproblems

The Kelly–Ulam’s Conjecture is stated for two arbitrary given graphs X, Y : if
X and Y have the same Ulam-deck, then they should be isomorphic.
In order to obtain partial results, the general problem has been split into

subproblems or confined to subclasses of the class of all graphs. The following
terminology has been introduced.
First of all, a graph X is called reconstructible if any graph Y having the

same Ulam-deck as X is isomorphic to X .
Thus, proving the Kelly–Ulam’s conjecture is the same as proving that any

graph of order ≥ 3 is reconstructible, and partial results regarding the Kelly–
Ulam’s conjecture may consist in proving that restricted types of graphs (or
even interesting individual graphs) are reconstructible. For example, it is easy
to prove that a regular graph is reconstructible.
Another useful definition, which generalizes the one given above, is the fol-

lowing.

Definition 1 A graph X is reconstructible within the class of graphs A (con-
taining X), if any graph Y ∈ A, having the same Ulam-deck as X , is isomorphic
to X .
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Hence, the task of proving that a given graph X is reconstructible may be
split into the following two steps, with respect to a suitably chosen class A
(containing X):

• prove that X is reconstructible within A.
• prove that an arbitrary graph Y , having the same Ulam-deck as X , must
also belong to A.

The former step is sometimes called weak-reconstructability of X , but we prefer
to call it reconstructability within A, and the latter recognizability of the class
A. If A is characterized by a property P , one also speaks of recognizability of
P . Thus, the difficulty in establishing the recognizability of a class A strongly
depends on the features of A and, presumably, it is greater when A is small.
For example, it is not known whether the class of planar graphs is recognizable.
Note that if A is the class of all graphs isomorphic to a given X , then the

recognizability of A is equivalent to the reconstructability of X .

3 Kelly’s Lemma and its generalizations

We first introduce some notation and terminology. If X and Y have the same
Ulam-deck, then, by definition, there is a one-to-one correspondence σ between
the set of the Ulam-subgraphs ofX and the set of the Ulam-subgraphs of Y such
that corresponding Ulam-subgraphs are isomorphic. Since an Ulam-subgraph
contains all but one vertex, then the one-to-one correspondence σ naturally
induces another one-to-one correspondence: the correspondence π between the
missing vertices. Thus, we can say that X , Y have the same Ulam-deck if and
only if there is a bijection π : V (X) → V (Y ) such that X(v) � Y (π(v)) for all
v ∈ V (X). The bijection π will be referred to as an Ulam-congruence, and X
will be said Ulam-congruent to Y .
Let Z be a graph, v ∈ V (Z). For any graph Q, we set(

Z
Q

)
= number of subgraphs of Z isomorphic to Q,(

Z
Q

)
v
= number of subgraphs of Z containing vertex v isomorphic to Q.

The so-called Kelly’s Lemma is the first result regarding the Kelly-Ulam’s
conjecture that have been obtained (in [7]). It points out a consequence of the
hypothesis that two graphs are Ulam-congruent, quite remarkable in spite of
the simplicity of the proof.

Lemma 1 (Kelly’s Lemma) Let X, Y be graphs of order n. Assume that
there is a bijection π : V (X) → V (Y ) such that

(i) X(v) � Y (π(v)) for all v ∈ V (X).

Then

(ii)
(
X
Q

)
=
(
Y
Q

)
for all graphs Q of order less than n.

(iii)
(
X
Q

)
v

=
(
Y
Q

)
π(v)
for all v ∈ V (X) and all graphs Q of order less than n.
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We now record a generalization of Kelly’s Lemma due to Greenwell and
Hemminger ([5]). Let F be a class of graphs. An F-subgraph of a graph G is a
subgraph of G isomorphic to some element of F .

Lemma 2 (Greenwell–Hemminger’s Lemma) Let F be a class of graphs.
Let X, Y be Ulam-congruent graphs of order n. Assume that all F-subgraphs
of X and Y have order less than n, and that the intersection of two distinct
maximal F-subgraphs of X (and Y ) is not an F-subgraph. Then, for every
Q ∈ F , the number of maximal F-subgraphs of X isomorphic to Q is equal to
the number of maximal F-subgraphs of Y isomorphic to Q.

Remark 1 When F consists of a single graph, then the Greenweel–Hemminger’s
Lemma reduces to Kelly’s Lemma. Also, when F is the set of all subgraphs of
X of order exactly n − 1, the assumption and the conclusion coincide.

Example 1 (Greenwell and Hemminger) Let X, Y and Q be as in Fig. 1.

v1

v2

v3 v4

v5

v6

v7 v8

v9

v10

v11

X

w1

w2

w3 w8

w5

w6

w7 w4

w9

w10

w11

Y

1

2

3

4

Q

Figure 1: Example of the Greenweel–Hemminger’s Lemma.

Let π : vi → wi for all i. Let F be the class of all 2-connected graphs. Then
π is an Ulam-congruence from X to Y . The assumptions of the Greenwell–
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Hemminger’s Lemma are verified since the intersection of two maximal 2-con-
nected subgraphs is not 2-connected. In both X and Y the total number of
2-con–nected maximal subgraphs isomorphic to Q equals 1. Also, there are 4
subgraphs of X isomorphic to Q containing v4: These are

H1 = {v1v4, v2v4, v1v3, v2v3, v3v4}, H2 = {v1v2, v1v3, v2v3, v1v4, v2v4},
H3 = {v4v5, v4v6, v5v7, v5v6, v6v7}, H4 = {v4v5, v4v6, v5v6, v5v8, v6v8}.

For i = 1, 2, 3, 4, no Hi is a maximal F -subgraph of X , i.e. it is a subgraph of
X which can be properly extended to a 2-connected subgraph of X .
There are 4 subgraphs of Y isomorphic to Q containing w4 = π(v4): These

are
K1 = {w5w6, w5w4, w6w4, w5w7, w6w7},
K2 = {w5w4, w5w7, w4w6, w6w7, w4w7},
K3 = {w4w5, w4w6, w5w6, w5w8, w6w8},
K4 = {w4w9, w4w10, w9w10, w9w11, w10w11}.

Note that K4 is a maximal F -subgraph of Y . Thus, this example shows that a
pointwise version of Greenwell–Hemminger’s Lemma does not hold.

Another generalization of Kelly’s Lemma is given by Tutte ([12])

4 The Converse of Kelly’s Lemma

Recall that a class of graphs is a family of graphs closed under isomorphisms. We
denote by G the class of all graphs. In the next theorem we collect the statement
of both Kelly’s Lemma and its converse and give a complete proof. Regarding
the proof of the implication (ii) ⇒ (i) (the converse of Kelly’s Lemma), the
reader may keep in mind the following example, where we have shown how the
Ulam-subgraphs are “distributed” among the subgraphs of order n − 1 of the
various sizes, i.e. number of edges (see Fig. 2).

Theorem 1 Let X, Y be graphs of order n and let K be a class of graphs. Let
π be a bijection V (X) → V (Y ). Consider the following conditions:

(i) X(v) � Y (π(v)) for all v ∈ V (X).

(ii)
(
X
Q

)
=
(
Y
Q

)
for all Q ∈ K of order less than n.

(iii)
(
X
Q

)
v

=
(
Y
Q

)
π(v)
for all v ∈ V (X) and all Q ∈ K of order less than n.

Then (i) ⇒ (ii), (i) ⇒ (iii) and (iii) ⇒ (ii). If K = G, the three conditions are
equivalent.

Proof Let
(

Z
Q

)
v′ = number of subgraphs of Z not containing the vertex v and

isomorphic to Q, and consider the auxiliary condition

(i)′ There is a bijection π : V (X) → V (Y ) such that
(
X
Q

)
v′ =

(
Y
Q

)
π(v)′

for all

v ∈ V (X) and all graphs Q ∈ K of order less than n.
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1
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2
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3

5

1
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X

34 2 5

35 2 4

32 4 5

32 4 5

24 5 3

32 5 4

31 2 4

31 2 4

24 1 3

31 4 2

41 2 3

13 4 2

31 2 5

31 2 5

25 1 3

31 5 2

51 2 3

13 5 2

31 4 5

31 5 4

Figure 2: The lattice of the subgraphs of X of order 4. The Ulam-subgraphs
are depicted into rectangular frames.



The converse of Kelly’s Lemma and control-classes in graph reconstruction 31

We prove that (i) ⇒ (i)′ for all K, and (i)′ ⇒ (i) for K = G.
Proof of (i)⇒(i)′. By (i), X(v) � Y (π(v)), hence

(
X(v)

Q

)
=
(
Y (π(v))

Q

)
for all

Q ∈ K. But since |Q| < n,
(

X
Q

)
v′ =

(
X(v)

Q

)
, and

(
Y
Q

)
π(v)′

=
(
Y (π(v))

Q

)
for all

v ∈ V (X).
Proof of (i)′⇒(i). Fix any v ∈ V (X). Assume (i)′ for K = G. Thus we can

replace X(v) for Q, thus obtaining

1 =
(

X(v)

X(v)

)
=
(

X

X(v)

)
v′

=
(

Y

X(v)

)
π(v)′

=
(

Y π(v)

X(v)

)
.

We can also replace Y π(v) for Q, obtaining(
X(v)

Y (π(v))

)
=
(

X

Y (π(v))

)
v′

=
(

Y

Y (π(v))

)
π(v)′

=
(

Y (π(v))

Y (π(v))

)
= 1.

In particular, we get X(v) � Y π(v) from the first equality, and Y (π(v)) � X(v)

from the second. Hence Y (π(v)) � X(v).
Note that just one of the inequalities above, together with the finiteness of

the graphs involved, would suffice to obtain the same conclusion if one proves
that X(v) and Y π(v) have the same number of edges.

Proof of (i) ⇒ (ii).(
X

Q

)
=

1
n − |Q|

∑
v∈V (X)

(
X(v)

Q

)
=

1
n − |Q|

∑
v∈V (X)

(
Y (π(v))

Q

)
=
(

Y

Q

)
.

Proof of (i) ⇒ (iii). From what above, we can show that (i)′∧ (ii) ⇒ (iii).
Simply write(

X

Q

)
v

=
(

X

Q

)
−
(

X

Q

)
v′

=
(

Y

Q

)
−
(

Y

Q

)
π(v)′

=
(

Y

Q

)
π(v)

.

Proof of (iii) ⇒ (ii). One can briefly argue as follows.
If, for each v ∈ V (X), one counts the number of subgraphs of X containing

v and isomorphic to (the given fixed) Q and then sums up the values obtained
for various v, one overcounts each such subgraph H (isomorphic to Q) by a
factor |H |, because for all vertices v of H the same H is counted.
As the subgraphs considered are all isomorphic to Q, they all have the same

order |Q|. This allows us to obtain
(
X
Q

)
by dividing out by |Q|. Then(

X

Q

)
=

1
|Q|

∑
v∈V (X)

(
X

Q

)
v

=
1

|Q|
∑

v∈V (Y )

(
Y

Q

)
π(v)

=
(

Y

Q

)
,

which proves (ii).

Proof of (ii) ⇒ (i) when K = G. One has to take into account the fact
that the various Ulam-subgraphs may have different sizes (number of edges).
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We shall prove (i) by assuming only that
(
X
Q

)
=
(
Y
Q

)
for all graphs Q of order

exactly n − 1. In fact, in this part of the proof, all the subgraphs of X and Y
considered will be subgraphs of order n − 1.
If Q is a graph of order n − 1, denote by UX(Q) (resp. UY (Q)) the set of

Ulam-subgraphs of X (resp. of Y ) isomorphic to Q.
We have to prove that, for any such Q

|UX(Q)| = |UY (Q)|.

(indeed, this amounts to proving that X and Y have the same Ulam-deck, i.e.
that (i) holds for some bijection π : V (X) → V (Y )).
We shall split the proof into steps, according to the size of Q. We shall

procede starting with the maximum size.
So, let lX (resp. lY ) be the largest size value of a subgraph of X (resp. of

Y ) of order n − 1. By the assumption (ii) it is clear that lX = lY : Indeed, if it
were, say, lX < lY , there would be in Y at least a subgraph U of order n − 1
and size lY , hence

(
Y
U

)
≥ 1, whereas in X all subgraphs of order n − 1 would

have size ≤ lX < lY , hence
(
X
U

)
= 0, a contradiction. Thus we set l := lX = lY .

Before proceeding, note the important fact that any subgraph of X (resp.
of Y ) of order n − 1, and of arbitrary size s, is contained in exactly one Ulam-
subgraph. In other words, there are no subgraphs of order n− 1 in the intersec-
tion of two distinct Ulam-subgraphs (possibly of different sizes). Let Q be an

arbitrary graph of order n − 1. Denote by
(
G
Q

)[k]
the number of subgraphs of a

graph G of order n isomorphic to Q and contained in some Ulam-subgraph of
size k.
By the above consideration, it follows that

• if Ql is a graph of (order n − 1 and) size equal to l, then(
X

Ql

)
=
(

X

Ql

)[l]

and

(
Y

Ql

)
=
(

Y

Ql

)[l]

. (1)

Indeed, a subgraph of (order n − 1 and) size l is necessarily contained in
(in fact it is equal to) some Ulam-subgraph of size l.

• If Ql−1 is a graph of (order n − 1 and) size equal to l − 1, then(
X

Ql−1

)
=
(

X

Ql−1

)[l]

+
(

X

Ql−1

)[l−1]

,(
Y

Ql−1

)
=
(

Y

Ql−1

)[l]

+
(

Y

Ql−1

)[l−1]

.

(2)

Indeed, a subgraph of (order n − 1 and) size l − 1 is either contained in
some Ulam-subgraph of size l, or in in some Ulam-subgraph of size l − 1.

In general, if Qs is a graph of (order n − 1 and) size equal to s, we have(
X

Qs

)
=

l∑
k=s

(
X

Qs

)[k]

and

(
Y

Qs

)
=

l∑
k=s

(
Y

Qs

)[k]

. (3)
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We shall use the equalities (3) in succession, starting with s = l. We begin
by considering (one-by-one) representatives of all graphs Ql of (order n−1 and)
size l. From (1) (that is (3) with s = l) and from assumption (ii), we obtain(

X

Ql

)[l]

=
(

Y

Ql

)[l]

,

that is |UX(Ql)| = |UY (Ql)|. This equality allows us to set up (at least) a one-to-
one iso-correspondence µl (i.e. with corresponding objects isomorphic) between
the Ulam-subgraphs of X of size l and those of Y . By “restriction”, µl gives
rise to one-to-one iso-correspondences µl,r between the set of subgraphs Hr of
X of size r contained in some Ulam-subgraph of size l, and the analogous set
of subgraphs Kr of Y (see Fig. 3, where r = l − 1, and the action of µl,l−1 is
drawn only partially).

X Y

♣ ♦ ♦

♥

♠

� � � � � ∇ � � �

♣ ♦ ♦

♥

♠

� � � � � ∇ � � �

�

µl

� ��

µl

µl� �

�� ��
µl,l−1

µl,l−1

Figure 3: The one-to-one iso-correspondence µl,l−1 induced by µl. The dashed
vertical lines stress the fact that any subgraph of order n − 1 is contained in
exactly one Ulam-subgraph (depicted in square frames).

Consequently we have, for any Qr of (order n − 1 and) size r < l(
X

Qr

)[l]

=
(

Y

Qr

)[l]

. (4)

Now, consider equality (2) (that is (3) with s = l − 1). Applying equality (4)
with r = l − 1 and assumption (ii), we obtain(

X

Ql−1

)[l−1]

=
(

Y

Ql−1

)[l−1]

,

that is |UX(Ql−1)| = |UY (Ql−1)|. This equality allows us to set up (at least) a
one-to-one iso-correspondence µl−1 between the Ulam-subgraphs of X of size
l − 1 and those of Y . By “restriction”, µl−1 gives rise to one-to-one iso-
correspondences µl−1,t between the set of subgraphs Ht of X of size t contained
in some Ulam-subgraph of size l − 1 and the analogous set of subgraphs Kt

of Y .
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Consequently we have, for any Qt of (order n − 1 and) size t < l − 1(
X

Qt

)[l−1]

=
(

Y

Qt

)[l−1]

. (5)

Now, consider equality (3) with s = l − 2. Applying both equalities (4) with
r = l − 2 and (5) with t = l − 2, together with assumption (ii), we obtain(

X

Ql−2

)[l−2]

=
(

Y

Ql−2

)[l−2]

,

that is |UX(Ql−2)| = |UY (Ql−2)|.
Repeating this argument for l−3, . . . , 1, 0, we obtain the desired conclusion.

�

Remark 2 Because of the equivalence (i) ⇔ (ii) (when K = G), Kelly–Ulam’s
conjecture can be rephrased by saying that two graphs of order n are isomorphic
if and only if they contain the same number of subgraphs isomorphic to any
graph Q of order less than n.
Although Conditions (ii) and (iii) of Theorem 1 are equivalent when con-

sidered for all graphs Q of order less than n, Conditions (ii) no longer implies
Condition (iii) when Q is taken in a class K smaller than the class G of all
graphs. Thus, for example, when the class K consists of the single graph K2

(the connected graph on two vertices) Condition (ii) says that X and Y have
the same number of edges, whereas Condition (iii) says that they have the same
degree-sequence. As an example, one may take X to be a four cycle and Y a
graph of order 4 having exactly one vertex of degree 1. The same X and Y
also show that Condition (ii) does not imply Condition (iii) even if the class K
consisted of all Q of order n − 2.
However, since our proof of (ii) ⇒ (i) only uses subgraphs of order n− 1, we

see that (ii) ⇒ (iii) when K consists of all Q of order n − 1.

5 K-congruent pairs of graphs. Control-classes for a given
class of graphs

Because of the equivalence of (i), (ii), and (iii) in Theorem 1 (when K = G),
whenever the Kelly–Ulam’s conjecture is proved for two graphs X, Y , such a
result can be reformulated in two ways.
For example, Kelly’s Theorem on trees ([7]) can be reformulated in the

following ways (omitting the recognition part of his statement)

(O) Let T1, T2 be two trees of order n. If for all graphs Q ∈ G of order less
than n it holds

(
T1
Q

)
=
(
T2
Q

)
, then T1 � T2.

(P) Let T1, T2 be two trees of order n. If there is a bijection π : V (T1) → V (T2)
such that

(
T1
Q

)
v

=
(
T2
Q

)
π(v)

for all v ∈ V (T1) and for all Q ∈ G of order
less than n, then T1 � T2.
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This leads to the following definitions.

Definition 2 Let K be a class of graphs, and X, Y graphs of order n. We say
that X, Y are K-homogeneous if

(
X
Q

)
=
(
Y
Q

)
for all Q in K of order less than

n. We say that X, Y are K-congruent if there is a bijection π : V (X) → V (Y ),
called K-congruence, such that

(
X
Q

)
v

=
(
Y
Q

)
π(v)
for all v ∈ V (X) and all Q in K

of order less than n.

Definition 3 Let K be a class of graphs. The K-table of a graph G is the
array whose rows are labelled by the vertices of G, whose columns are labelled
by representatives of the isomorphism classes of the graphs of K such that, for
v ∈ V (G), Q ∈ K, the entry at position (v, Q) is the number of subgraphs of G
containing v isomorphic to Q.

From this definition it follows that two graphs X and Y are K-congruent if
and only if their K-tables are equal, up to reordering of the rows.

Definition 4 Let A be a class of graphs of order n. A class of graphs K is
called an overall control-class for A if two graphs G1, G2 ∈ A are isomorphic
whenever

(
G1
Q

)
=
(
G2
Q

)
, for all Q ∈ K of order less than n, i.e. whenever they are

K-homogeneous.
Similarly, K is called a pointwise control-class forA if two graphsG1, G2 ∈ A

are isomorphic whenever there is a bijection π : V (G1) → V (G2) for which(
G1
Q

)
v

=
(
G2
Q

)
π(v)
, for all v ∈ V (G1) and all Q ∈ K of order less than n, i.e.

whenever they are K-congruent.

Remark 3 Since (
G

Q

)
=

1
|Q|

∑
v∈V (G)

(
G

Q

)
v

then, clearly, if K is an overall control-class for A, then K is also a control-class
for A. Moreover, if Kelly–Ulam’s Conjecture is true, then the class G of all
graphs is a control-class for any A.

A generalization of the Reconstruction Problem which seems interesting to
us is the following.

Problem 1 Find minimal control-classes for A, when A is a class of recon-
structible graphs, for instance the class of trees ([7]), cacti ([4], [10]), maximal
planar graphs ([8]) and so on (minimal control-classes may not be unique).

In the special case when A is the class of all trees of a fixed order n, one
may consider several interesting candidates for control-classes (either overall or
pointwise)

• the class P of paths,
• the class Pσ of σ-paths (i.e. disjoint unions of paths),
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• the class C of caterpillars,
• the class Cσ of σ-caterpillars,

• the class O of octopi (i.e. trees with at most one vertex of degree greater
than 2).

Each class listed above has the feature that it contains the connected sub-
graphs of its elements. The classes Pσ and Cσ in fact contain all subgraphs of
their elements.
It is not known if the classes Pσ, C, Cσ, O listed above are pointwise control-

classes for the trees. In [3] example-pairs are given that show that P is not
a pointwise control-class for the trees of order n for many values of n. The
minimal pair (n = 20) is shown in Figure 4. This pair also shows that O is not
an overall control-class for the trees.

1
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4

5

6

7

8

9 1011

12

13
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16
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18

U1

19 20 1

2

3

4

5

6

13

8

9 10 11

12

7

14

15

16

17

18

U2

15 2019

Figure 4: Minimal pair of non-isomorphic P-congruent trees.

Remark 4 In view of the remark at the end of Section 4, if Kelly-Ulam’s
Conjecture is true, not only the class G of all graphs, but also the class Gn−1

of all graphs of order exactly n − 1 is an overall control-class for the class of
all graphs of order n. However, in general, if K is a control-class for a class
A of graphs of order n, it may not be true that also the class K ∩ Gn−1 is a
control-class for A. In fact, K ∩ Gn−1 may well be empty. For example, several
trees of order n will contain no octopus or caterpillar of order n−1: Thus these
trees could never be distinguished by the octopi or caterpillars of order n − 1.

6 The Ulam-ladder

There are several ways of strengthening Kelly–Ulam’s conjecture. The first and
most natural is to ask whether fewer than n Ulam-subgraphs suffice to determine
a graph (up to isomorphism). It has been proved that three suitably selected
Ulam-subgraphs suffice “almost always” ([1]). For an arbitrary graph G of order
n, Harary and Plantholt ([6]) have conjectured that [n

2 ] + 2 well-selected Ulam-
subgraphs should suffice to determine G, and in fact 3 should suffice if n is
prime.
To discuss another strengthening of Kelly–Ulam’s conjecture we premise a

definition.
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Definition 5 The Ulam-ladder is the function L : N → N defined by setting
L(n) to be the smallest positive integers m such that all graphs of order n are
determined by their induced subgraphs of order m.

There is some evidence to contend that

lim
n→∞n − L(n) = ∞.

However, Nýdl has proved that for any fixed rational number q < 1, there is
a positive integer n and a graph G of order n such that the knowledge of all
induced subgraphs of G of order less than or equal to qn does not allow to
determine G ([11]). In other words, if the Kelly–Ulam’s conjecture is true, the
graph of L(n) lies below the straight line y = x − 1, but, by Nýdl’s result, it
does not lie below any straight line passing through the origin of slope q < 1.
However, a shape for the graph of L(n) like the one hinted at in Figure 5 would
be compatible with Nýdl’s result (the first eight values of L(n) that we have
drawn have been verified by computer).

�

�
1 2

2

3 4

4

5 6 7

7

8 9 10 11 n

L(n)

Figure 5: The Ulam-ladder.

We believe that the determination of the Ulam-ladder is one of the most
charming problems in graph reconstruction.
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1 Introduction

In this work we are dealing with the problem of continuous dependence for
inverses of fundamental matrices. We make use of the results from [A] and from
[T1, chapter 3].
In the second section a survey of known results concerning systems of gen-

eralized linear ordinary differential equations, fundamental matrix and adjoint
equation is given. Main results of [A] and [T1, chapter 3] are presented here,
too.
Our main result is formulated in Theorem 4. The case when uniform con-

vergence is violated is presented here.

39
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1.1 Preliminaries

The following notations and definitions will be used throughout this text: N =
{1, 2, 3, . . .} and N0 = N ∪ {0}. R is the set of real numbers; Rm×n is the space
of real m × n matrices B = (bij)i=1,...,m

j=1,...,n
with the norm

|B| = max
j=1,...,n

m∑
i=1

|bij | ;

R
n = R

n×1 stands for the set of real column n-vectors b = (bi)n
i=1.

For a matrix B ∈ R
n×n, detB denotes the determinant of B. If detB �= 0,

then the matrix inverse to B is denoted by B−1. BT is the matrix transposed
to B. The symbol I stands for the identity matrix and 0 for the zero matrix.
If a, b ∈ R are such that −∞ < a < b < +∞, then [a, b] stands for the closed

interval {x ∈ R; a ≤ x ≤ b}, (a, b) is its interior and (a, b], [a, b) are the corre-
sponding half-closed intervals.
The sets D = {t0, t1, t2, . . . , tm} of points in the closed interval [a, b] such

that a = t0 < t1 < t2 < · · · < tm = b are called divisions of [a, b]. The set of all
divisions of the interval [a, b] is denoted by D[a, b].
Let B : [a, b] → R

m×n be a matrix valued function. Its variation varba B on
the interval [a, b] is defined by

varba B = sup
D∈D[a,b]

m∑
i=1

|B(ti) − B(ti−1)| .

If varba B < +∞, we say that the function B is of bounded variation on the
interval [a, b]. BVm×n[a, b] denotes the set of all m × n matrix valued functions
of bounded variation on [a, b]. We will write BVn[a, b] instead of BVn×1[a, b].
For further details concerning the space BVm×n[a, b], see e.g. [T2].
We will write briefly B(t+) = limτ→t+ B(τ), B(s−) = limτ→s− B(τ) and

∆+B(t) = B(t+) − B(t), ∆−B(s) = B(s) − B(s−), ∆B(r) = B(r+) − B(r−)
for t ∈ [a, b), s ∈ (a, b], r ∈ (a, b).
If a sequence of m × n matrix valued functions {Bk(t)}∞k=1 converges uni-

formly to a matrix valued function B0(t) on [c, d] ⊂ [a, b], i.e.

lim
k→∞

sup
t∈[c,d]

|Bk(t) − B0(t)| = 0,

we write

Bk ⇒ B0 on [c, d].

We say that {Bk(t)}∞k=1 converges locally uniformly to B0(t) on a set M ⊂
[a, b], if Bk ⇒ B0 on each closed subinterval J ⊂ M .
We say that a proposition P (n) holds for almost all (briefly a.a.) n ∈ N if it

is true for all n ∈ N \ K where K is a finite set.
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1.2 Kurzweil–Stieltjes integral

In this subsection we will recall the definition of the Kurzweil–Stieltjes inte-
gral (shortly KS-integral). We will work with the usual KS-integral which is
equivalent to Perron–Stieltjes integral; cf. [STV, I.4.5], [T2, section 5].
Let −∞ < a < b < +∞. For given m ∈ N, a division D = {t0, t1, . . . , tm} ∈

D[a, b] and ξ = (ξ1, ξ2, . . . , ξm) ∈ R
m, the couple P = (D, ξ) is called a partition

of [a, b] if
tj−1 ≤ ξj ≤ tj for all j = 1, 2, . . . , m.

The set of all partitions of the interval [a, b] is denoted by P [a, b].
An arbitrary positive valued function δ : [a, b] → (0, +∞) is called a gauge

on [a, b]. Given a gauge δ on [a, b], the partition

P = (D, ξ) =
(
{t0, t1, . . . , tm}, (ξ1, ξ2, . . . , ξm)

)
∈ P [a, b]

is said to be δ-fine, if

[tj−1, tj] ⊂
(
ξj − δ(ξj), ξj + δ(ξj)

)
for all j = 1, 2, . . . , m.

The set of all δ-fine partitions of the interval [a, b] is denoted by A(δ; [a, b]).
For functions f, g : [a, b] → R and a partition P ∈ P [a, b],

P =
(
{t0, t1, . . . , tm}, (ξ1, ξ2, . . . , ξm)

)
we define

SP (f ∆g) =
m∑

i=1

f(ξi)[g(ti) − g(ti−1)].

We say, that I ∈ R is the KS-integral of f with respect to g from a to b if
∀ε > 0 ∃δ : [a, b] → (0, +∞) ∀P ∈ A(δ; [a, b]) : |I − SP (f ∆g)| < ε. In such a
case we write I =

∫ b

a
f dg or I =

∫ b

a
f(t)dg(t).

It is known (cf. [T2, 5.20, 5.15]) that the KS-integral
∫ b

a
f dg exists, e.g. if

f ∈ BV[a, b] and g ∈ BV[a, b]. For the basic properties of the KS-integral, see
[T2] and [STV].
If F : [a, b] → R

m×n, G : [a, b] → R
n×p and H : [a, b] → R

p×m are matrix
valued functions, then the symbols∫ b

a

F d[G] and
∫ b

a

d[H ] F

stand for the matrices( n∑
j=1

∫ b

a

fij d[gjk]
)

i=1,...,m
k=1,...,p

and
( m∑

i=1

∫ b

a

fki d[hij ]
)

k=1,...,p
j=1,...,n

,

whenever all the integrals appearing in the sums exist. Since the integral of
a matrix valued function with respect to a matrix valued function is a matrix
whose elements are sums of KS-integrals of real functions with respect to real
functions, it is easy to reformulate all the statements from section 5 in [T2] for
matrix valued functions (cf. [STV], I.4).
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2 Generalized linear differential equations and
the adjoint equation

Here we describe some fundamental properties of generalized linear differential
equations, fundamental matrices and adjoint equations. More detailed informa-
tion can be found in [STV]. We restrict ourselves to the interval [0, 1]. The mod-
ification to the case of an arbitrary closed interval [a, b] ⊂ R in place of [0, 1] is
evident.

2.1 Definition and basic properties

Assume that A ∈ BVn×n[0, 1] and consider the equation

x(t) = x(s) +
∫ t

s

d[A] x. (2.1)

Let [a, b] ⊂ [0, 1]. We say that a function x : [a, b] → R
n is a solution of (2.1)

on [a, b] if there exists the KS-integral
∫ b

a
d[A] x ∈ R

n and (2.1) holds for all
t, s ∈ [a, b].
Moreover, if t0 ∈ [a, b] and x̃ ∈ R

n are given, we say that x : [a, b] → R
n is

a solution of the initial value problem (2.1), x(t0) = x̃ on [a, b] if it is a solution
of (2.1) on [a, b] and x(t0) = x̃, i.e. if

x(t) = x̃ +
∫ t

t0

d[A] x (2.2)

for all t ∈ [a, b].
Notice that, under the assumptionA ∈ BVn×n[0, 1], each solution of the equa-

tion (2.1) on [0, 1] is of bounded variation on [0, 1] (see [STV, III.1.3]).

Theorem 1 ([STV, III.1.4]) Let A ∈ BVn×n[0, 1]. If t0 ∈ [0, 1], then the initial
value problem (2.2) possesses for any x̃ ∈ R

n a unique solution x(t) defined on
[0, 1] if and only if det[I−∆−A(t)] �= 0 on (t0, 1] and det[I +∆+A(t)] �= 0 on
[0, t0).

2.2 Fundamental matrix

Lemma 1 ([STV, III.2.10, III.2.11]) For a given A ∈ BVn×n[0, 1] such that

det[I−∆−A(t)] �= 0 on (0, 1] and det[I+∆+A(t)] �= 0 on [0, 1) (2.3)

there exists a unique U : [0, 1] × [0, 1] → R
n×n such that

U(t, s) = I+
∫ t

s

d[A(r)] U(r, s)

for all t, s ∈ [0, 1].
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Moreover, there exists a unique matrix valued function X : [0, 1] → R
n×n

such that detX(t) �= 0 for t ∈ [0, 1],

U(t, s) = X(t)X−1(s) for all s, t ∈ [0, 1] (2.4)

and

X(t) = I +
∫ t

0

d[A] X, t ∈ [0, 1] . (2.5)

Furthermore, the inverse matrix X−1(t) is of bounded variation on [0, 1] and
it satisfies the relation

X−1(t) = X−1(s) − X−1(t)A(t) + X−1(s)A(s) +
∫ t

s

d[X−1] A (2.6)

for t, s ∈ [0, 1].

For a given t0 ∈ [0, 1], the unique solution x(t) of (2.2) on [t0, 1] (see Theo-
rem 1) is given by

x(t) = X(t)X−1(t0) x̃.

Definition 1 The matrix X : [0, 1] → R
n×n given by Lemma 1 is called

the fundamental matrix of the homogenous generalized linear differential equa-
tion (2.1) or briefly the fundamental matrix corresponding to the given matrix
function A.

2.3 Adjoint equation

The equation (2.6), which is satisfied by the matrix function X−1, is not a gen-
eralized linear differential equation of the type (2.1). This leads us to the con-
sideration of adjoint equations, i.e. the equations of the form

yT (t) = yT (s) − yT (t)A(t) + yT (s)A(s) +
∫ t

s

d[yT ] A . (2.7)

Theorem 2 ([ST, 2.7]) Let A ∈ BVn×n[0, 1] satisfy (2.3). Then the initial
value problem (2.7), yT (1) = ỹT has for every ỹ ∈ R

n a unique solution
y : [0, 1] → R

n on [0, 1]. This solution is of bounded variation on [0, 1] and is
given on [0, 1] by

yT (s) = ỹT X(1)X−1(s). (2.8)

Moreover, every solution yT (t) of the equation (2.7) on [0, 1] possesses the
onesided limits yT (t+), yT (t−) where the relations

yT (t+) = yT (t) − yT (t+)∆+A(t) for all t ∈ [0, 1) ,

yT (t−) = yT (t) + yT (t−)∆−A(t) for all , t ∈ (0, 1]
(2.9)

hold.
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2.4 Convergence results for generalized linear ordinary
differential equations

In [T1, Theorem 3.3.2] the continuous dependence of the fundamental matrix
X of (2.1) on a parameter was described. Let us recall this result. To this aim
we need the following notations.

Notation 1 Let a sequence {Ak}∞k=1 ⊂ BVn×n[0, 1] and A0 ∈ BVn×n[0, 1].
For a k ∈ N and an arbitrary closed interval J = [α, β] ⊂ [0, 1], define

AJ
k (t) = Ak(t) − Ak(α) for k ∈ N0, t ∈ J.

Theorem 3 ([T1, Theorem 3.3.2]) Let Ak ∈ BVn×n[0, 1] for k ∈ N0 and
det[I−∆−A0(t)] �= 0 on (0, 1]. Furthermore, assume that there is a finite set
D ⊂ [0, 1] such that:

AJ
k (s) ⇒ AJ

0 (s) on J for any closed interval J ⊂ [0, 1] \ D, (2.10)

sup
k∈N

varAk < +∞ and det[I−∆−Ak(t)] �= 0 for all t ∈ D and for a.a. k ∈ N,

(2.11)

if τ ∈ D, then ∀ξ ∈ R
n and ∀ε > 0 ∃δ > 0 such that

∀ δ
′ ∈ (0, δ) ∃k0 ∈ Nsuch that the relations

|uk(τ) − uk(τ − δ
′
) − ∆−A0(τ)[I −∆−A0(τ)]−1ξ| < ε,

|vk(τ + δ
′
) − vk(τ) − ∆+A0(τ)ξ| < ε

are satisfied ∀k ≥ k0 and ∀uk, vk such that

|ξ − uk(τ − δ
′
)| ≤ δ, |ξ − vk(τ)| ≤ δ and

uk(t) = uk(τ − δ
′
) +
∫ t

τ−δ′
d[Ak] uk(s) on [τ − δ

′
, τ ],

vk(t) = vk(τ) +
∫ t

τ

d[Ak] vk(s) on [τ, τ + δ
′
].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.12)

Then for a.a. k ∈ N the fundamental matrix Xk corresponding to Ak is defined
on [0, 1] and

lim
k→∞

Xk(t) = X0(t) on [0, 1]. (2.13)

A similar assertion concerning inverses of fundamental matrices will be proved
in Theorem 4.

Remark 1 Theorem 3 is a slightly modified version of [T1, Theorem 3.3.2].
Notation is simplified and, in particular, from the proof given in [T1, Theo-
rem 3.3.2] it follows that the assumption det[I−∆−Ak(t)] �= 0 on (0, 1] for all
k ∈ N used in [T1] is not necessary and it can be replaced by a weaker one, i.e.
det[I−∆−Ak(t)] �= 0 for all t ∈ D, for a.a. k ∈ N.
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Conditions (2.10)–(2.12) characterize the concept of emphatic convergence
introduced by J. Kurzweil (cf. [K2, Definition 4.1]). For more details see [T1,
Definition 3.2.8] or [S].

In the proof of Theorem 4 the following two lemmas are needed. The former
one is from [A, Lemma 2]. The latter one is based on [T1, Theorem 3.2.5] and
on [A, Lemma 2].

Lemma 2 ([A, Lemma 2]) Let −∞ < a < b < +∞, Ak ∈ BVn×n[a, b] for
k ∈ N0 and let det[I +∆+A0(t)] �= 0 on [a, b) and det[I−∆−A0(t)] �= 0 on (a, b].
If Xk ⇒ X0 on [a, b], then X−1

k ⇒ X−1
0 on [a, b].

Lemma 3 Let −∞ < a < b < +∞, Ak ∈ BVn×n[a, b] for k ∈ N0 and
det[I +∆+A0(t)] �= 0 on [a, b) and det[I−∆−A0(t)] �= 0 on (a, b]. Assume that
the sequence {Ak}∞k=1 satisfies the following two conditions

(i) sup
k∈N

varba Ak < +∞,

(ii) [Ak(t) − Ak(a)] ⇒ [A0(t) − A0(a)] on [a, b].

Then for k = 0 and for a.a. k ∈ N there exists the fundamental matrix Xk

corresponding to Ak on [a, b] and X−1
k ⇒ X−1

0 on [a, b].

3 Main result

Theorem 3 deals with a sequence of fundamental matrices. According to def-
inition, each fundamental matrix corresponding to a given matrix function A
fulfills for all s, t ∈ [0, 1] the equation

X(t) = X(s) +
∫ t

s

d[A] X.

This fact is essentially used in the proof of Theorem 4. Furthermore, we take
into account that the inverse of fundamental matrix X−1(t) satisfies relation

X−1(t) = X−1(0) − X−1(t)A(t) + X−1(0)A(0) +
∫ t

0

d[X−1] A, (3.14)

which is adjoint to (2.5), see (2.6) and (2.7).
We want to prove assertion analogous to Theorem 3 for inverses of funda-

mental matrices. To this aim it is necessary to suppose also the regularity of
[I+∆+A0(t)] for each t ∈ [0, 1) and the condition (3.15) which is a modification
of (2.12) for relation (3.14). This is our main result.
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Theorem 4 Let the assumptions of Theorem 3 are satisfied. Furthermore as-
sume that det[I +∆+A0(t)] �= 0 on [0, 1) and the following conditions hold:

if τ ∈ D, then ∀η ∈ R
n and ∀ε > 0 ∃δ > 0

such that ∀δ
′ ∈ (0, δ) ∃k0 ∈ Nsuch that the relations

|wT
k (τ) − wT

k (τ − δ
′
) + ηT ∆−A0(τ)| < ε ,

|zT
k (τ + δ

′
) − zT

k (τ) + ηT [I +∆+A0(τ)]−1 ∆+A0(τ)| < ε

are satisfied ∀k ≥ k0 and ∀wk, zk ∈ R
n fulfilling (3.16), (3.17)

and such that

|ηT − wT
k (τ − δ

′
)| ≤ δ, |ηT − zT

k (τ)| ≤ δ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.15)

where

wT
k (t) = wT

k (τ − δ
′
) − wT

k (t)Ak(t) + wT
k (τ − δ

′
)Ak(τ − δ

′
)

+
∫ t

τ−δ′
d[wT

k ] Ak on [τ − δ
′
, τ ], (3.16)

zT
k (t) = zT

k (τ) − zT
k (t)Ak(t) + zT

k (τ)Ak(τ) +
∫ t

τ

d[zT
k ] Ak on [τ, τ + δ

′
]. (3.17)

Then for a.a. k ∈ N the fundamental matrices Xk corresponding to Ak and
their inverses X−1

k are defined on [0, 1],

lim
k→∞

Xk(t) = X0(t) on [0, 1] (3.18)

and
lim

k→∞
X−1

k (t) = X−1
0 (t) on [0, 1]. (3.19)

Moreover, (3.19) holds locally uniformly on [0, 1] \ D.

Proof First notice that Lemma 3 implies that (3.19) holds locally uniformly
on [0, 1] \ D and (3.18) immediately follows from Theorem 3.
Assume thatD = {τ}, where τ ∈ (0, 1); i.e. D consists of one point τ ∈ (0, 1)

only and m = 1.
Recall that the existence of the fundamental matrices Xk for a.a. k ∈ N and

(3.18) immediately follows from Theorem 3. Since each fundamental matrix is
regular, we get the existence of X−1

k for a.a. k ∈ N. For ỹ ∈ R
n and for a.a.

k ∈ N0, denote by yT
k the solution of the equation

yT
k (t) = ỹT − yT

k (t)Ak(t) + ỹT Ak(0) +
∫ t

0

d[yT
k ] Ak on [0, 1]. (3.20)

The rest of the proof splits into three steps. First, we prove that (3.19) is true
for t ∈ [0, τ), then for t = τ and finally for t ∈ (τ, 1].
• Step 1. Let α ∈ (0, τ) be given. Then by Lemma 3 the relation (3.19) holds
uniformly on [0, α]. Therefore (3.19) is true for any t ∈ [0, τ).
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• Step 2. Now we will prove, that (3.19) is true also for t = τ . For each
δ
′ ∈ (0, τ) and k ∈ N we get using (2.9) the estimate

|yT
0 (τ) − yT

k (τ)| ≤ |yT
0 (τ) + yT

0 (τ−)∆−A0(τ) − yT
0 (τ − δ

′
)|

+ |yT
0 (τ − δ

′
) − yT

k (τ − δ
′
)| + |yT

k (τ − δ
′
) − yT

0 (τ−)∆−A0(τ) − yT
k (τ)|

= |yT
0 (τ−) − yT

0 (τ − δ
′
)| + |yT

0 (τ − δ
′
) − yT

k (τ − δ
′
)|

+ |yT
k (τ) − yT

k (τ − δ
′
) + yT

0 (τ−)∆−A0(τ)| .

Let ε > 0 be given. According to (3.15) we can choose δ ∈ (0, ε) in such a way
that for all δ

′ ∈ (0, δ) there exists k1 ∈ N with the property

|wT
k (τ) − wT

k (τ − δ
′
) + yT

0 (τ−)∆−A0(τ)| < ε (3.21)

holds for any k ≥ k1 and for each solution wT
k (t) of (3.16) fulfilling

|yT
0 (τ−) − wT

k (τ − δ
′
)| ≤ δ.

Set wT
k (t) = yT

k (t) on [τ − δ
′
, τ ]. Choose δ

′ ∈ (0, δ) so that

|yT
0 (τ−) − yT

0 (τ − δ
′
)| <

δ

2
.

Considering that yT
k (t) → yT

0 (t) on [0, τ) as k → ∞ we get the existence of
a k0 ∈ N, k0 ≥ k1 such that |yT

0 (τ − δ
′
) − yT

k (τ − δ
′
)| < δ

2 for all k ≥ k0.
Therefore the estimate

|yT
0 (τ−) − yT

k (τ − δ
′
)| ≤ |yT

0 (τ−) − yT
0 (τ − δ

′
)| + |yT

0 (τ − δ
′
) − yT

k (τ − δ
′
)| < δ

is true for k ≥ k0. By (3.21) we have

|yT
k (τ) − yT

k (τ − δ
′
) + yT

0 (τ−)∆−A0(τ)| < ε.

To summarize, we have

|yT
0 (τ) − yT

k (τ)| <
δ

2
+

δ

2
+ ε < 2 ε for all k ≥ k0 ,

i.e. yT
k (τ) → yT

0 (τ) for k → ∞.
• Step 3. Proof of the convergence on (τ, 1] consists of two parts. First, we
show that there is a δ > 0 such that yT

k (t) → yT
0 (t) on (τ, τ + δ) as k → ∞.

Then we extend this result to the whole interval (τ, 1]. Let ε > 0 be given and
let δ0 ∈ (0, ε) be such that

|yT
0 (s) − yT

0 (τ+)| < ε for all s ∈ (τ, τ + δ0).

By the assumption (3.15), there exists δ ∈ (0, δ0) such that for all δ
′ ∈ (0, δ)

there exists k1 = k1(δ
′
) ∈ N and such that

|zT
k (τ + δ

′
) − zT

k (τ) + yT
0 (τ) [I +∆+A0(τ)]−1 ∆+A0(τ)| < ε (3.22)
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is true for each solution zT
k (t) of (3.17) with the property |yT

0 (τ) − zT
k (τ)| ≤ δ.

Now the distance between yT
0 (τ + δ

′
) and yT

k (τ + δ
′
) can be estimated. In view

of (2.9) we get

|yT
0 (τ + δ

′
) − yT

k (τ + δ
′
)| ≤ |yT

0 (τ + δ
′
) − yT

0 (τ) + yT
0 (τ+)∆+A0(τ)|

+ |yT
0 (τ) − yT

k (τ)| + |yT
k (τ) − yT

0 (τ+)∆+A0(τ) − yT
k (τ + δ

′
)|

= |yT
0 (τ+δ

′
)−yT

0 (τ+)|+|yT
0 (τ)−yT

k (τ)|+|yT
k (τ)−yT

0 (τ+)∆+A0(τ)−yT
k (τ+δ

′
)|.

Considering that yT
k (τ) → yT

0 (τ) for k → ∞, we get the existence of k0 ∈ N,
k0 ≥ k1 such that |yT

0 (τ) − yT
k (τ)| < δ for all k ≥ k0. Since τ + δ

′ ∈ (τ, τ + δ0),
we have |yT

0 (τ + δ
′
) − yT

0 (τ+)| < ε. Setting zT
k (t) = yT

k (t) on [τ, τ + δ
′
], we get

by (3.22) the relation

|yT
k (τ) − yT

0 (τ+)∆+A0(τ) − yT
k (τ + δ

′
)| < ε for all k ≥ k0 .

To summarize, for any k ≥ k0 the estimate

|yT
0 (τ + δ

′
) − yT

k (τ + δ
′
)| ≤ ε + δ + ε < 3 ε

is valid, as well. Therefore yT
k (t) → yT

0 (t) on (τ, τ + δ) as k → ∞. Now, choose
an arbitrary σ in (τ, τ +δ). Making use of Lemma 3 with [a, b] = [σ, 1] the proof
of this step can be completed.
Having solution yT

k (t) to (3.20) for each ỹ ∈ R
n, we can determine the matrix

function X−1
k (t) from yT

k (t) using (2.8). Indeed, since Xk(1) is regular, we can
choose ỹT in such a way that yT

k (t) is i-th row of X−1
k (t). This consideration

completes the proof of the validity of (3.19) for any t ∈ [0, 1].
The extension to the case m > 1 is obvious. �
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Abstract

In weakly nonlinear regression model a weakly nonlinear hypothesis
can be tested by linear methods if an information on actual values of
model parameters is at our disposal and some condition is satisfied. In
other words we must know that unknown parameters are with sufficiently
high probability in so called linearization region. The aim of the paper is
to determine this region.

Key words: Regression model, nonlinear hypothesis, linearization.
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0 Introduction

A nonlinear hypothesis on model parameters in nonlinear regression model can
be tested by linear methods if some conditions are satisfied. This condition is
given in the form of the inclusion E ⊂ LT which must occur with sufficiently
high probability. Here E is the (1−α)-confidence region of the model parameters
(for sufficiently small α) and LT is a special set in parameter space. The aim
of the paper is to determine the set LT (linearization region).
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1 Notation

Let Y ∼ Nn[f(β), σ2V] be the regression model under consideration. Here Y
is the n-dimensional normally distributed observation vector, f(β) is the mean
value of the vector Y, β is an unknown k-dimensional parameter, σ2V is the
covariance matrix of the vector Y, σ2 is known/unknown parameter and V is
a given n × n positive definite matrix. The null hypothesis H0 is given in the
form t(β) = 0 and the alternative is Ha : t(β) �= 0.
The functions f(·) and t(·) can be given in the form

f(β) = f(β(0)) + Fδβ +
1
2
κ(δβ), t(β) = t(β(0)) + Tδβ +

1
2
τ (δβ),

where δβ = β − β(0), β(0) is an approximate value of the parameter β,

F =
∂f(u)
∂u

∣∣∣∣
u=β(0)

, T =
∂t(u)
∂u

∣∣∣∣
u=β(0)

,

κ(δβ) = [κ1(δβ), . . . , κn(δβ)]′,

κi(δβ) = (δβ)′
∂2fi(u)
∂u∂u′

∣∣∣∣
u=β(0)

δβ, i = 1, . . . , n,

τ (δβ) = [τ1(δβ), . . . , τq(δβ)]′,

τi(δβ) = (δβ)′
∂2ti(u)
∂u∂u′

∣∣∣∣
u=β(0)

δβ, i = 1, . . . , q.

Let the rank of the n × k matrix F be r(F) = k < n and the rank of the
q × k matrix T be r(T) = q < k.

2 Determination of the region LT

The linearized form of the model and the hypothesis is

Y − f0 ∼ Nn(Fδβ, σ2V), Tδβ = 0. (1)

(The vector β(0) should be chosen such that t(β(0)) = 0.)
The quadratized form of the model and the hypothesis is

Y − f0 ∼ Nn

(
Fδβ +

1
2
κ(δβ), σ2V

)
, Tδβ +

1
2
τ (δβ) = 0. (2)

Lemma 2.1 If the model (1) is valid, the test of the hypothesis is

(δ̂β)′T′[T(F′V−1F)−1T]−1Tδ̂β ∼
{

σ2χ2
q(0) if H0 is true,

σ2χ2
q(δ) if H0 is not true.

Here δ̂β = (F′V−1F)−1F′V−1(Y − f0) and the parameter of noncentrality δ is

δ = [E(δ̂β)]′T′[T(F′V−1T)−1T′]−1TE(δ̂β)/σ2.
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Proof Cf. [4], chpt. 4. �

Lemma 2.2 If the model (2) is valid, then under the null hypothesis H0 :
Tδβ + 1

2τ (δβ) = 0, it is valid

(δ̂β)′T′[T(F′V−1F)−1T]−1Tδ̂β ∼ σ2χ2
q(∆).

Here

∆ =
1
σ2

[
− 1

2
τ (KT δu) + T(F′V−1F)−1F′V−1 1

2
κ(KT δu)

]′
×
[
T(F′V−1F)−1T′

]−1[
− 1

2
τ (KT δu) + T(F′V−1F)−1F′V−1 1

2
κ(KT δu)

]
and δβ = KT δu + terms of higher orders. The k × (k − q) matrix KT is of the
rank r(KT ) = k − q and it satisfies the equality TKT = 0.

Proof In model (2) the mean value of the estimator

δ̂β = (F′V−1F)−1F′V−1(Y − f0)

is

E(δ̂β) = (F′V−1F)−1F′V−1
[
Fδβ +

1
2
κ(δβ)

]
= δβ +

1
2
(F′V−1F)−1F′V−1κ(δβ).

Under the null hypothesis H0 : Tδβ + 1
2τ (δβ) = 0 it is valid

δβ = KT δu − T− 1
2
τ (KT δu) + terms of higher orders.

Thus

TE(δ̂β) = T
[
KT δu − T− 1

2
τ (KT δu)

]
+ T

1
2
(F′V−1F)−1F′V−1κ(KT δu) + . . .

In the last term the vector δβ is substituted by KT δu. Since TKT = 0 and

TT− = I, the expression [E(δ̂β)]′T′
[
T(F′V−1F)−1T′

]−1

TE(δ̂β)/σ2 = ∆ can
be written in the form given in the statement. (Cf. also [1] and [2].) �

Definition 2.3 The quantity

K(test)(β0) = sup

⎧⎪⎪⎨⎪⎪⎩
2

√
b′
{
T[F′(σ2V)−1F]−1T′

}−1

b

δu′K′
TF′(σ2V)−1FKT δu

: δu ∈ Rk−q

⎫⎪⎪⎬⎪⎪⎭
= σ sup

⎧⎪⎪⎨⎪⎪⎩
2

√
b′
{
T[F′V−1F]−1T′

}−1

b

δu′K′
TF′V−1FKT δu

: δu ∈ Rk−q

⎫⎪⎪⎬⎪⎪⎭ = σK(test)
0 (β0),
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where

b = −1
2
τ (KT δu) + T(F′V−1F)−1F′V−1 1

2
κ(KT δu),

is a measure of nonlinearity for test.

Theorem 2.4 Let δmax be a solution of the equation

P{χ2
q(δmax) ≥ χ2

q(0; 1 − α)} = α + ε.

Here χ2
q(0; 1−α) is (1−α)-quantile of the chi-square distribution with q degrees

of freeedom. Then

δβ ∈ LT =

{
KT δu : δu′K′

T (F′V−1F)−1KT δu ≤ 2σ
√

δmax

K
(test)
0 (β0)

}
⇒ PH0

{
δ̂β

′
T′[T(F′V−1F)−1T′]−1Tδ̂β ≥ σ2χ2

q(0; 1 − α)
}

≤ α + ε.

Proof In the model (2) the random variable δ̂β
′
T′[T(F′V−1F)−1T′]−1

Tδ̂β
is distributed as σ2χ2

q(∆), where ∆ is given by Lemma 2.2. With respect to
Definition 2.3 we have

2
√

b′[T(F′V−1F)−1T′]−1
b ≤ K

(test)
0 (β0)δu

′K′
T (F′V−1F)−1KT δu.

If
K

(test)
0 (β0)δu

′K′
T (F′V−1F)−1KT δu ≤ 2σ

√
δmax,

then

2

√
b′[T(F′V−1F)−1T′]−1

b
σ2

= 2
√

∆ ≤ 2
√

δmax

⇒ PH0

{
χ2

q(∆) ≥ χ2
q(0; 1 − α)

}
≤ α + ε.

Thus

δu′K′
T (F′V−1F)−1KT δu ≤ 2σ

√
δmax

K
(test)
0 (β0)

⇒ PH0

{
χ2

q(∆) ≥ χ2
q(0; 1−α)

}
≤ α+ε.

�

Remark 2.5 If Tδβ + 1
2τ (δβ) �= 0, i.e. the null hypothesis is not true, then

δ =
[
Tδβ +

1
2
TC−1

0 F′V−1κ(δβ)
]′

(TC0T′)−1

[
Tδβ +

1
2
TC−1

0 F′V−1κ(δβ)
]

,

where C0 = F′V−1F. Thus at the alternative hypothesis the power function

p(δβ) = PHa

{
χ2

t (δ) ≥ χ2
t (0; 1 − α)

}
has a different values at points δβ and −δβ, respectively, opposite to the case of
the null hypothesis where these values are identical. It makes an investigation
of a linearization region for the power function more complicated than it is at
the null hypothesis.
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Lemma 2.6 The (1−α)-confidence ellipsoid for the parameter β in the model
(1) is

E = {u : (u − δ̂β)′F′V−1F(u − δ̂β) ≤ σ2χ2
k(0; 1 − α)}.

Proof Cf. [4], chpt. 4. �

Remark 2.7 If

σ2χ2
q(0; 1 − α) � 2σ

√
δmax

K
(test)
0 (β0)

,

then the model (2) can be substituted by (1) when the test of hypothesis is
performed. Thus the value of σ must satisfy the strong inequality σ � σcrit,
where

σcrit =
2
√

δmax

χ2
q(0; 1 − α)Ktest

0 (β0)
.

3 Numerical example

Let a class of regression function be {f(x) = β1 exp(−β2x) : β1, β2 ∈ R1}. The
null hypothesis states that all these functions attain the same value equal to 1
at the point x = 10 (cf. also [3]).
The measurement is realized at the points xi ∈ {1, 3, 5, 7, 9}. Thus

H0 : lnβ1 − 10β2 = 0, Ha : lnβ1 − 10β2 �= 0.

The regression model is

Y ∼ N5[f(β), σ2I], β ∈ R2,

where

{f(β)}i = β1 exp(−β2xi), i = 1, 2, 3, 4, 5,

t(β) = ln β1 − 10β2 = 0,

{F}i,· =
(
exp(−β

(0)
2 xi),−β1xi exp(−β

(0)
2 xi)

)
, i = 1, . . . , 5,

Fi =

(
0, −xi exp(−β

(0)
2 xi)

−xi exp(−β
(0)
2 xi), β

(0)
1 x2

i exp(−β
(0)
2 xi)

)
, i = 1, . . . , 5,

T =

(
1

β
(0)
1

,−10

)
, KT =

(
β

(0)
1

0.1

)
,

κi(KT δu) = (δu)2
(
−0.2xiβ

(0)
1 exp(−β

(0)
2 xi) + 0.01β

(0)
1 x2

i exp(−β
(0)
2 xi)

)
,

i = 1, . . . , 5,

F′F =

( ∑5
i=1 exp(−2β

(0)
2 xi), −

∑5
i=1 β

(0)
1 xi exp(−2β

(0)
2 xi)

−
∑5

i=1 β
(0)
1 xi exp(−2β

(0)
2 xi),

∑5
i=1(β

(0)
1 )2x2

i (exp(−2β
(0)
2 xi)

)
,

b = −1
2
τ(KT δu) + T(F′F)−1F′ 1

2
κ(KT δu) =

1
2
(1 + A)(δu)2,
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where

A =

(
1

β
(0)
1

,−10

)
(F′F)−1F′ ×

×

⎛⎜⎜⎝
...

−0.2xiβ
(0)
1 exp(−β

(0)
2 xi) + 0.01β

(0)
1 x2

i exp(−β
(0)
2 xi)

...

⎞⎟⎟⎠ .

Further

K(test)(β0) = σ

vuuut(1+A)

2
4(1/β

(0)
1 ,−10)(F′F)−1

0
@ 1/β

(0)
1

−10

1
A

3
5

−1

(1+A)

(β
(0)
1 ,0.1)F′F

0
@ β

(0)
1

0.1

1
A

= σK
(test)
0 ,

K
(test)
0 = |1+A|

(β
(0)
1 ,0.1)F′F

0
@ β

(0)
1

0.1

1
A

vuuut(1/β
(0)
1 ,−10)(F′F)−1

0
@ 1/β

(0)
1

−10

1
A

.

P{χ2
1(δmax) ≥ χ2

1(0; 0.95)} = 0.05 + 0.05 ⇒ δmax = 0.426, χ2
1(0; 0.95) = 3.84,

σcrit =
2
√

0.451

3.84K
(test)
0 (β0)

=
0.349774

K
(test)
0 (β0)

.

Some numerical values were obtained by the help of [5] and they are given
in the following table.

Table 1

β(0)
(

0.1
−0.230

) (
0.2

−0.161

) (
0.3

−0.120

) (
0.5

−0.069

)
K

(test)
0 (β0) 0.613 0.406 0.306 0.206

σcrit 0.554 0.837 1.110 1.649

β(0)
(
1
0

) (
5

0.161

) (
10

0.230

) (
15

0.271

)
K

(test)
0 (β0) 0.113 0.024 0.012 0.008

σcrit 3.01 14.15 2 28.31 42.47

If the value of σ in the actual experiment is smaller than σcrit from Table
1, then the theory of linear regression model can be used when the test of
hypothesis is performed.
It is advisable to notice a strong dependence of the quantities K

(test)
0 and

σcrit, respectively, on the vector β(0).

Acknowledgement Authors are indebted to referee for his thorough reading
the manuscript. Thus some unpleasant mistakes wich escaped to attention of
the authors can be corrected.
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Abstract

The multivariate linear model, in which the matrix of the first or-
der parameters is divided into two matrices: to the matrix of the useful
parameters and to the matrix of the nuisance parameters, is considered.

Key words: Singular multivariate linear model, useful and nuisance
parameters, BLUE.
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1 Introduction

There are two approaches in the problem of nuisance parameters in the linear
models of various structures.
The first one respects the structure of the model and seeks to find classes

of linear functionals of useful (main) parameters such that their estimators al-
low the nuisance parameters to be neglected; the estimators computed under
disregarding nuisance parameters remain to be unbiased and efficient. The
variance of the estimator belonging to the abovementioned class could behave
analogously. The determination of the class having such attributes is of a great
importance in practice because the number of nuisance parameters in real situ-
ations can be greater than the number of useful parameters.
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The second approach solves the problem of nuisance parameters by their
elimination by a transformation of the observation vector provided this trans-
formation is not allowed to cause a loss of information on the useful parameters
(see [7]).
The aim of this paper is to apply the first approach to one of the multivariate

models.

2 Notations and auxiliary statements

LetRn denote the space of all n-dimensional real vectors, let up andAm,n denote
a real column p-dimensional vector and a real m × n matrix, respectively. The
symbolsA′,A(j), M(A), N (A), r(A), T r(A) will denote transpose, j-th column,
range, null space, rank and trace of the matrix A, respectively. Further vec(A)
will denote the column vector ((A(1))′, . . . , (A(n))′)′ created by the columns of
the matrix A. The symbol A⊗B will denote the Kronecker (tensor) product
of the matrices A,B; A− will denote an arbitrary generalized inverse of A
(satisfying AA−A = A), A+ will denote a Moore–Penrose generalized inverse
of the matrix A (satisfying AA+A = A, A+AA+ = A+, (AA+)′ = AA+,
(A+A)′ = A+A). Moreover PA andMA = I−PA will stand for the ortogonal
projector ontoM(A) andM⊥(A) = N (A′), respectively. The symbol I denotes
the identity matrix, Om,n the m × n null matrix, o the null element. We write

A ≤
L B ⇐⇒ B−A is p.s.d.

IfM (A) ⊂ M (V), V p.s.d., then the symbol PV
A denotes the projector on

the subspaceM (A) in the V-seminorm given by the matrix V,

||x||V =
√
x′Vx; MV

A = I−PV
A = I−A(A′VA)−A′V.

Let Nn,n is p.d. (p.s.d.) matrix and Am,n an arbitrary matrix, then the symbol
A−

m(N) denotes the matrix satisfying

AA−
m(N)A = A and NA−

m(N)A = [NA−
m(N)A]′.

(A−
m(N)y is a solution of the consistent system Ax = y whose N-seminorm is

minimal, see [4], p.151). A−
m(N) is called a minimum N-seminorm g-inverse of

the matrix A. Let A −
m(N) be a class of all matrices A

−
m(N).

Assertion 1 (see [1], Lemma 10.1.18)

M(A′) ⊂ M(N) =⇒ N−A′(AN−A′)− ∈ A−
m(N),

otherwise
(N+A′A)−A′[A(N+A′A)−A′]− ∈ A−

m(N).
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Assertion 2 (see [1], Lemma 10.1.35) Let S be any n × k matrix and N an
n × n p.s.d. matrix.

1. If N is p.d., then (MSNMS)+ = N−1 −N−1S(S′N−1S)−S′N−1.

2. If N is not p.d., howeverM (S) ⊂ M (N), then

(MSNMS)+ = N+ −N+S(S′N−S)−S′N+.

3. In general case

(MSNMS)+ = (N+SS′)+−(N+SS′)+S[S′(N+SS′)−S]−S′(N+SS′)+.

4. (MSNMS)+ = (MSNMS)+MS =MS(MSNMS)+

=MS(MSNMS)+MS .

Assertion 3 (see [2], Lemma 7, p. 65)

M (B) ⊂ M (A) ⇐⇒ AA−B = B,

M(B′) ⊂ M(A′) ⇐⇒ BA−A = B.

Assertion 4 (see [2], Lemma 8, p. 65)

AB−C is invariant to the choice of the g-inverse B−

⇐⇒ M (A′) ⊂ M (B′) and M (C) ⊂ M (B).

Assertion 5 If N is p.s.d. and A such matrices that M(A) ⊂ M(N), then

M(A′) = M(A′N−A).

Proof A′N−A is invariant to the choice of g-inverse. As M(A′N−A) ⊂
M(A′), it is sufficient to prove, that r(A′N+A) = r(A′). Let N+ = JJ′, then
r(A′N+A) = r(A′J). There exists a matrix F such that A = NF. Thus
r(A′) = r(F′N) = r(F′NN+N) = r(A′N+N) ≤ r(A′N+) ≤ r(A′J) ≤ r(A′).

�

3 Singular multivariate linear regression model

Let
Y = X1B1Z1 +X2B2Z2 + ε, (1)

be a multivariate linear model under consideration.
Here Y is an n×m observation matrix, X1 of the type n×k, Z1 of the type

r × m, X2 of the type n × l, Z2 of the type s × m are known nonzero matrices.
B1 of the type k × r and B2 of the type l × s are matrices of unknown

nonrandom parameters and ε of the type n × m is a random matrix.
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Let us consider the situation, where B1 is a matrix of useful parameters
which (or their functions) have to be estimated from the observation matrix
and B2 is a matrix of nuisance parameters.
As it was already said the purpose of this paper is to characterize the class

of all linear functions of the useful parameters vec(B) which are unbiasedly
estimable under the model with nuisance parameters and under the model,
where the nuisance parameters are neglected and estimators of which have the
same variance in both models mentioned.
A parametric function p′vec(B1) is said to be unbiasedly estimable un-

der the model (1) if there exists an estimator f ′vec(Y), f ∈ Rmn, such that
E[f ′vec(Y)] = p′vec(B1), ∀vec(B1), ∀vec(B2).

Lemma 1 The model (1) can be equivalently written in the form

vec(Y) = [Z′
1 ⊗X1,Z

′
2 ⊗X2]

(
vec(B1)
vec(B2)

)
+ vec(ε).

Proof The assertion is a consequence of

vec(ABC) = (C′ ⊗A)vec(B),

valid for all matrices of corresponding types. �

Suppose that the observation vector vec(Y) has the mean value

E(vec(Y)) = [Z′
1 ⊗X1,Z′

2 ⊗X2]
(

vec(B1)
vec(B2)

)
,

and that the columns of the observation matrix Y satisfy

cov(Y(i),Y(j)) = O, ∀i �= j, var[Y(j)] = Σ, ∀j = 1, . . . , m,

where Σ is at least positive semidefinite known matrix. Thus

var[vec(Y)] = Im,m ⊗ Σn,n.

We consider the linear model[
vec(Y), (Z′

1 ⊗X1,Z
′
2 ⊗X2)

(
vec(B1)
vec(B2)

)
, I⊗ Σ

]
, (2)

with nuisance parameters (great model) and the linear model[
vec(Y), (Z′

1 ⊗X1)vec(B1), I⊗ Σ
]
, (3)

where nuisance parameters are neglected (small model).
The paper [5] deals with following assumption

M(Z′
1 ⊗X1,Z′

2 ⊗X2) ⊂ M(I⊗ Σ). (4)

Here the general situation will be considered.
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Notation 2 Let Ea and E denote the sets of all linear functions of vec(B1)
which are unbiasedly estimable under the model (2) and (3), respectively (see
[8]). The index a will indicate, that the estimator is considered in the complete
model, i.e. in the model with nuisance parameters.

Lemma 2

E = {p′vec(B) : p ∈ M (Z1 ⊗X′
1)}. (5)

Ea = {p′vec(B) : p ∈ M [(Z1 ⊗X′
1)MZ′

2⊗X2 ]

= M [(Z1 ⊗X′
1) − (Z1PZ′

2
⊗X′

1PX2)]}. (6)

Proof see [5], Lemma 2.

Comparing (5) and (6) it is obvious that

Ea ⊂ E.

Moreover,

Lemma 3 Under the condition Ea ⊂ E

Ea = E ⇐⇒ M (Z′
1 ⊗X1) ∩ M (Z′

2 ⊗X2) = {o} (7)

Proof see [5], Lemma 3.

We assume throughout thatM (Z′
1 ⊗X1) �⊂ M (Z′

2 ⊗X2). IfM (Z′
1 ⊗X1) ⊂

M (Z′
2 ⊗X2), then M [(Z1 ⊗X′

1) − (Z1PZ′
2
⊗X′

1PX2)] = {o}.

Notation 3 Let us denote

T = (I⊗ Σ) + (Z′
1 ⊗X1)(Z1 ⊗X′

1) = (I⊗ Σ) + (Z′
1Z1 ⊗X1X′

1).

Theorem 1 The BLUE of the vector function (Z′
1 ⊗ X1)vec(B1) under the

model (3) is given by

¤(Z′
1 ⊗X1)vec(B1) = PT+

Z′
1⊗X1

vec(Y), (8)

var[ ¤(Z′
1 ⊗X1)vec(B1)] =

= (Z′
1 ⊗X1)

{[
(Z1 ⊗X′

1)T
+(Z′

1 ⊗X1)
]− − I

}
(Z1 ⊗X′

1). (9)

Proof According to Theorem 3.1.3 in [1]

¤(Z′
1 ⊗X1)vec(B1) = (Z′

1 ⊗X1)
{
[(Z′

1 ⊗X1)′m(I⊗Σ)]
−
}′

vec(Y)

= (Z′
1 ⊗X1)[(Z1 ⊗X′

1)T
+(Z′

1 ⊗X1)]−(Z1 ⊗X′
1)T

+vec(Y) = PT+

Z′
1⊗Xvec(Y),

where Assertion 1, the inclusionM (Z′
1 ⊗X1) ⊂ M (T) and the fact that under

the model (3)
P [vec(Y) ∈ M (Z′

1 ⊗X1, I⊗ Σ)] = 1
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have been utilized. Further

var[ ¤(Z′
1 ⊗X1)vec(B1)] = (Z′

1 ⊗X1)
[
(Z1 ⊗X′

1)T
+(Z′

1 ⊗X1)
]−

(Z1 ⊗X′
1)T

+

×[T− (Z′
1Z1 ⊗X1X

′
1)]T

+(Z′
1 ⊗X1)[(Z1 ⊗X′

1)T
+(Z′

1 ⊗X1)]−(Z1 ⊗X′
1)

= (Z′
1 ⊗X1)

[
(Z1 ⊗X′

1)T
+(Z′

1 ⊗X1)
]−

(Z1 ⊗X′
1)T

+TT+(Z′
1 ⊗X1)

×
[
(Z1 ⊗X′

1)T
+(Z′

1 ⊗X1)
]−

(Z1 ⊗X′
1)

−(Z′
1 ⊗X1)

[
(Z1 ⊗X′

1)T
+(Z′

1 ⊗X1)
]−

(Z1 ⊗X′
1)T

+(Z′
1 ⊗X1)

×(Z1 ⊗X′
1)T

+(Z′
1 ⊗X1)

[
(Z1 ⊗X′

1)T
+(Z′

1 ⊗X1)
]−

(Z1 ⊗X′
1)

= (Z′
1 ⊗X1)

{[
(Z1 ⊗X′

1)T
+(Z′

1 ⊗X1)
]− − I

}
(Z1 ⊗X′

1).

The Assertion 3, the equality M [Z′
1 ⊗X1] = M [(Z′

1 ⊗X1)T+(Z1 ⊗X′
1)] and

the fact, that under the model (3) P [vec(Y) ∈ M (Z′
1 ⊗X1, I ⊗ Σ)] = 1 have

been taken into account. �

Theorem 2 Let us assume that M (Z′
2 ⊗X2) ⊂ M (MZ′

1⊗X1), then the BLUE
of the parametric function p′vec(B1), p ∈ M [(Z1 ⊗X′

1)MZ′
2⊗X2 ] in the model

(2) is of the form g′vec(Y) where

g =
[
M

MZ′
1⊗X1

Z′
2⊗X2

(I⊗ Σ) + (Z′
1Z1 ⊗X1X

′
1)
]−

(Z′
1 ⊗X1)

×
{

(Z1 ⊗X′
1)
[
M

MZ′
1⊗X1

Z′
2⊗X2

(I⊗ Σ) + (Z′
1Z1 ⊗X1X

′
1)
]−

(Z′
1 ⊗X1)

}−
p.

Proof Let us denote U0 the class of all unbiased estimators of the null function
p ′vec(B1) = 0, i.e.

U0 =
{
g′0vec(Y) : E[g′0vec(Y)] = g′0[(Z

′
1 ⊗X1)vec(B1) + (Z′

2 ⊗X2)vec(B2)]

= p′vec(B1) = 0, ∀vec(B1), ∀vec(B2)}
=
{
u′M(Z′

1⊗X1,Z′
2⊗X2)vec(Y) : u ∈ Rrk+sl

}
.

According to the basic lemma on the best estimators (see [3], p. 84) the statistic
g′vec(Y) is the BLUE of the function p′vec(B1) iff

cov[u′M(Z′
1⊗X1,Z′

2⊗X2)vec(Y),g′vec(Y)] =

= u′M(Z′
1⊗X1,Z′

2⊗X2)(I⊗ Σ)g = 0, ∀u ∈ Rrk+sl,

⇐⇒ M(Z′
1⊗X1,Z′

2⊗X2)(I⊗ Σ)g = o.

Thus we have to find a vector g such that

M(Z′
1⊗X1,Z′

2⊗X2)(I⊗ Σ)g = o ∧ (Z1 ⊗X′
1)g = p.
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Using the relation (see [6], Lemma 1)

M(Z′
1⊗X1,Z′

2⊗X2) =MZ′
1⊗X1M

MZ′
1⊗X1

Z′
2⊗X2

,

and notation A = Z′
1 ⊗X1, B = Z′

2 ⊗X2 we get

PAM
MB

A (I⊗ Σ)g+MAM
MB

A (I⊗ Σ)g =MMB

A (I⊗ Σ)g,

it means we must find the vector g such that

(Z′
1 ⊗X1)(A′A)−A′MMB

A (I⊗ Σ)g =MMB

A (I⊗ Σ)g ∧ (Z1 ⊗X′
1)g = p,

i.e. vector g such that

(Z′
1 ⊗X1)v =MMB

A (I⊗ Σ)g ∧ (Z1 ⊗X′
1)g = p.

We have

MMB

A (I⊗ Σ)g+ (Z′
1 ⊗X1)(Z1 ⊗X′

1)g = (Z′
1 ⊗X1)(v+ p),

=⇒ g =
[
MMB

A (I⊗ Σ) + (Z′
1Z1 ⊗X1X

′
1)
]−

(Z′
1 ⊗X1)(v+ p).

Thus

p = (Z1 ⊗X′
1)g

= (Z1 ⊗X′
1)
[
MMB

A (I⊗ Σ) + (Z′
1Z1 ⊗X1X

′
1)
]−

(Z′
1 ⊗X1)(v + p),

=⇒ v+ p =
{

(Z1 ⊗X′
1)
[
MMB

A (I⊗ Σ) + (Z′
1Z1 ⊗X1X

′
1)
]−

(Z′
1 ⊗X1)

}−
p,

=⇒ g =
[
MMB

A (I⊗ Σ) + (Z′
1Z1 ⊗X1X

′
1)
]−

(Z′
1 ⊗X1)

×
{

(Z1 ⊗X′
1)
[
MMB

A (I⊗ Σ) + (Z′
1Z1 ⊗X1X

′
1)
]−

(Z′
1 ⊗X1)

}−
p.

�

Theorem 3 The BLUE of the vector function

(Z′
1 ⊗X1)vec(B1) + (Z′

2 ⊗X2)vec(B2)

under the model (2) is given by

¤[(Z′
1 ⊗X1)vec(B1) + (Z′

2 ⊗X2)vec(B2)]a

=
[
PU+

A +MU+

A S[S
′(MAUMA)+S]−S′(MAUMA)+

]
vec(Y),

whereU = (I⊗Σ)+(Z′
1Z1⊗X1X′

1)+(Z′
2Z2⊗X2X′

2), A = Z′
1⊗X1, S = Z′

2⊗X2.
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Proof According to the Theorem 3.1.3 in [1] we have in the model (2)

¤

(A,S)
(

vec(B1)
vec(B2)

)
a

= (A,S)

[(
A′

S′

)−

m(I⊗Σ)

]′
vec(Y)

= (A,S)

{[
(I⊗ Σ) + (A,S)

(
A′

S′

)]−
(A,S)

[(
A′

S′

)
U−(A,S)

]−}′
vec(Y),

where U = (I⊗ Σ) +AA′ + SS′.
Using the following Rohde’s formula for generalized inverse of partitioned

p.s.d. matrix (see [2], Lemma 13, p. 68)(
A, B
B′, C

)−
=
(
A− +A−B(C−B′A−B)−B′A−, −A−B(C−B′A−B)−

−(C−B′A−B)−B′A−, (C−B′A−B)−

)
we get (

A′U−A, A′U−S
S′U−A, S′U−S

)−
=
(
A11, A12

A21, A22

)
,

A11 = (A′U−A)− + (A′U−A)−A′U−S
× [S′U+S− S′U+A(A′U−A)−A′U+S]−S′U+A(A′U−A)−

= (A′U−A)− + (A′U−A)−A′U−S[S′(MAUMA)+S]−S′U−A(A′U−A)−,
A12 = −(A′U−A)−A′U−S[S′(MAUMA)+S′]− = (A21)′,
A22 = [S′(MAUMA)+S]−.

After some calculations we get

¤

(A,S)
(

vec(B1)
vec(B2)

)
a

= (A,S)

×
(

(A′U−A)−A′U− − (A′U−A)−A′U−S[S′(MAUMA)+S]−S′(MAUMA)+

[S′(MAUMA)+S]−S′(MAUMA)+

)
vec(Y).

Since M(A) ⊂ M(U), M(S) ⊂ M(U), the expressions A′U−A, A′U−A are
invariant to the choice of g-inverse. Thus using the fact that

P{vec(Y) ∈ M [(A,S), (I⊗ Σ)]} = 1

we can write

¤Avec(B1)a =
[
PU+

A −PU+

A S[S
′(MAUMA)+S]−S′(MAUMA)+

]
vec(Y),

⁄Svec(B2)a = S[S′(MAUMA)+S]−S′(MAUMA)+vec(Y),

i.e.
¤(Z′

1 ⊗X1)vec(B1)a + (Z′
2 ⊗X2)vec(B2)a

=
[
PU+

A +MU+

A S[S
′(MAUMA)+S]−S′(MAUMA)+

]
vec(Y). �
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Corollary 1 Let in the Theorem 3 the condition M(S) ⊂ M(T), where
T = (I⊗ Σ) +AA′, A = Z′

1 ⊗X1, S = Z′
2 ⊗X2, is valid. Then

¤[(Z′
1 ⊗X1)vec(B1) + (Z′

2 ⊗X2)vec(B2)]a

=
[
PT+

A +MT+

A S[S
′(MATMA)+S]−S′(MATMA)+

]
vec(Y).

Proof Under the assumptionM(S) ⊂ M(T) one of the matrices[(
A′

S′

)−

m(I⊗Σ)

]′
,

is the matrix[(
A′

S′

)−

m(T )

]′
=
(
A′T−A, A′T−S
S′T−A, S′T−S

)−(
A′

S′

)
T−,

since
a) this matrix is g-inverse of the matrix (A,S),
b) the matrix

(A,S)
(
A′T−A, A′T−S
S′T−A, S′T−S

)−(
A′T−

S′T−

)
(I⊗ Σ)

= (A,S)

[(
A′

S′

)−

m(T )

]′
T− (A,S)

(
A′T−A, A′T−S
S′T−A, S′T−S

)−(
A′T−A
S′T−A

)
A′

= (A,S)

[(
A′

S′

)−

m(T )

]′
T−AA′,

is symmetrical. Here the relation [valid under the assumption M(S) ⊂ M(T)]

(A,S)
(
A′T−A, A′T−S
S′T−A, S′T−S

)−(
A′T−A, A′T−S
S′T−A, S′T−S

)
= (A,S),

was utilized. Thus enables us to use the matrix T instead of the matrix U in
the assertion of the Theorem 3. �

Theorem 4 The variance of the BLUE of the function

g′MZ′
2⊗X2(Z

′
1 ⊗X1)vec(B1), g ∈ Rmn,
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in the model (2) is given by

var[ ¤g′MZ′
2⊗X2(Z

′
1 ⊗X1)vec(B1)]a =

= var
[
g′MZ′

2⊗X2

{
PU+

A −PU+

A S[S
′(MAUMA)+S]−S′(MAUMA)+

}
vec(Y)

]
a

= g′MS

[
A(A′U−A)−A′ −AA′ +A(A′U−A)−A′U−S

×
{
[S′(MAUMA)+S]− − I

}
S′U−A(A′U−A)−A′

+A(A′U−A)−A′U−S[S′(MAUMA)+S][S′(MAUMA)+S]+

× S′U−A(A′U−A)−A′
]
MSg.

Proof We get the assertion after some calculations using the facts that

[S′(MAUMA)+S][S′(MAUMA)+S][S′(MAUMA)+S]+

= [S′(MAUMA)+S]P[S′(MAUMA)+S] = [S′(MAUMA)+S],

UU+A = A, (MAUMA)+A = O,

and that the expressions are invariant to the choice of g-inverses (since it is the
variance of the BLUE). �

Remark 1 For the variances

var[g′MZ′
2⊗X2

¤(Z′
1 ⊗X1)vec(B1)], g ∈ Rmn

in the model (2) and in the model (3) holds

var[ ¤g′MZ′
2⊗X2(Z

′
1 ⊗X1)vec(B1)] = g′MS [A(A′T+A)−A′ −AA′]MSg

≤ var[ ¤g′MZ′
2⊗X2(Z

′
1 ⊗X1)vec(B1)]a

= g′MS

[
A(A′U−A)−A′ −AA′ +A(A′U−A)−A′U−S

×
{
[S′(MAUMA)+S]− − I

}
S′U−A(A′U−A)−A′ +A(A′U−A)−A′U−S

× [S′(MAUMA)+S][S′(MAUMA)+S]+S′U−A(A′U−A)−A′
]
MSg.

The inequality is a consequence of the fact, that

A(A′T+A)−A′ ≤
L A(A′U−A)−A′
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and that the other two matrices are p.s.d. The matrix

A(A′U−A)−A′U−S
{
[S′(MAUMA)+S]− − I

}
S′U−A(A′U−A)−A

= PU+

A S{[S′(MAUMA)+S]− − I}S′(PU+

A )′

= PU+

A S{[S′U+S− S′U+A(A′U+A)−A′U+S]− − I}S′(PU+

A )′

= PU+

A S{(S′U+S)− + (S′U+S)−S′U+A[A′(MSUMS)+A]+

×A′U+S(S′U+S)− − I}S′(PU+

A )′

= PU+

A S{(S′U+S)+ − I}S′(PU+

A )′

+PU+

A S(S
′U+S)−S′U+A[A′(MSUMS)+A]+A′U+S(S′U+S)−S′(PU+

A )′,

is positive semidefinite because S[(S′U+S)+ − I ]S′ is p.s.d. It can be proved as
follows (see considerations next the Corollary 1.11.6 in [4]):

U = (I⊗ Σ) +AA′ + SS′ ≥
L SS′ ⇐⇒ U+ ≤

L (SS′)+,

=⇒ S′U+S ≤
L S′(SS′)+S ⇐⇒ (S′U+S)+ ≥

L [S′(SS′)+S]+ = S′(SS′)+S,

=⇒ S(S′U+S)+S′ ≤
L SS′(SS′)+SS′ = SS′ ⇐⇒ S[(S′U+S)+ − I]S′ ≥

L O.

The matrix

A(A′U−A)−A′U−S[S′(MAUMA)+S][S′(MAUMA)+S]+

× S′U−A(A′U−A)−A,

is also p.s.d. since [S′(MAUMA)+S][S′(MAUMA)+S]+ is a projection matrix.

We need to find a class of such functions of the useful parameters which are
unbiasedly estimable in both models (2), (3) and estimators of which have the
same variance. Thus we consider the functions from the class Ea only.

In [5] was proved (see Theorem 1) that under condition (4) the class of
functios mentioned above is

{g′MZ′
2⊗X2(Z

′
1 ⊗X1)vec(B1) :

(Z1 ⊗X′
1)MZ′

2⊗X2g ∈ M [(Z1 ⊗X′
1)(I ⊗ Σ)(Z′

1 ⊗X1)M(Z1⊗X′
1)(I⊗Σ)(Z′

2⊗X2)}.

From the Remark it is obvious that in the general case it is impossible to
find conditions uder which

var[ ¤g′MZ′
2⊗X2(Z

′
1 ⊗X1)vec(B1)] = var[ ¤g′MZ′

2⊗X2(Z
′
1 ⊗X1)vec(B1)]a.

If we confine us to the situation when the condition

M (S) ⊂ M (T), (10)

i.e.
M (Z′

2 ⊗X2) ⊂ M [(I⊗ Σ) + (Z′
1Z1 ⊗X1X′

1)],

is valid, it is possible to prove following statement (see [4], Theorem 1.11.7).
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Theorem 5 Let in model (2) the condition (10) be true. Then

var[ ¤g′MZ′
2⊗X2(Z

′
1 ⊗X1)vec(B1)] = var[ ¤g′MZ′

2⊗X2(Z
′
1 ⊗X1)vec(B1)]a,

if and only if

(Z1 ⊗X′
1)MZ′

2⊗X2g ∈ M
[
(Z1 ⊗X′

1)T
+(Z′

1 ⊗X1)M(Z1⊗X′
1)T

+(Z′
2⊗X2)

]
.

Proof Using notation A = Z′
1 ⊗X1, S = Z′

2 ⊗X2 and condition (10), we have
in the model (2)

var[ ¤g′MSAvec(B1)a] =

= var[g′MS{PT+

A −PT+

A S[S
′(MATMA)+S]−S′(MATMA)+}vec(Y)]

= g′MS{PT+

A −PT+

A S[S
′(MATMA)+S]−S′(MATMA)+}(T−AA′)

× {PT+

A −PT+

A S[S
′(MATMA)+S]−S′(MATMA)+}′MSg

= g′MS{PT+

A T−PT+

A S[S
′(MATMA)+S]−S′(MATMA)+T−AA′}

× {PT+

A −PT+

A S[S
′(MATMA)+S]−S′(MATMA)+}′MSg

= g′MS{A(A′T+A)−A′ −AA′

+A(A′T+A)−A′T+S[S′(MATMA)+S]+S′T+A(A′T+A)−A′}MSg

= var[ ¤g′MSAvec(B1)]

+ g′MSA(A′T+A)−A′T+S[S′(MATMA)+S]+S′T+A(A′T+A)−A′MSg.

The second term is zero iff

g′MSA(A′T+A)−A′T+S = o′.

It is equivalent to

(A′T+A)−A′MSg ∈ M(MA′T+S) ⇐⇒ A′MSg ∈ M [A′T+AMA′T+S ].

In the course of the proof the relations (MATMA)+A = O, TT+A = A,
(A′T+A)(A′T+A)+A′ = A′ and the fact, that the expressions are invariant
to the choice of the g-inverses have been utilized. �
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Abstract

We study the existence of positive solutions of the integral equation

x(t) = µ

Z 1

0

k(t, s)f(s, x(s), x′(s), . . . , x(n−1)(s)) ds, n ≥ 2

in both Cn−1[0, 1] and W n−1,p[0, 1] spaces, where p ≥ 1 and µ > 0.
Throughout this paper k is nonnegative but the nonlinearity f may take
negative values. The Krasnosielski fixed point theorem on cone is used.

Key words: Positive solutions, Fredholm integral equations, cone,
boundary value problems, fixed point theorem.

2000 Mathematics Subject Classification: 34G20, 34K10, 34B10,
34B15

4 Introduction

In analyzing nonlinear phenomena many mathematical models give rise to prob-
lems for which only nonnegative solutions make sense. This paper deals with
existence of positive solutions of the integral equations of the form

x(t) = µ

∫ 1

0

k(t, s)f(s, x(s), s′(s), . . . , x(n−1)(s)) ds, (1.1)

where µ > 0 is a constant and n ≥ 2.

71
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Throughout this paper k is nonnegative but our nonlinearity f may take neg-
ative values. The literature on positive solutions is for the most part devoted to
(1.1), when f takes nonnegative values and f is not dependent on derivatives
of the function x (see [2]–[5]). Existence in this paper will be established us-
ing Krasnosielskii’s fixed point theorem in a cone, which we state here for the
convenience of the reader.

Theorem 4.1 (K. Deimling [4], D. Guo [5]). Let E = (E, ‖ · ‖) be a Banach
space and let K ⊂ E be a cone in E. Assume Ω1 and Ω2 are bounded and
open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2 and let A : K ∩ (Ω2 \ Ω1) → K be
continuous and completely continuous. In addition suppose either ‖Au‖ ≤ ‖u‖
for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2 or ‖Au‖ ≥ ‖u‖ for
u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2 hold. Then A has a fixed point
in K ∩ (Ω2 \ Ω1).

5 Main results

In this section we present some results for the integral equation (1.1).
Throughout the paper

I = [0, 1] × [0,∞) × (−∞,∞)n−1, J = [0,∞) × (−∞,∞)n−1

and

‖x‖n−1 = sup
t∈[0,1]

[
|x(t)| + |x′(t)| + . . . + |x(n−1)(t)|

]
,

where x ∈ Cn−1[0, 1].

Theorem 5.1 Suppose the following conditions are satisfied:

(2.1) k : [0, 1] × [0, 1] → [0,∞), ∂lk(t,s)
∂tl ( l = 0, 1, . . . , n − 2) exist and are

continuous on [0, 1] × [0, 1],

(2.2) there exists ∂n−1k(t,s)
∂tn−1 for all t ∈ [0, 1] and a.e. s ∈ [0, 1],

(2.3) there exist k∗ ∈ C[0, 1], ki ∈ L1[0, 1] and M > 0 such that

(a) k∗(t) > 0 for a.e. t ∈ [0, 1],

(b) ki(s) ≥ 0 and
∫ 1

0
ki(s)ds > 0 for i = 0, 1, . . . , n − 1 and a.e. s ∈ [0, 1],

(c) Mk∗(t)ki(s) ≤
∣∣∂ik(t,s)

∂ti

∣∣ ≤ ki(s) for i = 0, 1, . . . , n − 1; t ∈ [0, 1] and
a.e. s ∈ [0, 1],

(2.4) the map t → ∂n−1

∂tn−1 k(t, s) is continuous from [0, 1] to L1[0, 1],
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(2.5) there exists a function d ∈ C[0, 1] with d(t) > 0 for a.e. t ∈ [0, 1] such
that

k(t, s) − d(t)
[∣∣∂k(t, s)

∂t

∣∣+ . . . +
∣∣∂n−1k(t, s)

∂tn−1

∣∣]
≥ d(t)

[
k(t, s) +

∣∣∂k(t, s)
∂t

∣∣+ . . . +
∣∣∂n−1k(t, s)

∂tn−1

∣∣]
for all t ∈ [0, 1] and a.e. s ∈ [0, 1],

(2.6) there exists a constant c̃ > 0 with∫ 1

0

k(t, s) ds ≤ c̃Md(t)k∗(t) for t ∈ [0, 1],

(2.7) f : I → (−∞,∞) is continuous and there exists a constant L > 0 with

f(t, v0, v1, . . . , vn−1) + L ≥ 0 for (t, v0, v1, . . . , vn−1) ∈ I,

(2.8) there exists a function ψ(u) such that

f(t, v0, v1, . . . , vn−1) + L ≤ ψ(v0 + |v1| + . . . + |vn−1|)

on I, where ψ : [0,∞) → [0,∞) is continuous and nondecreasing and
ψ(u) > 0 for u > 0,

(2.9) there exists r > 0 such that r ≥ µLc̃ and

r

ψ(r + ‖φ‖n−1)
≥

n−1∑
i=0

µ sup
t∈[0,1]

∫ 1

0

∣∣∣∣∂ik(t, s)
∂ti

∣∣∣∣ ds,

where φ(t) = µL
∫ 1

0
k(t, s) ds,

(2.10) f(t, v0, v1, . . . , vn−1) + L ≥ g(v0) for (t, v0, v1, . . . , vn−1) ∈ I with
g : [0,∞) → [0,∞) continuous and nondecreasing and g(u) > 0 for
u > 0,

(2.11) there exists R > 0 and t0 ∈ [0, 1] such that R > r, k∗(t0) > 0, d(t0) > 0
and

R ≤ µ
∫ 1

0 k(t0, s)+
[∣∣∂k(t0,s)

∂t

∣∣+ . . . +
∣∣∂n−1k(t0,s)

∂tn−1

∣∣]d(t0)g(εRMd(s)k∗(s)) ds,

where ε > 0 is any constant such that 1 − µLc̃
R ≥ ε.

Then (1.1) has a nonnegative solution x ∈ Cn−1[0, 1] with x(t) > 0 for a.e.
t ∈ [0, 1].
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Proof The proof of Theorem 2.1 is similar to that of Theorem 2.1 in the paper
[1]. To show (1.1) has a positive solution we will look at

x(t) = µ

∫ 1

0

k(t, s)f∗(s, x(s) − φ(s), s′(s) − φ′(s), . . . , xn−1(s) − φ(n−1)(s)) ds,

(2.12)
where

f∗(t, v0, v1, . . . , vn−1) =

{
f(t, v0, v1, . . . , vn−1) + L, if (t, v0, v1, . . . , vn−1) ∈ I,

f(t, 0, v1, . . . , vn−1) + L, if (t, v0, v1, . . . , vn−1) ∈ Ĩ ,

with Ĩ = [0, 1] × (−∞, 0) × (−∞,∞)n−1.
We will show that there exists a solution x1 to (2.12) with x1(t) ≥ φ(t) for

t ∈ [0, 1]. If this is true then u(t) = x1(t) − φ(t) is a nonnegative solution of
(1.1) since for t ∈ [0, 1] we have

u(t) =

= µ

∫ 1

0

k(t, s)
[
f∗(s, x(s) − φ(s), x′(s) − φ′(s), . . . , x(n−1)(s) − φ(n−1)(s))

]
ds

− µL

∫ 1

0

k(t, s) ds

= µ

∫ 1

0

k(t, s)f(s, x1(s) − φ(s), x′
1(s) − φ′(s), . . . , x(n−1)

1 (s) − φ(n−1)(s)) ds

= µ

∫ 1

0

k(t, s)f(s, u(s), u′(s), . . . , u(n−1)(s)) ds.

We will concentrate our study on (2.12).

Let E = (C(n−1)[0, 1], ‖ · ‖n−1) and

K = {u ∈ Cn−1[0, 1] : u(t)−d(t)
[
|u′(t)|+. . .+|u(n−1)(t)|

]
≥ Md(t)k∗(t)‖u‖n−1.

Clearly K is cone of E. Let

Ω1 = {u ∈ Cn−1[0, 1] : ‖u‖n−1 < r},
Ω2 = {u ∈ Cn−1[0, 1] : ‖u‖n−1 < R}

and

f̃(s, x(s) − φ(s)) = f∗(s, x(s) − φ(s), x′(s) − φ′(s), . . . , x(n−1) − φ(n−1)(s)),

where x ∈ Cn−1[0, 1]. Now, let

A : K ∩ (Ω2 \ Ω1) → Cn−1[0, 1]

be defined by

(Ax)(t) = µ

∫ 1

0

k(t, s)f̃(s, x(s) − φ(s)) ds.
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First we show A : K ∩ (Ω2 \ Ω1) → K. If x ∈ K ∩ (Ω2 \ Ω1) and t ∈ [0, 1], then
relations (2.1), (2.5) imply

Ax(t) − d(t)[|(Ax)′(t)| + . . . + |(Ax)(n−1)(t)|]

≥ µ

∫ 1

0

k(t, s)f̃(s, x(s) − φ(s)) ds

− µ d(t)
∫ 1

0

[∣∣∣∂k(t,s)
∂t

∣∣∣+ . . . +
∣∣∣∂n−1k(t,s)

∂tn−1

∣∣∣] f̃(s, x(s) − φ(s)) ds

≥ µd(t)
∫ 1

0

[
k(t, s) +

∣∣∂k
∂t (t, s)

∣∣+ . . . +
∣∣∣∂n−1k(t,s)

∂tn−1

∣∣∣] f̃(s, x(s) − φ(s)) ds

and this together with (2.3) yields

‖Ax‖n−1 ≥ Ax(t) − d(t)
[
|(Ax)′(t)| + . . . + |(Ax)(n−1)(t)|

]
≥ µd(t)

(
n−1∑
i=0

Mk∗(t)
∫ 1

0

ki(s)f̃(s, x(s) − φ(s)) ds

)
. (2.13)

On the other hand (2.3) implies

‖Ax‖n−1 ≤
n−1∑
i=0

µ

∫ 1

0

ki(s)f̃(s, x(s) − φ(s)) ds. (2.14)

Taking into account (2.13)–(2.14) we conclude that

Ax(t)−d(t)[|(Ax)′(t)|+. . .+|(Ax)(n−1)(t)|] ≥ Md(t)k∗(t)‖Ax‖n−1 for t ∈ [0, 1].

Consequently Ax ∈ K so A : K ∩ (Ω2 \ Ω1) → K. We now show

‖Ax‖n−1 ≤ ‖x‖n−1 for x ∈ K ∩ ∂Ω1. (2.15)

To see this let x ∈ K ∩ ∂Ω1. Then ‖x‖n−1 = r and x(t) ≥ Md(t)k∗(t)r for
t ∈ [0, 1]. For t ∈ [0, 1] we have

n−1∑
i=0

|(Ax)(i)(t)| ≤
n−1∑
i=0

∫ 1

0

∣∣∣∣∂ik(t, s)
∂ti

∣∣∣∣ f̃(s, x(s) − φ(s)) ds.

This together with (2.8)–(2.9) yields

‖Ax‖n−1 ≤ µψ (‖x‖n−1 + ‖φ‖n−1)
n−1∑
i=0

sup
t∈[0,1]

∫ 1

0

∣∣∣∣∂ik(t, s)
∂ti

∣∣∣∣ ds

≤ µψ(r + ‖φ‖n−1)
n−1∑
i=0

sup
t∈[0,1]

∫ 1

0

∣∣∣∣∂ik(t, s)
∂ti

∣∣∣∣ ds ≤ r = ‖x‖n−1.
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So (2.15) holds. Next we show

‖Ax‖n−1 ≥ ‖x‖n−1 for x ∈ K ∩ ∂Ω2. (2.16)

To see it let x ∈ K ∩ ∂Ω2. Then we get ‖x‖n−1 = R and x(t) ≥ RMd(t)k∗(t)
for t ∈ [0, 1]. Let ε be as in (2.11). For t ∈ [0, 1] we have from (2.6) that

x(t) − φ(t) = x(t) − µL

∫ 1

0

k(t, s) ds ≥ x(t) − µLc̃Md(t)k∗(t)R
R

≥ x(t)
(

1 − µLc̃

R

)
≥ x(t)ε ≥ εRMd(t)k∗(t) > 0

for a.e. t ∈ [0, 1]. By (2.10)–(2.11) and (2.5) we have

‖Ax‖n−1 ≥ Ax(t0) − d(t0)[|(Ax)′(t0)| + . . . + |(Ax)(n−1)(t0)|]

≥ µd(t0)
∫ 1

0

[
k(t0, s) +

∣∣∣∣∂k(t0, s)
∂t

∣∣∣∣+ . . . +
∣∣∣∣∂n−1k(t0, s)

∂tn−1

∣∣∣∣] g(εRMd(s)k∗(s)) ds

≥ R = ‖x‖n−1.

Hence we obtain (2.14). By (2.3)–(2.4) and the Arzela–Ascoli theorem we con-
clude that A : K ∩ (Ω2 \ Ω1) → K is continuous and compact. Theorem 1.1
implies A has a fixed point x1 ∈ K ∩ (Ω2 \ Ω1), i.e. r ≤ ‖x1‖n−1 ≤ R and

x1(t) ≥ Md(t)k∗(t)r for t ∈ [0, 1]. (2.18)

Taking into account relations (2.6), (2.9) and (2.18) we have

x1(t) ≥ Md(t)k∗(t)r ≥ µLc̃Md(t)k∗(t) ≥ µL

∫ 1

0

k(t, s) ds = φ(t).

This completes the proof of Theorem 2.1. �

Example 5.1 To illustrate the applicability of Theorem 2.1 we consider the
following boundary value problem

x′′(t) + µ((x(t) + |x′(t)|)2 − 1) = 0, x(0) = x′(0), x(1) = −x′(1). (2.19)

The problem (2.19) is equivalent to the problem of determinig the fixed point
of the operator T of the form

T (x)(t) = µ

∫ 1

0

k(t, s)[(x(s) + |x′(s)|)2 − 1] ds,

where k(t, s) is defined as follows

k(t, s) =

{
(2−t)(1+s)

3 , 0 ≤ s ≤ t ≤ 1
(2−s)(1+t)

3 , 0 ≤ t ≤ s ≤ 1.
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Fix t0 = 1
2 , d(t) = M = 1

4 , k∗(t) = 1, k0(s) = k1(s) = 4
3 , L = 1 and ψ(u) =

g(u) = u2 for t ∈ [0, 1] and u ∈ [0,∞). We claim (2.6) holds with c̃ = 10,
µ < 1

10 , R > 1 and ε = 1 − µLc̃
R = 1 − 10µ

R . To see this notice for t ∈ [0, 1] that∫ 1

0

k(t, s) ds =
1
2
(1 + t − t2) ≤ 5

8
≤ c̃Md(t)k∗(t) ≤ c̃

16
.

Clearly g(εRMd(s)k∗(s)) = ε2R2M2d2(s)k∗2(s) = ε2R2

256 and

µd

(
1
2

)∫ 1

0

[
k

(
1
2
, s

)
+
∣∣∣∣∂k
(

1
2 , s
)

∂t

∣∣∣∣
]

g(εRMd(s)k∗(s)) ds

=
µε2R2

1024

∫ 1

0

[
k

(
1
2
, s

)
+
∣∣∣∣∂k
(

1
2 , s
)

∂t

∣∣∣∣
]

ds ≥ R

for sufficiently largeR. Next we claim (2.9) holds. To see this notice for t ∈ [0, 1]
that

φ(t) = µL

∫ 1

0

k(t, s)ds =
µ

2
(1 + t − t2)

and
‖φ‖1 =

µ

2
‖1 − t − t2‖1 =

µ

2
sup

t∈[0,1]

[(1 + t − t2) + |1 − 2t|] = µ

and

µ

[
sup

t∈[0,1]

∫ 1

0

k(t, s)ds + sup
t∈[0,1]

∫ 1

0

∣∣∣∣∂k(t, s)
∂t

∣∣∣∣ ds

]
=

9µ

8
.

Finally notice (2.9) is satisfied with r = 10µ since 9
8µ ≤ r

ψ(r+µ) = 10
121µ for

µ ≤
√

80
33 . Thus all assumptions of Theorem 2.1 are satisfied so existence of a

positive solution of the problem (2.19) is guaranted.
It is possible to obtain another existence results for (1.1) if we change some

conditions on the nonlinearity f and some of conditions on the kernel k. Before
formulating a next theorem we will introduce some notation.
For p ≥ 1, Lp[0, 1] is the Banach space of all real functions x such that |x|p

is Lebesgue integrable on [0, 1] with the norm

‖x‖∗p =
(∫ 1

0

|x(t)|p
) 1

p

.

The symbol Wn−1,p[0, 1] (n ≥ 2) denotes the set of all functions x with
x(n−2) absolutely continuous and x(n−1) ∈ Lp[0, 1].
For x ∈ Wn−1,p[0, 1] we introduce the following norm

‖x‖n−1,p = sup
t∈[0,1]

⎡⎣n−2∑
j=0

|x(j)(t)|

⎤⎦+ ‖x(n−1)‖∗p.

The space (Wn−1,p[0, 1], ‖ · ‖n−1,p) is the Banach space.
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We adopt the following convention y(t+τ) = 0 if t+τ �∈ [0, 1] and y ∈ Lp[0, 1].
A function f : I → (−∞,∞) is a Carathéodory function provided:
If f = f(t, z), then
(i) the map z → f(t, z) is continuous for almost all t ∈ [0, 1],
(ii) the map t → f(t, z) is measurable for all z ∈ [0,∞) × (−∞,∞)n−1.
If f is a Carathéodory function, by a solution to (1.1) we will mean a function

x which has an absolutely continuous (n − 2) st derivative such that x satisfies
the integral equation (1.1) almost everywhere in [0, 1].

Theorem 5.2 Assume that conditions (2.1)–(2.2) and (2.5) are satisfied and
p, q are such that p, q ≥ 1 and 1

p + 1
q = 1. Suppose the following conditions are

satisfied

(2.20) there exist k∗ ∈ C[0, 1], ki ∈ Lp[0, 1], c̃ > 0 and M > 0 such that

(a) k∗(t) > 0 for a.e. t ∈ [0, 1],

(b) ki(s) ≥ 0 and
∫ 1

0 ki(s)ds > 0 for i = 0, 1, . . . , n − 1 and a.e. s ∈ [0, 1],

(c) Mk∗(t)ki(s) ≤
∣∣∣∂ik(t,s)

∂ti

∣∣∣ ≤ ki(s) for i = 0, 1, . . . , n − 1, t ∈ [0, 1] and
a.e. s ∈ [0, 1],

(d) the map (t, s) → ∂n−1k(t,s)
∂tn−1 is measurable,

(e)
∫ 1

0
k(t, s) ds ≤ c̃Md(t)k∗(t) for t ∈ [0, 1].

(2.21) f : I → (−∞,∞) is a Carathéodory function and there exist nonneg-
ative functions pj ∈ Lq[0, 1] (j = 0, 1, . . . , n − 1) and constants L > 0
and pn > 0 such that

(a) f(t, v0, v1, . . . , vn−1) + L ≥ 0 for a.e. t ∈ [0, 1] and
all (v0, v1, . . . , vn−1) ∈ J ,

(b) |f(t, v0, v1, . . . , vn−1)| ≤
∑n−2

i=0 pi(t)|vi| + pn−1(t) + pn|vn−1|
p
q for a.e.

t ∈ [0, 1] and all (v0, v1, . . . , vn−1) ∈ J ,

(c) f(t, v0, v1, . . . , vn−1) + L ≤ ψ(v0 + |v1| + . . . + |vn−1|) for a.e. t ∈ [0, 1]
and all (v0, v1, . . . , vn−1) ∈ J , where ψ : [0,∞) → [0,∞) is a continuous
and nondecreasing with ψ(u) > 0 for u > 0,

(2.22) ‖ψ(x + |x′| + . . . + |x(n−1)|)‖∗q ≤ ϕ(‖x‖n−1,p) with ϕ : [0,∞) → [0,∞)
continuous and nondecreasing and x ∈ Wn−1,p[0, 1],

(2.23) f(t, v0, v1, . . . , vn−1) + L ≥ g(v0) for a.e. t ∈ [0,∞) and
all (v0, v1, . . . , vn−1) ∈ J with g : [0,∞) → [0,∞) continuous and non-
decreasing and g(u) > 0 for u > 0,



Remarks on existence of positive solutions of some integral equations 79

(2.24) there exists r > 0 such that r ≥ µLc̃ and

r

ϕ(r + ‖φ‖n−1,p)
≥ µ(b + ‖kn−1‖∗p),

where

b =
n−2∑
i=0

sup
t∈[0,1]

∥∥∥∥∂ik(t, ·)
∂ti

∥∥∥∥∗
p

and φ is defined by (2.9),

(2.25) there exist R > 0 and t0 ∈ [0, 1] such that R > r, k∗(t0) > 0, d(t0) > 0
and

R ≤ µ

∫ 1

0

[
k(t0, s) +

∣∣∣∂k(t0,s)
∂t

∣∣∣+ . . . +
∣∣∣∂n−1k(t0,s)

∂tn−1

∣∣∣] d(t0)g(εRMd(s)k∗(s))ds,

where ε is defined by (2.11).

Then (1.1) has a nonnegative solution x ∈ Wn−1,p[0, 1] with x(t) > 0 for a.e.
t ∈ [0, 1].

Proof It is enough to show (2.12) has a solution u ∈ Wn−1,p[0, 1]. Let a(t) =
Md(t)k∗(t) and let

K = {u ∈ Wn−1,p[0, 1] : u(t) − d(t)
[
|u′(t)| + . . . + |u(n−1)(t)|

]
≥ a(t)‖u‖n−1,p for a.e. t ∈ [0, 1]}.

Clearly K is a cone of Wn−1,p[0, 1].
Let

Ω1 = {x ∈ Wn−1,p[0, 1] : ‖x‖n−1,p < r},
Ω2 = {x ∈ Wn−1,p[0, 1] : ‖x‖n−1,p < R}

and

f̃(s, x(s) − φ(s)) = f∗(s, x(s) − φ(s), x′(s) − φ′(s), . . . , x(n−1)(s) − φ(n−1)(s)),

where x ∈ Wn−1,p[0, 1] and f∗ is defined by (2.12). We will show that there
exist a solution x1 ∈ Wn−1,p[0, 1] to the equation (2.12) with x1(t) ≥ φ(t) for
t ∈ [0, 1].
Let A : K ∩ (Ω2 \ Ω1) → Wn−1,p[0, 1] be defined by

Ax(t) = µ

∫ 1

0

k(t, s)f̃(s, x(s) − φ(s)) ds.

Then

|(Ax)(n−1)(t)| ≤ µ

∫ 1

0

kn(s)f̃(s, x(s) − φ(s)) ds (2.27)
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and

|Ax(t)| + |(Ax)′(t)| + . . . + |(Ax)(n−2)(t)| ≤ µ

n−2∑
i=0

∫ 1

0

ki(s)f̃(s, x(s) − φ(s)) ds.

(2.28)
From relations (2.27)–(2.28), (2.21)–(2.22) and Hölder’s inequality it follows

‖Ax‖n−1,p ≤ µ

n−1∑
i=0

∫ 1

0

ki(s)f̃(s, x(s) − φ(s)) ds

≤ µ

n−1∑
i=0

ϕ(‖x‖n−1,p + ‖φ‖n−1,p)‖ki‖∗p. (2.29)

Note that A is well defined operator. Now we will prove

A : K ∩ (Ω2 \ Ω1) → K.

If x ∈ K ∩ (Ω2 \ Ω1) and t ∈ [0, 1], then (2.20), (2.5) and (2.29) imply

Ax(t) − d(t)
[
|(Ax)′(t)| + . . . + |(Ax)(n−1)(t)|

]
≥ µd(t)

∫ 1

0

[
k(t, s) +

∣∣∣∣∂k(t, s)
∂t

∣∣∣∣+ . . . +
∣∣∣∣∂n−1k(t, s)

∂tn−1

∣∣∣∣] f̃(s, x(s) − φ(s)) ds

≥ µd(t)Mk∗(t)

(
n−1∑
i=0

∫ 1

0

ki(s)f̃(s, x(s) − φ(s))

)
ds ≥ a(t)‖Ax‖n−1,p.

Thus Ax ∈ K and A : K ∩ (Ω2 \ Ω1) → K. Now we will prove that A is a
continuous operator. It is enough to show that the Niemytzki operator H :
Wn−1,p[0, 1] → Lq[0, 1] defined by

Hx(t) = f∗(t, x(t) − φ(t), x′(t) − φ′(t), . . . , x(n−1)(t) − φ(n−1)(t))

is continuous. The proof of the continuity of H is similar to the proof of Theo-
rem 1.2 in [6]. Let {xν} be a sequence of elements of Wn−1,p[0, 1] converging to
x in Wn−1,p[0, 1]. Then there exists a subsequence {x(n−1)

νλ (t)} of the sequence
{x(n−1)

ν (t)} such that

lim
λ→∞

x(n−1)
νλ

(t) = x(n−1)(t) for a.e. t ∈ [0, 1].

Moreover, there exists a function g ∈ Lp[0, 1] with

|x(n−1)
νλ

(t)| ≤ g(t) for a.e. t ∈ [0, 1]

([6], Lemma 2.1). Hence by (2.21)(b) we conclude that there exists a function
h ∈ Lq[0, 1] such that

|f∗(t, x(t) − φ(t), x′(t) − φ′(t), . . . , x(n−1)(t) − φ(n−1)(t)
− f∗(t, xνλ

(t) − φ(t), x′
νλ

(t) − φ′(t), . . . ,

x(n−1)
νλ

(t) − φ(n−1)(t))| ≤ h(t) for a.e. t ∈ [0, 1].
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From the Lebesgue dominated convergence theorem it folows that the Niemytzki
operator H is continuous at the point x. We next show that A is completely
continuous. Let Ω be a bounded set in

(
Wn−1,p[0, 1], ‖ · ‖n−1,p

)
. Then by virtue

of (2.29) we have A(Ω) is bounded. We need to prove that A(Ω) is relatively
compact. We will use the Arzela–Ascoli and the Riesz theorems. In fact, let
yν ∈ A(Ω) i.e.

yν = A(xν), xν ∈ Ω.

Since A(Ω) is bounded in (Wn−1,p[0, 1], ‖·‖n−1,p) there exist subsequences {x(j)
νµ }

and {y(j)
νµ } of sequences {x(j)

ν } and {y(j)
ν } uniformly convergent to x(j) and y(j)

respectively for j = 0, 1, . . . , n − 2. Without loss of generality we can assume
that the sequences {x(j)

ν } and {y(j)
ν } are uniformly convergent to x(j) and y(j).

We will prove that there exists a subsequence {y(n−1)
νλ } of the sequence {y(n−1)

ν }
such that

lim
λ→∞

‖y(n−1)
νλ

− y‖∗p = 0, where y ∈ Lp[0, 1].

Indeed, for fixed τ > 0 we have by the Hölder inequality and the Fubini theorem
that ∫ 1

0

∣∣∣(Ax)(n−1)(t + τ) − (Ax)(n−1)(t)
∣∣∣p dt ≤

≤ µp

∫ 1

0

(∫ 1

0

∣∣∣∣ ∂n−1

∂tn−1
k(t + τ, s) − ∂n−1

∂tn−1
k(t, s)

∣∣∣∣p ds

)
dt

×
∫ 1

0

(∫ 1

0

|f̃(s, x(s) − φ(s))|qds

) p
q

dt

≤ µpϕ (‖x‖n−1,p + ‖φ‖n−1,p)
p
∫ 1

0

(∫ 1

0

∣∣∣∣ ∂n−1

∂tn−1
k(t + τ, s) − ∂n−1

∂tn−1
k(t, s)

∣∣∣∣pdt

)
ds.

Now using the fact that translates of Lp are functions continuous in the norm
we see that ∫ 1

0

∣∣∣(Ax)(n−1)(t + τ) − (Ax)(n−1)(t)
∣∣∣p dt → 0

as τ → 0 uniformly. From the Riesz compactness theorem it folows that there
exists a subsequence {y(n−1)

νλ } of the sequence {y(n−1)
ν } convergent in Lp[0, 1] to

a function y ∈ Lp[0, 1]. It is easy to notice that

y(n−1)(t) = y(t) for a.e. t ∈ [0, 1].

So A(Ω) is relatively compact, i.e. A is completely continuous. Next we show
that

‖Ax‖n−1,p ≤ ‖x‖n−1,p for x ∈ K ∩ ∂Ω1. (2.30)

Let x ∈ K ∩ ∂Ω1, so ‖x‖n−1,p = r and x(t) ≥ a(t)r for a.e. t ∈ [0, 1]. The
relations (2.21)–(2.22), (2.24), (2.27)–(2.29) yield

n−2∑
j=0

∣∣∣(Ax)(j)(t)
∣∣∣ ≤ µbϕ(‖x‖n−1,p + ‖φ‖n−1,p) (2.31)
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and

n−2∑
j=0

|(Ax)(j)(t)| + ‖Ax‖∗p ≤ µϕ(‖x‖n−1,p + ‖φ‖n−1,p)(b + ‖kn−1‖∗p) ≤ r (2.32)

By (2.31)–(2.32) and (2.24) we get

‖Ax‖n−1,p ≤ ‖x‖n−1,p.

So (2.30) holds. Using arguments similar to these in the proof of Theorem 2.1
we conclude that

‖Ax‖n−1,p ≥ ‖x‖n−1,p for x ∈ K ∩ ∂Ω2.

Theorem 1.1 implies A has a fixed point x1 ∈ K ∩ (Ω2 \ Ω1) i.e.

r ≤ ‖x1‖n−1,p ≤ R and x1(t) ≥ a(t)r.

Thus for a.e. t ∈ [0, 1] we have x1(t) ≥ a(t)r ≥ φ(t). This completes the proof
of Theorem 2.3. �
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1 Introduction

In 1972, Goebel and Kirk [3] introduced the concept of asymptotically nonex-
pansive mappings and proved that if K is a nonempty closed bounded subset
of a uniformly convex Banach space E, then every asymptotically nonexpan-
sive self-mapping of K has a fixed point. After that, some authors studied
a few iterative approximation methods of fixed points for asymptotically non-
expansive mappings. In 1991, Schu [9], [10] introduced the modified Ishikawa
iteration methods and modified Mann iteration methods and proved that the
modified Mann iteration sequence converges strongly to some fixed points of
asymptotically nonexpansive mappings in Hilbert spaces. Rhoades [8] extended
the results in [9] to uniformly convex Banach spaces and to modified Ishikawa
iteration methods. Chang [1], Liu and Kang [5] and Osilike and Aniagbosor
[7] also established some strong and weak convergence theorems of modified
Ishikawa iteration methods with errors and three-step iteration methods with
errors for asymptotically nonexpansive mappings.
Inspired and motivated by the work in [1], [5] and [7]–[10], in this paper we

introduce a new iterative method, called modified three-step iteration method
with errors with respect to a pair of mappings, and establish some strong and
weak convergence theorems of the modified three-step iteration method with
errors with respect to nonexpansive and asymptotically nonexpansive mappings
in nonempty closed convex subsets of uniformly convex Banach spaces. The
results presented in this paper generalize, improve and unify a few results due
to Chang [1], Liu and Kang [5], Osilike and Aniagbosor [7], Rhoades [8] and Schu
[9], [10] and others. An example is included to demonstrate that our results are
sharp.

2 Preliminaries

Let E be a uniformly convex Banach space, K be a nonempty subset of E and
S, T : K → K be two mappings. I stands for the identity mapping, F (T ) and
F (S, T ) denote the sets of fixed points of T and common fixed points of S and
T , respectively. Let J : E → 2E be the normalized duality mapping defined by

J(x) = {f ∈ E∗, 〈x, f〉 = ‖x‖ · ‖f‖, ‖f‖ = ‖x‖}, ∀x ∈ E.

Let us recall the following concepts and results.

Definition 2.1 [2] A mapping T : K → K is said to be

(1) asymptotically nonexpansive if there exists a sequence {kn}n≥1 ⊂ [1,∞)
with limn→∞ kn = 1 such that ‖T nx − T ny‖ ≤ kn‖x − y‖, ∀x, y ∈ K,
n ≥ 1;

(2) nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ K;

(3) uniformly L-Lipschitzian if there exists a constant L ≥ 1 satisfying
‖T nx − T ny‖ ≤ L‖x − y‖, ∀x, y ∈ K, n ≥ 1;
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(4) semi-compact if K is closed and for any bounded sequence {xn}n≥1 in
K with limn→∞ ‖xn − Txn‖ = 0, there exists a subsequence {xni}i≥1 ⊂
{xn}n≥1 and x ∈ K such that limi→∞ xni = x.

It is easy to see that if T is an asymptotically nonexpansive mapping with a
sequence {kn}n≥1 ⊂ [1,∞) such that limn→∞ kn = 1, then it must be uniformly
L-Lipschitzian with L = sup{kn : n ≥ 1}.

Definition 2.2 A mapping T with domain D(T ) and range R(T ) in E is called
demiclosed at a point p ∈ D(T ) if whenever {xn}n≥1 is a sequence in E which
converges weakly to a point x ∈ E and {Txn}n≥1 converges strongly to p, then
Tx = p.

Definition 2.3 [6] A Banach space E is called to satisfy Opial’s condition if
for each sequence {xn}n≥1 in E which converges weakly to a point x ∈ E

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖, ∀y ∈ E − {x}.

Definition 2.4 Let K be a nonempty convex subset of a normed linear space
E and S, T : K → K be two mappings. For an arbitrary x1 ∈ K, the modified
three-step iteration sequence with errors {xn}n≥1 with respect to S and T is
defined by

zn = a′′
nSxn + b′′nT nxn + c′′nwn,

yn = a′
nSxn + b′nT nzn + c′nvn, (2.1)

xn+1 = anSxn + bnT nyn + cnun, ∀n ≥ 1,

where {un}n≥1, {vn}n≥1 and {wn}n≥1 are bounded sequences in K, {an}n≥1,
{bn}n≥1, {cn}n≥1, {a′

n}n≥1, {b′n}n≥1, {c′n}n≥1, {a′′
n}n≥1, {b′′n}n≥1 and {c′′n}n≥1

are sequences in [0, 1] satisfying

an + bn + cn = a′
n + b′n + c′n = a′′

n + b′′n + c′′n = 1, ∀n ≥ 1. (2.2)

Remark 2.1 In case S = I and b′′n = c′′n = 0 for n ≥ 1, then the sequence
{xn}n≥1 generated in (2.1) reduces to the usual modified Ishikawa sequence
with errors.

Lemma 2.1 [4] Let E be a Banach space satisfying Opial’s condition and K
be a nonempty closed convex subset of E. If T : K → K is an asymptotically
nonexpansive mapping, then I − T is demiclosed at zero.

Lemma 2.2 [10] Let E be a uniformly convex Banach space, {tn}n≥1 ⊆ [b, c] ⊂
(0, 1), {xn}n≥1 and {yn}n≥1 be sequences in E. If lim supn→∞ ‖xn‖ ≤ a,
lim supn→∞ ‖yn‖ ≤ a and limn→∞ ‖tnxn + (1 − tn)yn‖ = a for some constant
a ≥ 0, then limn→∞ ‖xn − yn‖ = 0.

Lemma 2.3 [2] Let E be a normed linear space. Then

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, ∀x, y ∈ E, j(x + y) ∈ J(x + y).
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Lemma 2.4 [11] Let p > 1 and r > 0 be two constants. Then a Banach
space E is uniformly convex if and only if there exists a continuous and strictly
increasing convex function g : [0,∞) → [0,∞) with g(0) = 0 such that

‖ax + (1 − a)y‖p ≤ a‖x‖p + (1 − a)‖y‖p − wp(a)g(‖x − y‖)

for each x, y ∈ B(θ, r) = {x : ‖x‖ ≤ r and x ∈ E}, a ∈ [0, 1] and

wp(a) = ap(1 − a) + a(1 − a)p

Lemma 2.5 [7] Let {an}n≥1, {bn}n≥1 and {cn}n≥1 be sequences of nonnegative
numbers satisfying the inequality

an+1 ≤ (1 + cn)an + bn, ∀n ≥ 1.

If
∑∞

n=1 cn < ∞ and
∑∞

n=1 bn < ∞, then limn→∞ an exists. In particular, if
{an}n≥1 has a subsequence which converges to zero, then limn→∞ an = 0.

3 Main Results

Lemma 3.1 Let K be a nonempty convex subset of a normed linear space E.
Let S : K → K be a mapping and T : K → K be uniformly L-Lipschitzian.
Then

‖xn+1 − Txn+1‖ ≤ ‖xn+1 − T n+1xn+1‖ + L2(L2 + 2L + 2)‖xn − T nxn‖
+ L(L + 1)[(L2 + L + 1)‖Sxn − xn‖ + cn‖un − xn‖

+ bnc′nL‖vn − xn‖ + bnb′nc′′nL2‖wn − xn‖]

for n ≥ 1, where {xn}n≥1 is defined by (2.1).

Proof Set An+1 = ‖xn+1 − T n+1xn‖, Bn+1 = ‖Sxn+1 − xn+1‖ for n ≥ 1. It
follows that

‖zn − xn‖ ≤ a′′
n‖Sxn − xn‖ + b′′n‖T nxn − xn‖ + c′′n‖wn − xn‖, (3.1)

‖yn − xn‖ ≤ a′
n‖Sxn − xn‖ + b′n(L‖zn − xn‖ + ‖T nxn − xn‖) + c′n‖vn − xn‖

≤ a′
nBn + b′nL‖zn − xn‖ + b′nAn + c′n‖vn − xn‖ (3.2)

and

‖xn+1 − Txn+1‖ ≤ ‖xn+1 − T n+1xn+1‖ + ‖T n+1xn+1 − Txn+1‖
≤ An+1 + L‖T nxn+1 − xn+1‖
≤ An+1 + L(‖T nxn+1 − T nxn‖ + ‖T nxn − xn+1‖)
≤ An+1 + L2‖xn+1 − xn‖ + L‖T nxn − xn+1‖
≤ An+1 + L2anBn + L2bn(‖T nyn − T nxn‖

+ ‖T nxn − xn‖) + L2cn‖un − xn‖ + LanBn + LanAn

+ bnL2‖yn − xn‖ + LcnAn + Lcn‖un − xn‖
≤ An+1 + L(L + 1)anBn + L(Lbn + an + cn)An

+ L2bn(L + 1)‖yn − xn‖ + Lcn(L + 1)‖un − xn‖ (3.3)
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for n ≥ 1. Substituting (3.1) and (3.2) into (3.3), we obtain that

‖xn+1 − Txn+1‖ ≤ An+1 + L2(L2 + 2L + 2)An + L(L + 1)[(L2 + L + 1)Bn

+ cn‖un − xn‖ + bnc′nL‖vn − xn‖ + bnb′nc′′nL2‖wn − xn‖]

for n ≥ 1. This completes the proof of Lemma 2.1. �

Remark 3.1 Lemma 1.2 in [7], Lemma 3.1 in [5], Lemma 1.4 in [8] and Lemma
1.4 in [10] are special cases of Lemma 3.1.

Lemma 3.2 Let K be a nonempty convex subset of a normed linear space E.
Let S : K → K be a nonexpansive mapping and T : K → K be an asymptotically
nonexpansive mapping with a sequence {kn} ⊆ [1,∞) satisfying limn→∞ kn = 1
and F (S, T ) �= ∅. If the following conditions

∞∑
n=1

(kn − 1) < ∞ (3.4)

and ∞∑
n=1

bnb′nc′′n < ∞,

∞∑
n=1

bnc′n < ∞,

∞∑
n=1

cn < ∞ (3.5)

hold, then limn→∞ ‖xn−q‖ exists for any q ∈ F (S, T ), where {xn}n≥1 is defined
by (2.1).

Proof Let q ∈ F (S, T ) and L = sup{kn : n ≥ 1}. Note that {un − q}n≥1,
{vn − q}n≥1 and {wn − q}n≥1 are bounded. It follows that M = sup{‖un − q‖,
‖vn−q‖, ‖wn−q‖ : n ≥ 1} < ∞. Since S is nonexpansive and T is asymptotically
nonexpansive, by (2.1) we know that

‖xn+1 − q‖ = ‖anSxn + bnT nyn + cnun − q‖
≤ an‖xn − q‖ + bnkn‖yn − q‖ + cn‖un − q‖
≤ an‖xn − q‖ + bnkn(a′

n‖xn − q‖ + b′nkn‖zn − q‖ + c′n‖vn − q‖) + cnM

≤ (an + bnkna′
n)‖xn − q‖ + bnb′nk2

n(a′′
n‖xn − q‖ + b′′nkn‖xn − q‖

+ c′′n‖wn − q‖) + bnc′nknM + cnM

≤ [an + bnkna′
n + bnb′nk2

n(a′′
n + b′′nkn)]‖xn − q‖

+ (bnb′nc′′nkn + bnc′nknM + cn)M
≤ [1 − bn + bnkn(1 − b′n) + bnb′nk2

n(1 − b′′n + b′′nkn)]‖xn − q‖
+ (Lbnb′nc′′n + LMbnc′n + cn)M

≤ [1 + bn(kn − 1)(1 + L + L2)]‖xn − q‖
+ (Lbnb′nc′′n + LMbnc′n + cn)M (3.6)

for n ≥ 1. It follows from Lemma 2.5, (3.4) and (3.5) that limn→∞ ‖xn − q‖
exists. This completes the proof. �



88 Z. LIU, R. P. AGARWAL, C. FENG, S. M. KANG

Remark 3.2 Lemma 3.2 generalizes Lemma 3.2 in [5], Lemma 3 in [7] and
Lemma 1.2 in [10].

Lemma 3.3 Let K be a nonempty convex subset of a uniformly convex Banach
space E. Let S : K → K be a nonexpansive mapping and T : K → K be an
asymptotically nonexpansive mapping with a sequence {kn} ⊆ [1,∞) satisfying
(3.4), limn→∞ kn = 1, F (S, T ) �= ∅ and

‖x − Ty‖ ≤ ‖Sx − Ty‖, ∀x, y ∈ K. (3.7)

Suppose that
∞∑

n=1

c′n < ∞,
∞∑

n=1

b′nc′′n < ∞,
∞∑

n=1

cn < ∞, (3.8)

(1 + lim sup
n→∞

b′′n) · lim sup
n→∞

b′n < 1, (3.9)

0 < a ≤ bn ≤ b < 1, ∀n ≥ 1, (3.10)

where a and b are constants. Then limn→∞ ‖xn−Sxn‖ = limn→∞ ‖xn−Txn‖ =
0, where {xn}n≥1 is defined by (2.1).

Proof Let q ∈ F (S, T ). Lemma 3.2 ensures that limn→∞ ‖xn − q‖ exists. Set
limn→∞ ‖xn − q‖ = d . Since {un}n≥1, {vn}n≥1 and {wn}n≥1 are bounded
sequences, it follows that

M = sup{‖un − q‖, ‖vn − q‖, ‖xn − vn‖, ‖xn − wn‖, ‖xn − un‖ : n ≥ 1} < ∞.

Observe that

lim
n→∞ ‖xn+1 − q‖ = lim

n→∞ ‖(1 − bn − cn)Sxn + bnT nyn + cnun − q‖

= lim
n→∞ ‖(1 − bn)[Sxn − q − cn(Sxn − un)]

+ bn[T nyn − q − cn(Sxn − un)]‖. (3.11)

From the nonexpansivity of S and (3.8), we deduce that

lim sup
n→∞

‖Sxn − q − cn(Sxn − un)‖

≤ lim sup
n→∞

(‖xn − q‖ + cn‖xn − q‖ + cn‖un − q‖)

≤ lim sup
n→∞

[(1 + cn)‖xn − q‖ + cnM ] ≤ d. (3.12)

Since S is nonexpansive and T is asymptotically nonexpansive, by (2.1) we
derive that

‖T nyn − q − cn(Sxn − un)‖
≤ kn‖yn − q‖ + cn‖Sxn − q‖ + cn‖un − q‖
≤ kn[a′

n‖xn − q‖ + b′nkn‖zn − q‖] + (c′nkn + cn)M + cn‖xn − q‖
≤ (a′

nkn + cn)‖xn − q‖ + b′nk2
n‖zn − q‖ + (c′nkn + cn)M

≤ [a′
nkn + cn + b′nk2

n(a′′
n + b′′nkn)]‖xn − q‖ + (c′nkn + cn + b′nc′′nk2

n)M
≤ [kn + b′nkn(kn − 1) + b′nk2

nb′′n(kn − 1) + cn]‖xn − q‖
+ (c′nkn + cn + b′nc′′nk2

n)M (3.13)



Weak and strong convergence theorems 89

for n ≥ 1. In view of (3.4), (3.8) and (3.13), we conclude that

lim sup
n→∞

‖T nyn − q − cn(Sxn − un)‖ ≤ d. (3.14)

On account of (3.10)–(3.12), (3.14) and Lemma 2.2, we see that

lim
n→∞ ‖Sxn − T nyn‖ =

= lim
n→∞ ‖[Sxn − q − cn(Sxn − un)] − [T nyn − q − cn(Sxn − un)]‖

= 0, (3.15)

which implies that
lim

n→∞ ‖xn − T nyn‖ = 0 (3.16)

by (3.7). Notice that

‖Sxn − xn‖ ≤ ‖Sxn − T nyn‖ + ‖xn − T nyn‖, ∀n ≥ 1.

Thus (3.15) and (3.16) mean that

lim
n→∞ ‖Sxn − xn‖ = 0. (3.17)

It is easy to verify that

‖xn − T nxn‖ ≤ ‖xn − T nyn‖ + kn‖yn − xn‖
≤ ‖xn − T nyn‖ + kn[a′

n‖Sxn − xn‖ + b′nkn‖zn − xn‖
+ b′n‖T nxn − xn‖ + c′nM ]

≤ ‖xn − T nyn‖ + kn(a′
n + knb′na′′

n)‖Sxn − xn‖
+ knb′n(1 + knb′′n)‖T nxn − xn‖ + kn(c′n + knb′nc′′n)M (3.18)

for n ≥ 1. Note that (3.9) implies that there exists a positive integerN satisfying
knb′n(1 + knb′′n) < 1 for n ≥ N . It follows from (3.18) that

‖xn − T nxn‖ ≤ 1
1 − knb′n(1 + knb′′n)

[‖xn − T nyn‖

+ kn(a′
n + knb′na′′

n)‖Sxn − xn‖ + kn(c′n + knb′nc′′n)M ] (3.19)

for n ≥ N . According to (3.8), (3.9), (3.16), (3.17) and (3.19), we conclude that

lim
n→∞ ‖xn − T nxn‖ = 0. (3.20)

In terms of (3.8), (3.17), (3.20) and Lemma 3.1, we get that

lim
n→∞ ‖xn − Txn‖ = 0.

This completes the proof. �
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Remark 3.3 Lemma 3.3 extends Lemma 3.3 in [6], Lemma 4 in [8] and Theo-
rem 1 in [9].

Theorem 3.1 Let E be a uniformly convex Banach space satisfying Opial’s
condition and K be a nonempty closed convex subset of E. Let S : K → K be
a nonexpansive mapping and T : K → K be an asymptotically nonexpansive
mapping with a sequence {kn} ⊆ [1,∞) such that limn→∞ kn = 1 and F (S, T ) �=
∅. If (3.4) and (3.7)–(3.10) hold, then the modified three-step iteration sequences
with errors {xn}n≥1 with respect to S and T defined by (2.1) converges weakly
to a common fixed point of S and T .

Proof It follows from Lemma 3.2 that {xn}n≥1 is bounded. Hence {xn}n≥1 has
a subsequence {xnj}j≥1, which converges weakly to p. Since {xnj}j≥1 ⊆ K and
K is weakly closed, it follows that p ∈ K. From Lemmas 3.3 and 2.1 we deduce
that I − T and I − S are demiclosed at zero. Hence (I − T )p = (I − S)p = 0.
That is, p ∈ F (S, T ). Suppose that {xn}n≥1 does not converge weakly to p .
Then there exists another subsequence {xmk

}k≥1 of {xn}n≥1 which converges
weakly to some q �= p. It is clear that q ∈ F (S, T ), limn→∞ ‖xn − p‖ and
limn→∞ ‖xn − q‖ exist. Let a = limn→∞ ‖xn − p‖, b = limn→∞ ‖xn − q‖.
Because E satisfies Opial’s condition, we obtain that

a = lim inf
j→∞

‖xnj − p‖ < lim inf
j→∞

‖xnj − q‖

= b = lim inf
k→∞

‖xmk
− q‖ < lim inf

k→∞
‖xmk

− p‖ = a,

which is a contradiction. Hence p = q and {xn}n≥1 converges weakly to p ∈
F (S, T ). This completes the proof. �

Lemma 3.4 Let K be a nonempty bounded closed convex subset of a normed
linear space E. Let S : K → K be a mapping and T : K → K be uniformly
L-Lipschitzian. Then

‖xn+1 − Txn+1‖ ≤ ‖xn+1 − T n+1xn+1‖ + L‖xn − T nxn‖
+ L(L + 1)[(1 + L + L2)(‖xn − T nxn‖ + ‖Sxn − xn‖)
+ cn‖un − Sxn‖ + Lbnc′n‖vn − Sxn‖
+ bnb′nc′′nL2‖wn − Sxn‖] (3.21)

for n ≥ 1,where {xn}n≥1 is defined by (2.1).

Proof Put

An = cn(un −Sxn), Bn = c′n(vn −Sxn), Cn = c′′n(wn −Sxn), ∀n ≥ 1. (3.22)

Then the sequence {xn}n≥1 defined by (2.1) can be rewritten as

zn = (1 − b′′n)Sxn + b′′nT nxn + Cn,

yn = (1 − b′n)Sxn + b′nT nzn + Bn, (3.23)

xn+1 = (1 − bn)Sxn + bnT nyn + An, ∀n ≥ 1.
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The rest of the proof is exactly the same as that of Lemma 3.1, and is omitted.
This completes the proof. �

Remark 3.4 Lemma 3.4 is an improvement of Lemma 3 in [1] and Lemma 1.2
in [9].

Lemma 3.5 Let K be a nonempty bounded closed convex subset of a real Ba-
nach space E. Let S : K → K be a nonexpansive mapping and T : K → K
be a uniformly L-Lipschitzian and asymptotically nonexpansive mapping with
a sequence {kn} ⊆ [1,∞) satisfying limn→∞ kn = 1, F (S, T ) �= ∅, (3.4) and
(3.7). Suppose that (3.8), (3.10) and

(1 + L lim sup
n→∞

b′′n) · lim sup
n→∞

b′n < L−1 (3.24)

hold. Then limn→∞ ‖Sxn − xn‖ = limn→∞ ‖xn −T nxn‖ = 0, where {xn}n≥1 is
defined by (2.1).

Proof Let {An}n≥1, {Bn}n≥1, {Cn}n≥1 be defined by (3.22) and q ∈ F (S, T ).
Note thatK is a nonempty bounded closed convex subset and {xn}n≥1, {yn}n≥1,
{zn}n≥1, {T nxn}n≥1, {T nyn}n≥1, {T nzn}n≥1, {Sxn}n≥1 are in K. Then there
exists r > 0 such that

K ∪ {xn − q, yn − q, zn − q, Sxn − q, Sxn − un, Sxn − vn, Sxn − wn,

Sxn − q + An, Sxn − q + Bn, Sxn − q + Cn, T nxn − q + An,

T nyn − q + Bn, T nzn − q + Cn, T nyn − q + An, T nyn − q + Cn}
⊂ B(θ, r)

for any n ≥ 1. From Lemma 2.3 we get that

‖Sxn − q + An‖2 ≤ ‖Sxn − q‖2 + 2〈An, j(Sxn − q + An)〉
≤ ‖xn − q‖2 + 2‖An‖ · ‖Sxn − q + An‖
≤ ‖xn − q‖2 + 2r‖An‖ (3.25)

for j(Sxn − q + An) ∈ J(Sxn − q + An) and n ≥ 1. Similarly we have

‖T nyn − q + An‖2 ≤ ‖T nyn − q‖2 + 2r‖An‖ ≤ k2
n‖yn − q‖2 + 2r‖An‖ (3.26)



92 Z. LIU, R. P. AGARWAL, C. FENG, S. M. KANG

for n ≥ 1. It follows from (3.25), (3.26) and Lemma 2.4 that

‖xn+1 − q‖2 = ‖(1 − bn)(Sxn − q + An) + bn(T nyn − q + An)‖2

≤ (1 − bn)‖Sxn − q + An‖2 + bn(T nyn − q + An)‖2

− w2(bn)g(‖Sxn − T nyn‖)
≤ (1 − bn)(‖xn − q‖2 + 2r‖An‖) + bn(‖T nyn − q‖2 + 2r‖An‖)

− bn(1 − bn)g(‖Sxn − T nyn‖)
= ‖xn − q‖2 + bn(‖T nyn − q‖2 − ‖yn − q‖2)

+ bn(‖yn − q‖2 − ‖xn − q‖2) + 2r‖An‖
− bn(1 − bn)g(‖Sxn − T nyn‖)

≤ ‖xn − q‖2 + bn(k2
n − 1)‖yn − q‖2 + bn(‖yn − q‖2 − ‖xn − q‖2)

+ 2r‖An‖ − bn(1 − bn)g(‖Sxn − T nyn‖) (3.27)

for n ≥ 1. Obviously we have

‖zn − q‖2 − ‖xn − q‖2

≤ (1 − b′′n)‖xn − q‖2 + b′′n‖T nxn − q‖2 − ‖xn − q‖2 + 2r‖Cn‖
≤ b′′n(k2

n − 1)‖xn − q‖2 + 2r‖Cn‖ (3.28)

and

‖yn − q‖2 − ‖xn − q‖2

≤ (1 − b′n)‖xn − q‖2 + b′n‖T nzn − q‖2 − ‖xn − q‖2 + 2r‖Bn‖
≤ b′n(k2

n − 1)‖zn − q‖2 + b′n(‖zn − q‖2 − ‖xn − q‖2) + 2r‖Bn‖ (3.29)

for n ≥ 1. Using (3.27)–(3.29) we obtain that

‖xn+1 − q‖2

≤ ‖xn − q‖2 + bn(k2
n − 1)‖yn − q‖2 + bnb′n(k2

n − 1)‖zn − q‖2

+ bnb′nb′′n(k2
n − 1)‖xn − q‖2 + 2rbnb′n‖Cn‖ + 2rbn‖Bn‖ + 2r‖An‖

− bn(1 − bn)g(‖Sxn − T nyn‖)
≤ ‖xn − q‖2 + bn(k2

n − 1)[‖yn − q‖2 + b′n‖zn − q‖2

+ b′nb′′n‖xn − q‖2] + 2r(bnb′n‖Cn‖ + bn‖Bn‖ + ‖An‖)
− bn(1 − bn)g(‖Sxn − T nyn‖) (3.30)

for n ≥ 1. Since {xn − q}n≥1, {yn − q}n≥1 and {zn − q}n≥1 belong to B(θ, r),
(3.10) and (3.30) ensure that

‖xn+1 − q‖2 ≤ ‖xn − q‖2 + 3r2(1 + sup{kn : n ≥ 1})(kn − 1)
+ 2r2(bnb′nc′′n + bnc′n + cn) − a(1 − b)g(‖Sxn − T nyn‖) (3.31)

for n ≥ 1. Therefore

a(1 − b)g(‖Sxn − T nyn‖) ≤ ‖xn − q‖2 − ‖xn+1 − q‖2

+ 3r2(1 + sup{kn : n ≥ 1})(kn − 1) + 2r2(bnb′nc′′n + bnc′n + cn)
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for n ≥ 1. This yields that

a(1 − b)
m∑

n=1

g(‖Sxn − T nyn‖) ≤ ‖x1 − q‖2

+ 3r2(1 + sup{kn : n ≥ 1})
m∑

n=1

(kn − 1) + 2r2
m∑

n=1

(bnb′nc′′n + bnc′n + cn)

for m ≥ 1. Letting m → ∞ in the above inequality, we derive that
∞∑

n=1

g(‖Sxn − T nyn‖) < ∞,

which implies that
lim

n→∞ g(‖Sxn − T nyn‖) = 0. (3.32)

Note that g : [0,∞) → [0,∞) is continuous and strictly increasing with g(0) = 0.
It follows from (3.32) that

lim
n→∞ ‖Sxn − T nyn‖ = 0. (3.33)

On account of (3.7) and (3.33), we know that

lim
n→∞ ‖xn − T nyn‖ = 0. (3.34)

It follows from (3.33) and (3.34)that

lim
n→∞ ‖Sxn − xn‖ = 0. (3.35)

By virtue of (3.23) we have

‖xn − yn‖
≤ ‖xn − T nyn‖ + ‖T nyn − yn‖
≤ ‖xn − T nyn‖ + (1 − b′n)‖Sxn − T nyn‖ + b′nL‖zn − yn‖ + c′nr

≤ ‖xn − T nyn‖ + (1 − b′n)‖Sxn − T nyn‖
+ b′nL(‖zn − xn‖ + ‖xn − yn‖) + c′nr

≤ ‖xn − T nyn‖ + (1 − b′n)‖Sxn − T nyn‖ + b′nL[(1 − b′′n)‖Sxn − xn‖
+ b′′n‖T nxn − xn‖ + c′′nr + ‖xn − yn‖] + c′nr (3.36)

for n ≥ 1. Notice that (3.24) ensures that there exists a positive integer M
satisfying

b′n < L−1 and (1 + Lb′′n)b′n < L−1 for n ≥ M. (3.37)

From (3.36) and (3.37), we conclude that

‖xn − yn‖ ≤ 1
1 − b′nL

[‖xn − T nyn‖ + ‖Sxn − T nyn‖ + b′nL(‖Sxn − xn‖

+ b′′n‖T nxn − xn‖ + rc′′n) + c′nr]
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and

‖T nxn − xn‖ ≤ ‖T nxn − T nyn‖ + ‖xn − T nyn‖ ≤ L‖xn − yn‖ + ‖xn − T nyn‖

≤ L · 1
1 − b′nL

{‖xn − T nyn‖ + ‖Sxn − T nyn‖

+ b′nL[‖Sxn − xn‖ + b′′n‖T nxn − xn‖ + rc′′n] + c′nr} + ‖xn − T nyn‖

for n ≥ M . Simplifying we get that

‖T nxn − xn‖ ≤ 1
1 − b′nL − b′nb′′nL2

[(L + 1)‖xn − T nyn‖ + L‖Sxn − T nyn‖

+ b′nL2‖Sxn − xn‖ + L(b′nLc′′n + c′n)r] (3.38)

for n ≥ M . It follows from (3.8), (3.10), (3.33)–(3.35) and (3.38) that

lim
n→∞ ‖T nxn − xn‖ = 0.

This completes the proof. �

Remark 3.5 Lemma 3.5 improves Lemma 4 in [1], Theorem 1 in [9] and Lemma
1.4 in [10].

Theorem 3.2 Let E be a real uniformly convex Banach space, K be a nonempty
bounded closed convex subset of E. Let S : K → K be a nonexpansive mapping
and T : K → K be a uniformly L-Lipschitzian and asymptotically nonexpansive
mapping with a sequence {kn} ⊆ [1,∞) satisfying limn→∞ kn = 1, F (S, T ) �= ∅,
(3.4) and (3.7). Suppose that (3.8), (3.10) and (3.24) hold. If T is semi-
compact, then the modified three-step iteration sequences with errors {xn}n≥1

with respect to S and T defined by (2.1) converges strongly to a common fixed
point of S and T .

Proof It follows from Lemmas 3.4 and 3.5 and (3.8) that limn→∞ ‖Txn−xn‖ =
0. Since T is semi-compact, there exists a subsequence {xni}i≥1 ⊂ {xn}n≥1 such
that xni → q ∈ K as i → ∞. By the continuity of S and T , (3.8) and Lemma
3.5, we conclude that

lim
i→∞

‖Txni − xni‖ = ‖q − Tq‖ = 0, lim
i→∞

‖Sxni − xni‖ = ‖q − Sq‖ = 0.

That is, q is a common fixed point of S and T in K. From (3.31) we know that

‖xn+1 − q‖2 ≤ ‖xn − q‖2 + 3r2(1 + sup{kn : n ≥ 1})(kn − 1)
+ 2r2(bnb′nc′′n + bnc′n + cn) (3.39)

for n ≥ 1. Then (3.4), (3.8), (3.39) and Lemma 2.5 guarantee that limn→∞ ‖xn−
q‖2 = 0. That is limn→∞ xn = q. This completes the proof. �
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Remark 3.6 Theorems 3.1 and 3.2 extend, improve and unify Theorems 1.1
and 1.2 in [1], Theorem 3.1 in [5], Theorems 1 and 2 in [7], Theorems 2 and 3
in [8], Theorem 1.5 in [9] and Theorems 2.1 and 2.2 in [10] and in the following
ways:

(1) the identity mapping in [1], [5], [7]–[10] is replaced by the more general
nonexpansive mapping.

(2) the usual modified Mann iteration methods in [10], the usual modified
Ishikawa iteration methods in [8] and [9], the usual modified Ishikawa iterations
methods with errors in [1] and [7] and the usual modified three-step iteration
methods with errors in [5] are extended to the modified three-step iteration
methods with errors with respect to a pair of mappings.

(3) the conditions (3.8) and (3.10) are weaker than the conditions limn→∞ bn = 0
and 0 < ε ≤ an ≤ 1 − ε, for all n ≥ 1, imposed on Theorems 1.1 and 1.2 in [1],
Theorem 1 in [7], Theorems 2 and 3 in [8] and Theorem 1.5 in [9].

Remark 3.7 We would like to point out that
∑∞

n=1(k
p
n − 1) < ∞ in [9] and∑∞

n=1(k
2
n − 1) < ∞ in [1] and [10] are equivalent to condition (3.4).

The following example shows that Theorems 3.1 and 3.2 extend substantially
the corresponding results in [1], [5] and [7]–[10].

Example 3.1 Let E be the real line with the usual norm | · | and let K = [0, 1].
Define S and T : K → K by

Tx =
{

− sinx, x ∈ [0, 1],
sin x, x ∈ [−1, 0) and Sx =

{
x, x ∈ [0, 1],

−x, x ∈ [−1, 0)

for x ∈ K. Obviously F (S, T ) = {0} and T is semi-compact. Now we check
that T is nonexpansive. In fact, if x and y ∈ [0, 1] or x and y ∈ [−1, 0), then
|Tx − Ty| = | sinx − sin y| ≤ |x − y|; if x ∈ [0, 1] and y ∈ [−1, 0) or x ∈ [−1, 0)
and y ∈ [0, 1], then

|Tx − Ty| = | sin x + sin y| = 2
∣∣∣∣ sin x + y

2
cos

x − y

2

∣∣∣∣ ≤ |x + y| ≤ |x − y|.

That is, T is nonexpansive. Similarly we can verify that S is nonexpansive.
Thus S is uniformly 1-Lispchitzian and asymptotically nonexpansive. In order
to show that S and T satisfy (3.7), we have to consider the following cases:
Case 1. Suppose that x and y ∈ [0, 1]. It follows that

|x − Ty| = |x + sin y| = |Sx − Ty|;

Case 2. Suppose that x and y ∈ [−1, 0) Then we easily see that

|x − Ty| = |x − sin y| ≤ | − x − sin y| = |Sx − Ty|;

Case 3. Suppose that x ∈ [−1, 0) and y ∈ [0, 1]. It is easy to verify that

|x − Ty| = |x + sin y| ≤ | − x + sin y| = |Sx − Ty|;
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Case 4. Suppose that x ∈ [0, 1] and y ∈ [−1, 0). It follows that

|x − Ty| = |x − sin y| = |Sx − Ty|.
Hence (3.7) is satisfied. Suppose that {un}n≥1, {vn}n≥1 and {wn}n≥1 are arbi-
trary sequences in K,

a =
3
5
, b =

6
7
, an =

2
5

− 1
3n + 2

− 1
6n2

,

a′
2n = 1 − 1

3n
− 1

2n2 + 3,
a′
2n−1 =

1
2

− 1
3n + 2

− 1
2n2 + 3

,

bn =
3
5

+
1

3n + 2,
b′2n =

1
3n

, b′2n−1 =
1

3n + 2
+

1
2
,

cn =
1

6n2
, c′2n = c′2n−1 =

1
2n2 + 3

,

a′′
n =

3
7

+
1

12n
, b′′n =

4
7

− 1
12n

− 1
4n2

, c′′n =
1

4n2

for n ≥ 1. Thus the conditions of Theorems 3.1 and 3.2 are fulfilled. Hence
Theorems 3.1 and 3.2 guarantee that the modified Ishikawa iteration sequences
with errors {xn}n≥1 with respect to S and T defined by (2.1) converges both
strongly and weakly to 0, respectively. But the results in [1], [5] and [7]–[10] are
not applicable.
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Abstract

The paper deals with the quasi-linear ordinary differential equation
(r(t)ϕ(u′))′ + g(t, u) = 0 with t ∈ [0,∞). We treat the case when g
is not necessarily monotone in its second argument and assume usual
conditions on r(t) and ϕ(u). We find necessary and sufficient conditions
for the existence of unbounded non-oscillatory solutions. By means of a
fixed point technique we investigate their growth, proving the coexistence
of solutions with different asymptotic behaviors. The results generalize
previous ones due to Elbert–Kusano, [Acta Math. Hung. 1990]. In some
special cases we are able to show the exact asymptotic growth of these
solutions. We apply previous analysis for studying the non-oscillatory
problem associated to the equation when ϕ(u) = u. Several examples are
included.
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1 Introduction

The paper deals with the quasi-linear ordinary differential equation

(r(t)ϕ(u′))′ + g(t, u) = 0 on [0, +∞) (1)

under the following assumptions concerning r, ϕ and g

r ∈ C[0, +∞), r(t) > 0 for t ∈ [0, +∞);

ϕ ∈ C(R), strictly increasing, surjective, vϕ(v) > 0 for v �= 0;∫∞
0 ϕ−1( k

r(s) ) ds = ∞ for k �= 0;

g(t, u) ∈ C([0, +∞) × R) with ug(t, u) > 0 for u �= 0 and t ≥ 0.

(2)

As usual by solution we shall mean a continuously differentiable function u
such that r(t)ϕ(u′) has a continuous derivative satisfying (1). We recall that
a solution of (1) is said to be oscillatory if it has an infinite sequence of zeros
clustering at ∞, non-oscillatory otherwise. The oscillatory and non-oscillatory
behavior of equation (1) is of special interest. On this purpose, it is important
to find necessary and/or sufficient conditions for the existence of solutions with
a prescribed asymptotic behavior. The following lemma gives the classification
of all possible non-oscillatory solutions of (1) according to their asymptotic
behavior. The result is due to Elbert–Kusano (see [6, Lemma 1]) and since its
proof does not depend on the monotonicity of g(t, ·), which is assumed in [6], it
is also valid in this more general context.

Lemma 1 [6, Lemma 1] Any non-oscillatory solution u(t) of (1) is of one of
the following types:

I) lim
t→∞ |u(t)| = ∞ and lim

t→∞ r(t)ϕ(u′(t)) = const �= 0.

II) lim
t→∞ |u(t)| = ∞ and lim

t→∞ r(t)ϕ(u′(t)) = 0.

III) lim
t→∞u(t) = const �= 0 and lim

t→∞ r(t)ϕ(u′(t)) = 0.

In Sections 2 and 3 we obtain sufficient and sometimes also necessary con-
ditions for the existence of an unbounded non-oscillatory solution respectively
of type I and II (see Theorems 1, 2 and 3). In Section 3 in some special cases,
we also discuss the coexistence of type I and II solutions and prove the exact
asymptotic behavior of a type II solution (see Proposition 2). Our main in-
vestigation technique combine a linearization device with Schauder–Tychonoff
fixed point theorem. We compare our results with previous ones, in particular
with those in [6] and furnish several examples. Finally, Section 4 deals with the
special case

(r(t)u′)′ + g(t, u) = 0, t ∈ [0,∞) (3)

occurring when ϕ(u) = u. Applying previous analysis we discuss the non-
oscillatory properties of (3).
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Equation (1) arises in several applications. We quote, as an example, the
important study of the polar form of the semi-linear elliptic partial differential
equation div(|Du|α−2Du) + q(t)f(u) = 0. When f(u) = |u|γ−1u, this reduces
to the investigation of (|u′|α−1u′)′ + q(t)|u|γ−1u = 0, including the half-linear
equation (α = γ) and the generalized Emden–Fowler equation (α = 1, q(t) =
(t + 1)−m). Therefore, a wide literature is available, concerning the existence
and the asymptotic behavior of the solutions of (1) as well as their oscillatory
properties. See e.g. [1]–[4], [6]–[11], and references therein contained. However,
most of the quoted papers deals with the case when g(t, u) = q(t)f(u) and very
often it is assumed f(u) = |u|γ−1u for some γ > 0. In addition, also when
g(t, u) has not separable variables, as in [6] and [10], g(t, ·) is always increasing.
The main purpose of this paper is to investigate these matters in the case when
g is not necessarily monotone in its second argument. More precisely, we often
assume the existence of a constant L > 0 such that

|g(t, v)| ≤ L|g(t, u)| for u ∈ R, v ∈ [min{0, u}, max{0, u}] and t ≥ 0. (4)

Remark 1 Condition (4) states that g(t,±u) give, for each t and u, an upper
and a lower bound for the oscillations of g(t, ·) in the interval [−u, u]. A typical
situation occurs when

l1|h(t, u)| ≤ |g(t, u)| ≤ l2|h(t, u)| for (t, u) ∈ [0,∞) × R

for some positive constants l1 and l2, and h(t, u) ∈ C([0,∞) × R), with h(t, ·)
increasing for t ∈ [0,∞) and uh(t, u) > 0 for u �= 0. Indeed

|g(t, v)| ≤ l2|h(t, v)| ≤ l2|h(t, u)| ≤ l2
l1
|g(t, u)| for v ∈ [min{0, u}, max{0, u}],

that is (4) holds with L = l2
l1
. In particular, every g increasing in its second

argument satisfies (4) with L = 1.

Concerning ϕ, mainly investigated in previous papers is the case when
ϕ(u) = |u|γ−1u for some positive α. Under this condition, (4) can be replaced
by the weaker assumption (17) simply involving the asymptotic behavior of g.
This is possible, in particular, when studying equation (3) where α = 1.

2 Unbounded solutions of type I

This section deals with the existence of non-oscillatory type I unbounded solu-
tions of equation (1). A related result on this topic is due to Elbert and Kusano
[6] and it treats the case when g(t, ·) is increasing in R, for all t ∈ [0,∞).
Assuming for k �= 0

lim
h→0
hk>0

∫ t

0
ϕ−1
(

h
r(s)

)
ds∫ t

0 ϕ−1
(

k
r(s)

)
ds

= 0 (5)

uniformly in [t0,∞) for any t0 > 0, they proved that the existence of constants
k �= 0 and c > 0 satisfying∫ ∞

0

∣∣∣g(t, c
∫ t

0

ϕ−1
( k

r(s)

)
ds
∣∣∣ dt < ∞ (6)
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is a necessary and sufficient condition for the appearance of type I solutions.
Condition (7) in [6] is indeed slightly different from (5), but one can easily
see that they are equivalent. Theorem 1 is a generalization of [6, Theorem 1]
since it shows that (6) is a necessary and sufficient condition for the existence
of unbounded type I solutions also when g satisfies (4). On this purpose the
following lemma is needed, explaining the role of assumption (5) (see also the
discussion after the proof of Theorem 1).

Lemma 2 Assume (4) and (5). Then (6), for some constants k �= 0 and c > 0,
is equivalent to ∫ ∞

0

∣∣∣∣∣ g
(

t,

∫ t

0

ϕ−1

(
h

r(s)

)
ds

)∣∣∣∣∣ dt < ∞ (7)

for some h �= 0.

Proof Trivially (7) yields (6) with c = 1. On the other hand, if (6) holds for
some k �= 0 and c > 0, then according to (5), we get the existence of h, with
hk > 0, |h| ≤ |k|, and t0 > 0 such that∣∣∣∣∫ t

0

ϕ−1

(
h

r(s)

)
ds

∣∣∣∣ ≤ c

∣∣∣∣∫ t

0

ϕ−1

(
k

r(s)

)
ds

∣∣∣∣
for each t ≥ t0 and (4) implies (7). �

Theorem 1 Assume conditions (4) and (5). Then equation (1) has a non-
oscillatory solution of type I if and only if (6) holds for some k �= 0 and c > 0.

Proof Necessary condition. Let u(t) be a type I solution of equation (1), with

lim
t→∞ r(t)ϕ(u′(t)) = C �= 0.

Take, in particular C > 0, implying u(t) eventually positive; with a similar
reasoning the case of an eventually negative u(t) can be treated. Hence it is
possible to find δ > 0 and t0 ≥ 0 such that, for t ≥ t0, u(t) > 0 and

u′(t) > ϕ−1

(
C − δ

r(t)

)
> 0.

Given a sufficiently small c ∈ (0, 1] such that u(t0) ≥ c
∫ t0
0 ϕ−1(C−δ

r(s) ) ds, we get,
for all t ≥ t0,

0 ≤ c

∫ t

0

ϕ−1
(C − δ

r(s)

)
ds ≤ u(t).

Then, according to (4), it holds

g
(
t, c

∫ t

0

ϕ−1
(C − δ

r(s)

)
ds
)

≤ Lg(t, u(t)),
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and being ∫ ∞

0

g(t, u(t))dt = r(0)ϕ(u′(0)) − C,

condition (6) holds.

Sufficient condition. Let (6) holds for some constants k �= 0 and c > 0. Then,
according to Lemma 2, (7) is valid for some h �= 0 with hk > 0. With no loss of
generality we can assume k > 0, so also h > 0 and the absolute value in (7) can
be removed. Given l ∈ (0, h), in view of the monotonicity of ϕ, applying (4) we
obtain ∫ ∞

0

maxR
t
0 ϕ−1( l

r(s) )ds≤u≤R
t
0 ϕ−1( h

r(s) ) ds
g(t, u) dt

≤ L

∫ ∞

0

g

(
t,

∫ t

0

ϕ−1
( h

r(s)

)
ds

)
dt < ∞

so we can take t0 > 0 such that∫ ∞

t0

maxR
t
0 ϕ−1( l

r(s) )ds≤u≤R
t
0 ϕ−1( h

r(s) ) ds
g(t, u) dt ≤ h − l. (8)

Let C[t0,∞) be the Fréchet space of all continuous functions x : [t0,∞) → R

with the topology of the uniform convergence on compact subintervals of [t0,∞).
Let Ω be the closed, convex and bounded subset of C[t0,∞) defined as

Ω =
{

w ∈ C[t0,∞) :
∫ t

0

ϕ−1
( l

r(s)

)
ds ≤ w(t) ≤ λ +

∫ t

t0

ϕ−1
( h

r(s)

)
ds, ∀t ≥ t0

}
,

where λ =
∫ t0
0

ϕ−1( l
r(s) ) ds. For every w ∈ Ω, consider the Cauchy problem

(r(t)ϕ(u′))′ + g(t, w) = 0,

u(t0) = λ, u′(t0) = ϕ−1
(

h
r(t0)

)
.

(9)

Since (9) is uniquely solvable, we can define the operator

T : Ω → C[t0,∞)

w → T (w)(t) = λ +
∫ t

t0

ϕ−1

(
h −
∫ s

t0
g(η, w(η))dη

r(s)

)
ds

which associates to any w ∈ Ω the unique solution T (w) of problem (9). Now
we use the Schauder–Tychonoff fixed point theorem to prove that T has a fixed
point. First we show that T (Ω) ⊆ Ω. In fact, according to the monotonicity of
ϕ and the sign condition (2) on g, one has

T (w)(t) ≤ λ +
∫ t

t0

ϕ−1

(
h

r(s)

)
ds for all t ≥ t0.
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On the other hand (8) implies

T (w)(t) ≥
∫ t

0

ϕ−1

(
l

r(s)

)
ds for any t ≥ t0. (10)

Now we prove the continuity of T . Let {wn} be a sequence of functions of Ω
converging to w, in the topology of C[t0,∞), as n → ∞. The continuity of g and
ϕ, the Lebesgue dominated convergence theorem and (8) imply that T (wn) →
T (w) in C[t0,∞) as n → ∞. It remains to prove the relative compactness of T .
First notice that T (Ω) ⊆ Ω, which is bounded in C[t0,∞). Moreover

(T (w))′(t) = ϕ−1

(
h −
∫ t

t0
g(η, w(η))dη

r(t)

)
;

thus, in view of the positivity of g and (8), we get

ϕ−1

(
l

r(t)

)
≤ (T (w))′(t) ≤ ϕ−1

(
h

r(t)

)
(11)

for every t ≥ t0 and every w ∈ Ω. Therefore, the functions in Ω are equi-
continuous at each t ≥ t0 and Ascoli–Arzelá theorem implies the relative com-
pactness of T . Hence Schauder–Tychonoff theorem can be applied; it guarantees
the existence of a function u ∈ Ω which remains fixed in T , e.g. of a solution of
(1) which is unbounded, in view of (10) and (2). Moreover, from (11) and the
monotonicity of ϕ, u satisfies

lim
t→+∞ r(t)ϕ(u′(t)) = C ∈ [l, h]. �

Looking at the proof of Theorem 1, it is clear that (6) is a very natural
necessary condition for the existence of type I non-oscillatory solutions of (1).
It also follows that (7) is a quite obvious sufficient condition, when employing
a fixed point technique for the investigation of type I solutions. As showed in
Lemma 2, whenever g satisfies (4) then assumptions (6) and (7) are equivalent,
under condition (5). This is the only reason why we introduced (5).

Remark 2 Several results in this framework (see e.g. [5] and [9]) deal with the
case when ϕ(v) = v|v|α−1 for some α > 0. Notice that, for such ϕ, condition
(5) is trivially fulfilled; indeed ϕ−1(v) = v|v| 1

α−1, hence

lim
h→0
hk>0

∫ t

0 ϕ−1
(

h
r(s)

)
ds∫ t

0
ϕ−1
(

k
r(s)

)
ds

= lim
h→0
hk>0

(
h

k

) 1
α

= 0

and it is uniform on [0,∞), for all k �= 0. Moreover it is easy to see that (6)
yields (7) with h = cαk. Therefore, (6) and (7) are always equivalent without
any additional requirement on g.
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Other results (see e.g. [7, 8, 10, 12]) concern the case when r(t) ≡ 1. Also
under this condition (5) is satisfied, because

lim
h→0
hk>0

∫ t

0
ϕ−1
(

h
r(s)

)
ds∫ t

0 ϕ−1
(

k
r(s)

)
ds

= lim
h→0
hk>0

ϕ−1(h)
ϕ−1(k)

= 0

uniformly on [0,∞), for all k �= 0.

In the following example we propose a pair of functions (ϕ(u), r(t)) which
does not satisfy condition (5).

Example 1 Let ϕ(u) = (e|u| − 1)sgnu and r ∈ C1[0,∞) such that r(t) > 0
for all t and r(t) → 0 as t → ∞. Being ϕ−1(v) = log(1 + |v|)sgnv, all the
assumptions in (2) concerning ϕ(u) and r(t) hold. Moreover, it is easy to see
that

lim
t→∞

∫ t

0
log
(
1 + |h|

r(s)

)
ds∫ t

0 log
(
1 + |k|

r(s)

)
ds

= 1

for every choice of h and k with hk > 0 and this prevent to condition (5) to be
satisfied.

Example 2 Consider the following equation(u′|u′|α−1

(1 + t)β

)′
+ q(t)u|u|γ−1(a + b sin2 |u|) = 0, (12)

with α, γ, a > 0, β ∈ R and b ≥ 0. Since, for any k �= 0,

ϕ−1
( k

r(t)

)
= k|k| 1

α−1(1 + t)β/α

we assume β ≥ −α for guaranteeing condition (2). In this case, for (t, u) ∈
[0,∞) × R, it holds aq(t)|u|γ ≤ |g(t, u)| ≤ (a + b)q(t)|u|γ . Thus, in view of
Remark 1, (4) is satisfied, taking L = 1 + b

a . Moreover (6) is equivalent to

the convergence of
∫∞
0

q(t)
[
(1 + t)

β
α +1 − 1

]γ
dt. Therefore, according to Theo-

rem 1, the existence of a non-oscillatory unbounded solution of equation (12) is
equivalent to the following condition∫ ∞

0

q(t)t(
β
α +1)γ dt < ∞. (13)

A special case occurs when α, a = 1, β, b = 0 and q(t) = (1+ t)−m for some real
m. Indeed (12) reduces to the well known generalized Emden–Fowler equation

u′′ +
1

(1 + t)m
u|u|γ−1 = 0. (14)

We shall treat again equations (12) and (14) in the end of next sections.
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Looking at the proof of Theorem 1, it is easy to deduce that the following
stronger sufficient condition (15) is valid, for the existence of a non-oscillatory
type I solution. Condition (15) does not require any assumption on ϕ or g, but
it is equivalent to (6) when assuming (4) and (5). The following result holds;
we omit its proof, since it is very similar to the sufficient part of Theorem 1.

Proposition 1 Assume there exists h < k with hk > 0 such that∫ ∞

0

∣∣∣∣∣ maxR
t
0 ϕ−1( h

r(s) )ds≤u≤R
t
0 ϕ−1( k

r(s) ) ds
g(t, u)

∣∣∣∣∣ dt < ∞. (15)

Then equation (1) has a non-oscillatory solution of type I.

Example 3 Consider the equation

(r(t)u′(t))′ +
eu

2+u4 sin2 u

(1 + t)2
signu = 0, (16)

where r(t) satisfies conditions (2) and it is such that
∫ t

0
1

r(s) ds goes to ∞, when
t → ∞, as (loglog t)µ for some 0 < µ < 1/4. Given t ≥ 0 and an arbitrary value
l ∈ (0, 1), it is easy to see that

lim sup
u→∞

g(t, lu)
g(t, u)

= lim sup
n→∞

en
2π2(l2−1+n2π2l4 sin2 nπl) = ∞.

Therefore condition (4) is not valid and Theorem 1 can not be applied. Take
β > 0 and T > 0 satisfying∫ t

0

1
r(s)

ds ≤ β(log log t)µ for all t ≥ T.

Given p �= 0, t ≥ T and 0 ≤ u ≤ |p|
∫ t

0
1

r(s) ds it holds

0 ≤ |g(t, u)| ≤ e1+2u4

(1 + t)2
≤ e (log t)2β4|p|4

(1 + t)2
;

this implies (15). According to Proposition 1, also equation (16) has a non-
oscillatory solution of type I.

We now consider the special case when ϕ is a power and prove that not only
(5) can be omitted, as showed in Remark 2, but that also (4) can be weakened
to an assumption on the asymptotic behavior of g.

Theorem 2 let ϕ(v) = v|v|α−1 for some α > 0. Assume the existence of L ≥ 0
and m ∈ (0, 1) such that

lim sup
t,|u|→∞

g(t, v)
g(t, u)

= L (17)

for all v ∈ [min{mu, u}, max{mu, u}]. Then equation (1) has a non-oscillatory
solution of type I if and only if (6) holds for some k �= 0 and c > 0.
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Proof Necessary condition. We do not lose in generality when assuming the
existence of an eventually positive type I solution of equation (1), i.e. with
lim

t→∞ r(t)(u′(t))α = C > 0. Applying L’Hospital rule we get

lim
t→∞

u(t)∫ t

0

(
1

r(s)

) 1
α ds

= C
1
α .

Take δ > 0 such that C
1
α −δ

C
1
α +δ

= m and t0 ≥ 0 satisfying

(C
1
α − δ)

∫ t

0

(
1

r(s)

) 1
α

ds ≤ u(t) ≤ (C
1
α + δ)

∫ t

0

(
1

r(s)

) 1
α

ds,

for all t ≥ t0, that is

mu(t) ≤ (C
1
α − δ)

∫ t

0

(
1

r(s)

) 1
α

ds ≤ u(t).

Then, according to (17), there exists t1 ≥ t0 such that, for t ≥ t1, it holds

g
(
t, (C

1
α − δ)

∫ t

0

(
1

r(s)

) 1
α

ds
)

≤ 2Lg(t, u(t)),

and the conclusion follows as in the proof of Theorem 1.

Sufficient condition. According to Remark 2, (6) implies (7) with h = cαk. For
the sake of simplicity let us assume k > 0. A similar reasoning holds when
k < 0. According to (17) and the divergence of

∫∞
0

( 1
r(t))

1
α dt, it is then possible

to find t0 ≥ 0 such that, for all t ≥ t0 and

v ∈
[
mk

1
α

∫ t

0

( 1
r(s)

) 1
α

ds, k
1
α

∫ t

0

( 1
r(s)

) 1
α

ds

]
,

it holds

0 ≤ g(t, v) ≤ 2Lg

(
t, k

1
α

∫ t

0

(
1

r(s)

) 1
α

ds

)
.

Therefore ∫ ∞

0

max
mk

1
α

R t
0 ( 1

r(s) )
1
α ds≤u≤k

1
α

R t
0 ( 1

r(s) )
1
α ds

g(t, u) dt < ∞,

and the conclusion follows from Proposition 1. �
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3 Unbounded solutions of type II

We investigate now the existence of type II unbounded solutions u(t) of equation
(1), i.e. such that limt→∞ |u(t)| = ∞ and limt→∞ r(t)ϕ(u′(t)) = 0. Theorem 3
gives a sufficient condition. In the special case (12) we then discuss, in Propo-
sition 2, the existence of a type II solution with prescribed behavior at infinity.

Theorem 3 Assume condition (4) and let (7) hold for some h �= 0. If∫ ∞

0

∣∣∣∣ϕ−1

(
1

Lr(t)

∫ ∞

t

g(s, d) ds

)∣∣∣∣ dt = ∞, (18)

for all d satisfying dh > 0, then equation (1) has a non-oscillatory solution of
type II.

Proof Notice that, with no loss of generality we can assume h > 0, implying
that also the value d appearing in (18) must be positive. According to (7), it is
possible to find t0 ≥ 0 such that∫ ∞

t0

g
(
t,

∫ t

0

ϕ−1
( h

r(s)

)
ds
)

dt ≤ h

L
.

Let us denote d =
∫ t0
0 ϕ−1

(
h

r(s)

)
ds. As a consequence of (4) and (7) it follows

∫ ∞

t0

max
d≤u≤R t

0 ϕ−1( h
r(s) ) ds

g(t, u) dt ≤ L

∫ ∞

t0

g

(
t,

∫ t

0

ϕ−1

(
h

r(s)

)
ds

)
dt ≤ h. (19)

Given the usual Fréchet space of continuous functions C[t0,∞), let Ω be its
closed, convex and bounded subset defined as follows

Ω =
{
w ∈ C[t0, +∞) : d ≤ w(t) ≤

∫ t

0

ϕ−1

(
h

r(s)

)
ds, ∀t ≥ t0

}
.

Since for every w ∈ Ω,
∫∞

t0
g(s, w(s)) ds < ∞, it is possible to define the operator

T : Ω → C[t0,∞)

w → T (w)(t) = d +
∫ t

t0

ϕ−1

(∫∞
s g(η, w(η))dη

r(s)

)
ds

associating to w the unique solution of the Cauchy problem

(r(t)ϕ(u′))′ + g(t, w) = 0,

u(t0) = d, u′(t0) = ϕ−1

( R ∞
t0

g(s,w(s)) ds

r(t0)

)
.

(20)

The monotonicity of ϕ, the sign condition on g and (19) easily yield that T (Ω) ⊆
Ω. Applying the Schauder–Tychonoff theorem as in the proof of Theorem 1, one
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can see that T has a fixed element u(t), which is a solution of (1). Moreover,
since u(t) ≥ d for all t ≥ t0, according to (4) and the definition of T (u) it follows

u(t) ≥ d +
∫ t

t0

ϕ−1

(
1

Lr(s)

∫ ∞

s

g(η, d)dη

)
ds;

hence condition (18) implies u(t) → ∞ as t → ∞. Finally, since u(t) solves the
Cauchy problem (20), it holds

r(t)ϕ
(
u′(t)
)

=
∫ ∞

t

g
(
s, u(s)

)
ds

and by (7) we obtain r(t)ϕ
(
u′(t)
)

→ 0 as t → ∞. Consequently u(t) is a type
II non-oscillatory solution of equation (1) and the proof is complete. �

Remark 3 In [6, Theorem 3], the case when g(t, ·) is increasing for each t ≥ 0
was studied. Assuming conditions (5), (6) and the natural reformulation of
(18) in this context, i.e. with L = 1, the authors proved the existence of a
type II unbounded solution of equation (1). We recall that condition (5) was
introduced only to assure the equivalence between the necessary condition (6)
and the sufficient condition (7) (see Lemma 2). However, since we are interested
only in the sufficient condition, we don’t need any assumption on ϕ and we
directly assumed (7) instead of (6). Therefore, Theorem 3 is a generalization of
the quoted result in [6], since it deals with a more general function g and does
not require (5). In particular, Theorem 3 holds when ϕ(u) and r(t) behave as
in Example 1.

The following part of this section is mainly devoted to equation (12), e.g.(u′|u′|α−1

(1 + t)β

)′
+ q(t)u|u|γ−1(a + b sin2 |u|) = 0,

with α, γ, a > 0, β ≥ −α and b ≥ 0. In this case, condition (18) reduces to∫ ∞

0

(∫ ∞

t

q(s)ds

) 1
α

t
β
α dt = +∞. (21)

When q(t) = 1
(1+t)m , where m is an arbitrary constant, (13) holds if and only if

m > 1 + (1 + β
α )γ and (21) is satisfied if and only if m ≤ α + β + 1. Notice that

this implies that assumptions (7) and (18) are not always consistent, as follows
when γ ≥ α. On the contrary, when 0 < γ < α and 1+(1+ β

α )γ < m ≤ 1+α+β
both a type I and a type II unbounded solution exist. When α, a = 1, β, b = 0,
(12) reduces to the well known generalized Emden–Fowler equation (14). We
recall that its possible solutions of type I are asymptotically linear functions,
while the possible solutions of type II are asymptotically sub-linear functions.
As a consequence of the analysis above conditions 0 < γ < 1, 1 + γ < m ≤ 2
are sufficient for the contemporary presence, in equation (14), of a linear and a
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sub-linear unbounded solution. We stress that, while condition (6) is necessary
for the existence of an unbounded type I solution of (1), neither (7) nor (18)
are necessary for the existence of an unbounded type II solution of the same
equation. In fact, consider the generalized Emden–Fowler equation with m =
5/2 and γ = 2. Then

∫∞
0 q(t)t2dt = ∞ and

∫∞
0 q(t)t dt < ∞ implying that both

(7) and (18) are not satisfied; however this equation has the sub-linear solution

u(t) =
√

t+1
4 .

The following proposition shows that it is possible to determine the exact
asymptotic behavior of a type II non-oscillatory solution. In order to simplify
notation, we restrict our discussion to equation (12), though a similar investi-
gation could be repeated for the general equation (1).

Proposition 2 Consider equation (12) with α, a > 0, 0 < γ < α, β > −α, and
b ≥ 0. Given σ ∈ (0, 1 + β

α ), assume that∫ ∞

0

q(t)tσγdt < ∞ (22)

and

t1+
β
α−σ
(∫ ∞

t

q(s)sσγds
) 1

α → ∆ > 0 as t → ∞. (23)

Then equation (12) admits a non-oscillatory solution of type II going at infinity
like tσ when t → ∞.

Proof Let us introduce a continuous function ϑ0 : [0,∞) → R satisfying
ϑ0(t) = t for t ∈ [0, 1], ϑ0(t) = tσ when t ≥ 2 and ϑ0(t) > 0 for all t �= 0.
According to (22), it holds ∫ ∞

0

q(t)ϑγ
0 (t) dt < ∞;

hence it is possible to define, for t ≥ 0, the function

ψ(t) =
∫ t

0

(1 + s)
β
α

(∫ ∞

s

q(η)ϑγ
0 (η)dη

) 1
α

ds.

As a consequence of (23), it follows, as t → ∞

t1−σ(1 + t)
β
α

(∫ ∞

s

q(s)ϑγ
0 (s)ds

) 1
α → ∆,

implying ψ(t) → ∞, because σ > 0, and

lim
t→∞

ψ(t)
ϑ0(t)

= lim
t→∞

t1−σ(1 + t)
β
α

(∫∞
t

q(s)sσγds
) 1

α

σ
=

∆
σ

.

Moreover it holds

lim
t→0+

ψ(t)
ϑ0(t)

=
(∫ ∞

0

q(s)ϑγ
0 (s)ds

) 1
α

> 0.
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We can then determine two positive constants 0 < m1 < m2 such thatm1ϑ0(t) ≤
ψ(t) ≤ m2ϑ0(t) for all t ≥ 0. Let

d = m
α

α−γ

2 (a + b)
1

α−γ , δ =
a

1
α−γ m

α
α−γ

1

d

and put ϑ(t) = dϑ0(t). Since d > 0 and 0 < δ < 1, we can then introduce the
closed, convex and bounded set of functions Ω = {w ∈ C[0,∞) : δϑ(t) ≤ w(t) ≤
ϑ(t), t ≥ 0}. According to (22) the operator

T : Ω → C[t0,∞)

w → T (w)(t) =
∫ t

0

(1 + s)
β
α

(∫ ∞

s

q(η)wγ(η)(a + b sin2 w(η))dη
) 1

α

ds

is well defined. Now we show that T (Ω) ⊆ Ω. In fact, given w ∈ Ω, we have

T (w)(t) ≤ (a + b)
1
α d

γ
α ψ(t) ≤ (a + b)

1
α d

γ
α−1m2ϑ(t).

Due to the definition of d it holds (a+b)
1
α d

γ
α−1m2 = 1, implying T (w)(t) ≤ ϑ(t)

for all t ≥ 0. Moreover, since a
1
α d

γ
α−1m1δ

γ
α−1 = 1, we get

T (w)(t) ≥ δ
γ
α a

1
α d

γ
α ψ(t) ≥ a

1
α d

γ
α−1m1δ

γ
α−1δϑ(t) = δϑ(t).

Hence T (Ω) ⊆ Ω.
As in the proof of Theorem 1, one can apply Schauder–Tychonoff theorem

to T in order to show that it has a fixed element u(t); then it is easy to see that
u(t) is a solution of equation (12). Finally, according to the definition of the set
Ω, u(t) is a type II unbounded solution of (12) satisfying u(t)

tσ → l ∈ [dδ, d] as
t → ∞. �

Notice that, since σ ∈ (0, 1 + β
α ), (13) implies (22). Consider again q(t) =

(1+ t)−m. As already showed, equation (12) with 0 < γ < α and 1+(1+ β
α )γ <

m ≤ 1 + α + β has both a type I and a type II solution. Moreover, take
σ = α+β+1−m

α−γ . Then σ ∈ (0, 1 + β
α ) and this implies m − σγ > 1. Therefore,

according to Proposition 2, (12) has a type II solution with asymptotic growth
tσ at infinity. In particular, the generalized Emden–Fowler equation (14), with
0 < γ < 1 and 1 + γ < m < 2, contemporarily admits a linear and a sub-linear
unbounded solution and the latter one is asymptotic to t

2−m
1−γ .

4 Non-oscillatory theorems

In this section we restrict our attention to equation (3), obtained by (1) when
assuming ϕ(u) = u. Concerning (3), we state a non-existence result of bounded
oscillatory solutions and a non-oscillatory result. Both these problems were
extensively investigated and also recent contributions appeared. We refer, in
particular, to [3], [5], [10] and [12]. Nevertheless they all treat the cases when
g(t, ·) is monotone or g(t, u) = q(t)f(u) often assuming f(u) = |u|γ−1u for some
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γ > 1. Instead, in Theorems 4 and 5, g(t, u) simply satisfies condition (17),
hence no monotonicity is required on it. First notice that now conditions (6)
and (7) are equivalent (see Remark 2) and they become∫ ∞

0

∣∣∣∣ g(t, k

∫ t

0

1
r(s)

ds

)∣∣∣∣ dt < ∞ (24)

with k �= 0.

Theorem 4 Assume condition (24) for some k > 0 and let (17) hold. Suppose
further that for each v > 0 there exist V ≥ v and T ≥ 0 satisfying

sup
u∈[0,v]

g(t, u)
u

≤ inf
u≥V

g(t, u)
u

(25)

for each t ∈ [T,∞). Then equation (3) has no bounded oscillatory solutions.

Proof Let y(t) be an oscillatory solution of (3) and suppose that there exists
t0 ≥ 0 such that y(t) ≤ 0 for all t ≥ t0. Take t̄ ≥ t0 satisfying y(t̄) = 0; then
also y′(t̄) = 0 and integrating twice (3) in [t̄, t], by (2) we obtain

y(t) = −
∫ t

t̄

1
r(s)

∫ s

t̄

g
(
σ, y(σ)

)
dσ ds > 0, for all t > t̄

in contradiction with the sign of y(t). Hence y(t) has positive values for arbi-
trarily large t. Suppose now that |y(t)| ≤ v for some positive v and all t ≥ 0; let
V and T satisfying (25) and take t1 and t2, with T ≤ t1 < t2, such that

y(t1) = 0, y′(t2) = 0, y′(t) > 0 for all t1 ≤ t < t2.

According to Theorem 2, we get the existence of an unbounded increasing so-
lution u(t) of (3) satisfying, with no loss of generality, u(t) ≥ V in [t1, t2].
Therefore we obtain, for t ∈ [t1, t2],

d

dt

[
r(t)u′(t)y(t) − r(t)y′(t)u(t)

]
=
(
r(t)u′(t)

)′
y(t) −

(
r(t)y′(t)

)′
u(t)

= y(t)u(t)
[
g(t, y(t))

y(t)
− g(t, u(t))

u(t)

]
≤ 0.

On the other hand,∫ t2

t1

d

ds

[
r(s)u′(s)y(s) − r(s)y′(s)u(s)

]
ds ≥ r(t2)u′(t2)y(t2) + r(t1)y′(t1)V > 0,

which gives a contradiction. �
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Remark 4 Similarly as in the previous theorem, the non-existence of bounded
oscillatory solutions for (3) can be obtained when assuming (24) for some k < 0,
(17) and the condition that for each v < 0 there exist V ≤ v and T ≥ 0 such
that

sup
u∈[v,0]

g(t, u)
u

≥ inf
u≤V

g(t, u)
u

for each t ∈ [T,∞).

Remark 5 Cecchi–Marini–Villari [3] obtained the non-existence of bounded
oscillatory solutions in the case when g(t, u) = q(t)f(u), assuming, instead of
(25), the existence of θ ∈ [0,∞) such that

lim
u→0+

f(u)
u

= θ and lim
u→+∞

f(u)
u

= ∞. (26)

Notice that, in this case, (25) is equivalent to assume that for each v > 0 there
exists V ≥ v such that

sup
u∈[0,v]

f(u)
u

≤ inf
u∈[V,∞)

f(u)
u

,

which is weaker than (26). In fact, (25) does not require the super-linearity of
f(u)

u at infinity, being, for example, fulfilled by any increasing f(u)
u .

Under stronger conditions on r(t) and g(t, u), now we give a non-oscillatory
result for (3). On this purpose, given a solution u(t) of (3), we introduce the
function

Vu(t) =
1
2
(
r(t)u′(t)

)2
+ H(t, u(t)), t ≥ 0 (27)

where

H(x, y) = r(x)
∫ y

0

g(x, s) ds, x ≥ 0, y ∈ R.

The following estimate is satisfied.

Lemma 3 Assume that Hx(x, y) exists for (x, y) ∈ [0,∞) × R and satisfies

Hx(x, y) ≤ ρ(x)H(x, y), x ≥ 0 (28)

where ρ(t) is a non-negative locally integrable function. Then each solution u(t)
of (3) satisfies

Vu(t) ≤ Vu(τ)e
R

t
τ

ρ(s)ds

for all 0 ≤ τ ≤ t.

Proof Given a solution u(t) of (3), consider the function Vu(t) defined in (27).
By (28) we get

d

dt
Vu(t)′ ≤ ρ(t)H(t, u(t)) ≤ ρ(t)Vu(t)

for all t ≥ 0 and the conclusion follows by dividing by Vu(t) and integrating on
[τ, t]. �
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Remark 6 Notice that when g(t, u) = q(t)f(u) with q(t) > 0 and q(t)r(t)
absolutely continuous on [0,∞), then condition (28) holds with

ρ(t) =

(
(qr)′(t)

)
+

r(t)q(t)
=

max{(qr)′(t), 0}
r(t)q(t)

and previous lemma can be found in [8].

Theorem 5 Let (24) be satisfied for every k > 0. Assume conditions (17) and
(28) with ∫ ∞

0

ρ(t)dt < ∞. (29)

Suppose that there exist a ≥ 1 and T ≥ 0 such that (25) is satisfied, for all v > 0
and t ∈ [T,∞), with V = av. Then equation (3) has no oscillatory solutions.

Proof Assume, by contradiction, the existence of an oscillatory solution y(t)
of (3) and consider the function Vy(t) defined in (27). According to (29) and
Lemma 3, Vy(t) is bounded on all [0,∞). Hence we get the existence of k > 0
such that |r(t)y′(t)| ≤ k for t ≥ 0. As already showed in the proof of Theorem
4, it is possible to prove that y(t) has positive values for arbitrarily large t and
to find t1 and t2, with T ≤ t1 ≤ t2 such that y(t1) = 0, y′(t2) = 0 and y′(t) > 0
for all t1 ≤ t < t2. Put h = ak

m . According to (24) and reasoning as in the proof
of Theorem 2, from (17) we obtain∫ ∞

0

max
mh

R t
0

ds
r(s)≤u≤h

R t
0

ds
r(s)

g(t, u) < ∞.

Therefore we can find t0 ≥ T satisfying∫ ∞

t0

max
mh

R
t
0

ds
r(s)≤u≤h

R
t
0

ds
r(s)

g(t, u) < h(1 − m).

Notice that it is not restrictive to assume t0 ≤ t1. Reasoning as in Theorem 1,
it then follows the existence of a solution u(t) of (3) satisfying

u(t) ≥ mh

∫ t

t1

ds

r(s)
≥ ay(t) for all t ∈ [t1, t2].

Hence condition (25) can be applied, with V = av, implying

g(t, y(t))
y(t)

− g(t, u(t))
u(t)

≤ 0, for t ∈ [t1, t2].

The contradiction then follows when reasoning as in the proof of Theorem 4.
�
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Abstract

In this work infinitesimal bending of a subspace of a generalized Rie-
mannian space (with non-symmetric basic tensor) are studied. Based on
non-symmetry of the connection, it is possible to define four kinds of co-
variant derivative of a tensor. We have obtained derivation formulas of the
infinitesimal bending field and integrability conditions of these formulas
(equations).

Key words: Generalized Riemannian space, infinitesimal bending,
infinitesimal deformation, subspace.
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0 Introduction

0.1. A generalized Riemannian spaceGRN is a differentiable manifold, endowed
with non-symmetric basic tensor Gij(x1, . . . , xN ) [2], whose symmetric part is
Gij , and antisymmetric part Gij

∨
.

By equations

xi = xi(u1, . . . , uM ) ≡ xi(uα), rank(Bi
α) = M, (Bi

α = ∂xi/∂uα), (0.1)

in local coordinates is defined a subspace GRM ⊂ GRN , with metric tensor

gαβ = Bi
αBj

βGij , (0.2)

115
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which is generally also non-symmetric. Remark that in the present work Latin
indices i, j, k, . . . take values 1, . . . , N , while Greek indices α, β, γ, . . . take values
1, . . . , M , (M < N) and refer to the subspace.
For the lowering and raising of indices in GRN one uses the tensor Gij

respectively Gij , where (Gij) = (Gij)−1.
Christoffel symbols at GRN are

Γi.jk =
1
2
(Gji,k − Gjk,i + Gik,j), Γi

jk = GipΓp.jk, (0.3a, b)

where, by the comma a partial derivative is denoted.
The scalar product and the orthogonality one expresses in usual way in the

GRN by Gij , and in the GRM by gαβ.
On subspaces of generalized Riemannian spaces there exist many works, eg.

[7]–[16], [19]–[23]. The present work is continuation and widening of our work
[21].

0.2. If in the points of GRM a vector field zi(uα) is defined, the equations

x̄i = xi(uα) + εzi(uα), (0.4)

where ε is an infinitesimal, define an infinitesimal deformation of the subspace
GRM . Obtained subspace will be denoted GRM . The vector field zi(uα) is
an infinitesimal deformation field. In this study of infinitesimal deformations,
according to (0.4), magnitudes of a degree higher than the first with respect to
ε are omitted.
Among numerous, we refer on papers on infinitesimal deformations of spaces

and subspaces, and related topics [4]–[9], [17], [18], [21]–[23].

0.3. A particular case of infinitesimal deformations is infinitesimal bending
(see e.g. [7], [8], [9], [21]). By virtue of (0.4), for gαβ one obtains [21]:

gαβ = gαβ + ε(Bi
αBj

βGij,kzk + Bi
αzj

,βGij + zi
,αBj

βGij) (0.5)

and, by definition, the subspace GRM ⊂ GRN is infinitesimal bending of the
subspace GRM ⊂ GRN iff (the equation (1.5) in [21]):

Gij,kzkBi
αBj

β + Gij(Bi
αzj

,β + zi
,αBj

β) = 0, (0.6)

1 Derivational formulas of the bending field

1.0. Let be GRM ⊂ GRN , where GRM is defined by virtue of (0.1). Consider at
points ofGRM N−M mutually orthogonal unit vectorsN i

A, (A = M+1, . . . , N),
which are also orthogonal to GRM , i.e. to the vectors Bi

α = ∂xi/∂uα. So, here
we are using also the third kind of indices:

A, B, C · · · ∈ {M + 1, . . . , N}.
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From the exposed, we have the relations

GipG
pj = δj

i , gαπgπβ = δβ
α, (1.1a, b)

GijN
i
A
Bj

α = 0, GijN
i
A
N j

B
= eAδAB, (eA = ±1), (1.2a, b)

where gαβ is obtained analogously to Gij . Similarly to (0.3), we can define
Cristoffel symbols Γ̃α

βγ by means of gαβ. These symbols are in general also non-
symmetric. Based on that, for a tensor defined in the points of the subspace we
have 4 kinds of covariant derivative. For example [13]:

Bi
α |

1
2
3
4

µ = Bi
α,µ + Γi

pm
mp

pm

mp

Bp
αBm

µ − Γ̃π
αµ
µα

µα

αµ

Bi
π (1.3a–d)

N i
A |

1
2

µ = N i
A |

3
4

µ = N i
A,µ + Γi

pm
mp

Np
ABm

µ . (1.4a, b)

From here one obtains 4 kinds of derivational formulae of the subspace GRM ⊂
GRN [13,14]:

Bi
α|

θ

µ = Φ
θ

π
αµBi

π +
N∑

A=M+1

ΩAαµN i
A, (1.5a)

N i
B |

θ
µ = −eBgπσΩ

θ
BσµBi

π +
N∑

A=M+1

Ψ
θ

ABµN i
A, Ψ

θ
BBµ = 0, (1.5b)

where θ ∈ {1, 2, 3, 4} designates the kind of covariant derivative. With respect
to (4a,b) is:

Ω
1
2

Aαβ = Ω
3
4

Aαβ (1.6a, b)

Ψ
1
2

ABµ = Ψ
3
4

ABµ (1.7a, b)

and by virtue of (48′) in [13]:

Φ
2

α
βγ = −Φ

1

α
βγ , Φ

3

α
βγ = Φ

1

α
βγ + 2Γ̃α

βγ
∨

,

Φ
4

α
βγ = −Φ

1

α
βγ − 2Γ̃α

βγ
∨

(1.8 a,c)

1.1. The infinitesimal bending field zi can be expressed by tangential and
normal component with respect to GRM :

zi = pσBi
σ +
∑
A

qAN i
A
. (1.9)
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Using this value, the condition (0.6) becomes

Gij,kBi
αBj

β(pσBk
σ +
∑
A

qANk
A
)

+ gασpσ
,β + GijB

i
αBj

σ,βpσ + GijB
i
α

∑
A

(qA,βN j
A

+ qAN j
A,β

)

+ gσβpσ
,α + GijB

j
βBi

σ,αpσ + GijB
j
β

∑
A

(qA,αN i
A + qAN i

A,α) = 0. (1.10)

Taking covariant derivative of the kind θ with respect to uµ and using (5), we
get

zi
|
θ

µ = pσ
|
θ

µBi
σ + pσBi

σ |
θ

µ +
∑
A

(qA|
θ

µN i
A + qAN i

A|
θ

µ)

= pσ
|
θ

µBi
σ + pσ(Φ

θ

π
σµBi

π +
∑
A

Ω
θ

AσµN i
A) +

∑
A

qA|
θ

µN i
A

+
∑
A

qA(−eAgπσΩ
θ

AσµBi
π +
∑
B

Ψ
θ

BAµN i
B),

that is
zi
|
θ

µ = P
θ

π
µBi

π +
∑
A

Q
θ

AµN i
A, (1.11)

where
P
θ

π
µ = pπ

|
θ

µ + pσΦ
θ

π
σµ −

∑
A

eAqAΩ
θ

Aσµgπσ, (1.12)

Q
θ

Aµ = pσΩ
θ

Aσµ + qA|
θ

µ +
∑
B

qBΨ
θ

ABµ. (1.13)

The equation (11) is derivational formula of the infinitesimal bending field zi.
So, we have

Theorem 1.1 If the infinitesimal bending field zi of the subspace GRM ⊂ GRN

is expressed by the tangential and the normal component with respect to the
GRM in the form (9), then the derivation formula (11) is valid, where |

θ

µ is

covariant derivative of the kind θ according to uµ, and P
θ
, Q

θ
are given in (12)

and (13) respectively.

2 Integrability conditions of derivational formula of the
infinitesimal bending field

2.0. Applying to (1.11) covariant derivative of the kind ω with respect to uν ,
we get

zi
|
θ

µ |
ω
ν = P

θ

π
µ |

ω
νBi

π + P
θ

π
µBi

π |
ω
ν +
∑
A

(Q
θ

Aµ |
ω

νN
i
A

+ Q
θ

AµN i
A |

ω
ν
),
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and substituting Bi
π |

ω
ν and N i

A |
ω

ν
with respect to (1.5), after arranging one ob-

tains

zi
|
θ

µ |
ω

ν = [P
θ

π
µ |

ω
ν + P

θ

σ
µΦ

ω

π
σν −

∑
A

eAQ
θ

AµgπσΩ
ω

Aσν ]Bi
π

+
∑
A

[P
θ

π
µΩ

ω
Aπν + Q

θ
Aµ |

ω
ν +
∑
B

Q
θ

BµΨ
ω

ABν ]N i
A
, (2.1)

where the tensors P
θ
, Q

θ
are given at (1.12,13). From (1) one gets

zi
|
θ

µ |
ω
ν − zi

|
ω
ν |

θ

µ = [P
θ

π
µ |

ω
ν − P

ω

π
ν |

θ

µ + P
θ

σ
µΦ

ω

π
σν − P

ω

σ
νΦ

θ

π
σµ

−
∑
A

eAgπσ(Q
θ

AµΩ
ω

Aσν − Q
ω

AνΩ
θ

Aσµ)]Bi
π

+
∑
A

[P
θ

π
µΩ

ω
Aπν − P

ω

π
νΩ

θ
Aπµ + Q

θ
Aµ |

ω
ν − Q

ω
Aµ|

θ
µ

+
∑
B

(Q
θ

BµΨ
ω

ABν − Q
ω

BνΨ
θ

ABµ)]N i
A
. (2.2)

On the other hand applying the Ricci type identities [11,12], we obtain

zi
|
1
2

µν − zi
|
1
2

νµ = R
1
2

i
pmnzpBm

µ Bn
ν + 2Γ̃π

µν
∨

zi
|
1
2

π, (2.3a, b)

zi
|
1
µ|

2
ν − zi

|
2
ν |
1
µ = R

3

i
pµνzp, (2.4)

zi
|
3
4

µν − zi
|
3
4

νµ = R
1
2

i
pmnzpBm

µ Bn
ν ± 2Γ̃π

µν
∨

zi
|
1
2

π, (2.5a, b)

zi
|
3
µ|

4
ν − zi

|
4
ν |
3
µ = R

4

i
pµνzp, (2.6)

where [11,12]:

R
1

i
jmn = Γi

jm,n − Γi
jn,m + Γp

jmΓi
pn − Γp

jnΓi
pm, (2.7)

R
2

i
jmn = Γi

mj,n − Γi
nj,m + Γp

mjΓ
i
np − Γp

njΓ
i
mp, (2.8)

R
3

i
jµν = (Γi

jm,n − Γi
nj,m + Γp

jmΓi
np − Γp

njΓ
i
pm)Bm

µ Bn
ν

+ 2Γi
jm
∨

(Bm
µ,ν − Γ̃π

νµBm
π ), (2.9)

R
4

i
jµν = (Γi

jm,n − Γi
nj,m + Γp

jmΓi
np − Γp

njΓ
i
pm)Bm

µ Bn
ν

+ 2Γi
jm
∨

(Bm
µ,ν − Γ̃π

µνBm
π ). (2.10)

The magnitudes R
1

i
jmn, R

2

i
jmn are curvature tensors of the first and the second

kind respectively of the space GRN , while the magnitudes R
3

i
jµν , R4

i
jµν are also



120 S. M. Minčić, L. S. Velimirović

tensors and we called them in [11,12] curvature tensors of the space GRN with
respect to the subspace GRM .

2.1. The cases (3.a,b) can be written in the form

zi
|
θ

µν − zi
|
θ

νµ = R
θ

i
pmnzpBm

µ Bn
ν + 2(−1)θΓ̃π

µν
∨

zi
|
θ

π, θ ∈ {1, 2}. (2.11)

Taking in (2) ω = θ ∈ {1, 2}, we obtain an equation with the same left side as
in (11). Substituting zi

|
θ

π in (11) by virtue of (1.11) and equaling the right sides

of cited equations, we obtain the first and the second integrability condition of
derivational formula (1.11) of the infinitesimal bending field zi of the subspace
(for θ = 1, θ = 2):

R
θ

i
pmnzpBm

µ Bn
ν + 2(−1)θΓ̃π

µ
∨

ν(P
θ

σ
πBi

σ +
∑
A

Q
θ

AπN i
A)

= [P
θ

π
µ|

θ

ν − P
θ

π
ν |

θ

µ + P
θ

σ
µΦ

θ

π
σν − P

θ

σ
νΦ

θ

π
σµ

−
∑
A

eAgπσ(Q
θ

AµΩ
θ

Aσν − Q
θ

AνΩ
θ

Aσµ)]Bi
π

+
∑
A

[P
θ

π
µΩ

θ
Aπν − P

θ

π
νΩ

θ
Aπµ + Q

θ
Aµ|

θ
ν − Q

θ
Aν |

θ
µ

+
∑
B

(Q
θ

BµΨ
θ

ABν − Q
θ

BνΨ
θ

ABµ)]N i
A, θ = 1, 2. (2.12)

a) Multiplying this equation with GilB
l
λ and using (0.2), (1.1,2), we obtain

R
θ

lpmnBl
λzpBm

µ Bn
ν + 2(−1)θΓ̃π

µν
∨

P
θ

σ
πgλσ

=
[
P
θ

π
µ|

θ

ν − P
θ

π
ν |

θ

µ + P
θ

σ
µΦ

θ

π
σν − P

θ

σ
νΦ

θ

π
σµ −

∑
A

eAgπσ(Q
θ

AµΩ
θ

Aσν − Q
θ

AνΩ
θ

Aσµ)
]
gλπ.

Taking into consideration (1.1b) and substituting P
θ
, Q

θ
according to (1.12,13),
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the previous equation becomes

R
θ

lpmnBl
λzpBm

µ Bn
ν + 2(−1)θΓ̃π

µν
∨

gλσ(pσ
|
θ

π + pρΦ
θ

σ
ρπ −

∑
A

eAqAΩ
θ

Aρπgσρ)

= [pπ
|
θ

µν + pσ
|
θ

νΦ
θ

π
σµ + pσΦ

θ

π
σµ|

θ

ν −
∑
A

eA(qA|
θ

νΩ
θ

Aσµ + qAΩ
θ

Aσµ|
θ

ν)gπσ

− pπ
|
θ

νµ − pσ
|
θ

µΦ
θ

π
σν − pσΦ

θ

π
σν |

θ

µ +
∑
A

eA(qA|
θ

µΩ
θ

Aσν + qAΩ
θ

Aσν |
θ

µ)gπσ

+ (pσ
|
θ

µ + pρΦ
θ

σ
ρµ −

∑
A

eAqAΩ
θ

Aρµgσρ)Φ
θ

π
σν

−(pσ
|
θ

ν + pρΦ
θ

σ
ρν −

∑
A

eAqAΩ
θ

Aρνg
σρ)Φ

θ

π
σµ]gλπ

−
∑
A

eA[(pσΩ
θ

Aσµ + qA|
θ

µ +
∑
B

qBΨ
θ

ABµ)Ω
θ

Aλν

−(pσΩ
θ

Aσν + qA|
θ

ν +
∑
B

qBΨ
θ

ABν)Ω
θ

Aλµ]. (2.13)

Substituting the dummy indices l, p with i, j respectively and zj according to
(1.9), using the Ricci type identity

pπ
|
θ

µν − pπ
|
θ

νµ = R̃
θ

π
ρµνpρ + 2(−1)θΓ̃ρ

µν
∨

pπ
|
θ

ρ, θ = 1, 2 (2.14)

where R̃
θ

π
ρµν are the corresponding curvature tensors of the subspace (formed by

means of Γ̃) and denoting

pλ = gλσpσ, Φ
θ

λρπ = gλσΦ
θ

σ
ρπ ,

Ω
θ

A
σ

µ = gρσΩ
θ

Aρµ,

the equation (13) becomes

R
θ

ijmnBi
λ(pσBj

σ +
∑
A

qAN j
A)Bm

µ Bn
ν

+2(−1)θΓ̃σ
µν
∨

(pρΦ
θ

λρσ −
∑
A

eAqAΩ
θ

Aλσ)

= pσ(R̃
θ λσµν

+ Φ
θ

λσµ|
θ

ν − Φ
θ

λσν |
θ

µ + Φ
θ

ρ
σµΦ

θ
λρν − Φ

θ

ρ
σνΦ

θ
λρµ)

+
∑
A

eA[qA(Φ
θ

λσµΩ
θ

A
σ

ν
− Φ

θ
λσνΩ

θ
A

σ

µ
− Ω

θ
Aλµ|

θ
ν + Ω

θ
Aλνµ

θ

)

+pσ(Ω
θ

AλµΩ
θ

Aσν − Ω
θ

AλνΩ
θ

Aσµ)

+
∑
B

qB(Ω
θ

AλµΨ
θ

ABν − Ω
θ

AλνΨ
θ

ABµ)], θ = 1, 2. (2.15)
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b) By multiplying (12) with GilN
l
c and taking into consideration (1.1, 2),

one obtains

R
θ

lpmnN l
C
zpBm

µ Bn
ν + 2(−1)θΓ̃π

µν
∨

Q
θ

CπeC

= eC[P
θ

π

µ
Ω
θ

Cπν − P
θ

π
νΩ

θ
Cπµ + Q

θ
Cµ|

θ
ν − Q

θ
Cν |

θ
µ

+
∑
B

(Q
θ

BµΨ
θ

CBν − Q
θ

BνΨ
θ

CBµ)].

Substituting P
θ
, Q

θ
as in the previous case, from here we have

R
θ

ijmnN i
CzjBm

µ BN
ν

+ 2(−1)θΓ̃π
µν
∨

eC(pσΩ
θ

Cσπ + qC |
θ

π +
∑
B

qBΨ
θ

CBπ)

= eC{(pπ
|
θ

µ + pσΦ
θ

π
σµ −

∑
A

eAqAΩ
θ

Aσµgπσ)Ω
θ

Cπν

− (pπ
|
θ

ν + pσΦ
θ

π
σν −

∑
A

eAqAΩ
θ

Aσνg
πσ)Ω

θ
Cπµ

+ pσ
|
θ

νΩ
θ

Cσµ + pσΩ
θ

Cσµ|
θ

ν + qC |
θ

µ|
θ

ν

+
∑
B

(qB |
θ

νΨ
θ

CBµ + qBΨ
θ

CBµ|
θ

ν)

− pσ
|
θ

µΩ
θ

Cσν − pσΩ
θ

Cσν |
θ

µ − qC |
θ

ν |
θ

µ

−
∑
B

(qB |
θ

µΨ
θ

CBν + qBΨ
θ

CBν |
θ

µ)

+
∑
B

[(pσΩ
θ

Bσµ + qB |
θ

µ +
∑
A

qAΨ
θ

BAµ)Ψ
θ

CBν

− (pσΩ
θ

Bσν + qB |
θ

ν +
∑
A

qAΨ
θ

BAν)Ψ
θ

CBµ]}.

Multiplying the both sides of this equation with eC = ±1, and taking into count
that

qC |
θ

µ = ∂qC/∂uµ = qC,µ, θ = 1, 2,

qC |
1
2

µ|
1
2

ν = (qC |
1
2

µ),ν − Γ̃π
µν
νµ

qC |
1
2

π = qC,µν − Γ̃π
µν
νµ

qC,π

from where qC |
θ

µν −qC |
θ

νµ = 2(−1)θΓ̃π
νµ
∨

qC,π, the previous equation can be written



Infinitesimal bending of a subspace . . . 123

in the form

eCR
θ

ijmnN i
C
(pσBj

σ +
∑
A

qAN j
A
)Bm

µ Bn
ν

+(−1)θΓ̃π
µν
∨

(pσΩ
θ

Cσπ +
∑
B

qBΨ
θ

CBπ)

= pσ(Φ
θ

π
σµΩ

θ
Cπν − Φ

θ

π
σνΩ

θ
Cπµ + Ω

θ
Cσµ|

θ
ν − Ω

θ
Cσν |

θ
µ)

+
∑
A

eAqA(Ω
θ

CπµΩ
θ

Aν
π − Ω

θ
CπνΩ

θ
Aµ

π)

+
∑
A

[pσ(Ω
θ

AσµΨ
θ

CAν − Ω
θ

AσνΨ
θ

CAµ)

+ qA(Ψ
θ

CAµ|
θ

ν − Ψ
θ

CAν |
θ

µ)

+
∑
B

qB(Ψ
θ

ABµΨ
θ

CAν − Ψ
θ

ABνΨ
θ

CAµ)]. (2.16)

2.2 Substituting θ = 1, ω = 2 into (2) and using (4), we obtain the third
integrability condition of derivational formula (1.11) of zi:

R
3

i
pµνzp = [P

1

π
µ|

2
ν − P

2

π
ν |
1
µ + P

1

σ
µΦ

2

π
σν − P

2

σ
νΦ

1

π
σµ

−
∑
A

eAgπσ(Q
1

AµΩ
2

Aσν − Q
2

AνΩ
1

Aσµ)]Bi
π

+
∑
A

[P
1

π
µΩ

2
Aπν − P

2

π
νΩ

1
Aπµ + Q

1
aµ|

2
ν − Q

2
Aν |

1
µ

+
∑
B

(Q
1

BµΨ
2

ABν − Q
2

BνΨ
1

ABµ)]N i
A. (2.17)

a) By multiplying the previous equation with GilB
l
λ one obtains

R
3

i
lpµνBl

λzp = [P
1

π
µ|

2
ν − P

2

π
ν |
1
µ + P

1

σ
µΦ

2

π
σν − P

2

σ
νΦ

1

π
σµ

−
∑
A

eAgπσ(Q
1

AµΩ
2

Aσν − Q
2

AνΩ
1

Aσµ)]gλπ.
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By substitution of P
θ
, Q

θ
with respect to (1.12,13), from here it follows that

R
3

i
lpµνBl

λzp = [pπ
|
1
µ|

2
ν + pσ

|
2
νΦ

1

π
σµ + pσΦ

1

π
σµ|

2
ν

−
∑
A

eA(qA|
2

νΩ
1

Aσµ + qAΩ
1

Aσµ|
2
ν)gπσ

−pπ
|
2
ν |
1
µ + pσ

|
1µ

Φ
2

π
σν

+
∑
A

eA(qA |
1µ

Ω
2

Aσν + qAΩ
2

Aσν |
1
µ)gπσ

+ (pσ
|
1
µ + pσΦ

1

σ
ρµ −

∑
A

eAqAΩ
1

Aρµgσρ)Φ
2

π
σν

− (pσ
|
2
ν + pσΦ

2

σ
ρν −

∑
A

eAqAΩ
2

Aρνg
σρ)Φ

1

π
σµ]gλπ

−
∑
A

eA[(pσΩ
1

Aσµ + qA|
1

µ +
∑
B

qBΨ
1

ABµ)Ω
2

Aλν

− (pσΩ
2

Aσν + qA|
2

ν +
∑
B

qBΨ
2

ABν)Ω
1

Aλµ]. (2.18)

Substituting the dummy indices l, p with i, j respectively and using the Ricci-
type identity [11]:

pπ
|
1
µ|

2
ν − pπ

|
2
ν |
1
µ = R̃

3

π

σµν
pσ, (2.19)

where

R̃
3

α
βµν = Γ̃α

βµ,ν − Γ̃α
νβ,µ + Γ̃σ

βµΓ̃α
νσ − Γ̃σ

νβΓ̃α
σµ + Γ̃σ

νµ(Γ̃α
σβ − Γ̃α

βσ) (2.20)

is the curvature tensor of the 3rd kind of the subspace, the equation (18) becomes

R
3

ijµνBi
λ(pσBi

σ +
∑
A

qAN i
A
)

= pσ(R̃
3

λσµν + Φ
1

λσµ|
2
ν − Φ

2
λσν |

1
µ + Φ

1

ρ
σµΦ

2
λρν − Φ

2

ρ
σνΦ

1
λρµ)

+
∑
A

eA[qA(Φ
1

λσµΩ
2

σ
Aν

− Φ
2

λσνΩ
1

σ
Aµ

− Ω
1

Aλµ|
2

ν + Ω
2

Aλν |
1

µ)

+ pσ(Ω
1

AλµΩ
2

Aσν − Ω
2

AλνΩ
1

Aσµ)

+
∑
B

qB(Ω
1

AλµΨ
2

ABν − Ω
2

AλνΨ
1

ABµ)]. (2.21)

b) Multiplying (17) with GilN
l
c, one obtains

R
3

lpµνN l
cz

p = ec[P
1

π
µΩ

2
Cπν − P

2

π
νΩ

1 Cπµ

+ Q
1

cµ|
2
ν − Q

2
cν |

1
µ

+
∑
B

(Q
1

BµΨ
2

CBν − Q
2

BνΨ
1

CBµ)].
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Substituting P
θ
, Q

θ
using that

qc|
1
µ|

2
ν − qc|

2
ν |
1
µ = 0,

and arranging, we get

eCR
3

ijµνN i
c(p

σBj
σ +
∑
A

qAN j
A)

= pσ(Φ
1

π
σµΩ

2
cπν − Φ

2

π
σνΩ

1
cπµ + Ω

1
cσµ|

2
ν − Ω

2
cσν |

1
µ)

+
∑
A

eAqA(Ω
1

cπµΩ
2

π
Aν

− Ω
2

cπνΩ
1

π
Aµ

)

+
∑
A

[pσ(Ω
1

AσµΨ
2

CAν − Ω
2

AσνΨ
1

CAµ) + qA(Ψ
1

CAµ|
2

ν − Ψ
2

CAν |
1

µ∑
B

qB(Ψ
1

ABµΨ
2

CAν − Ψ
2

ABνΨ
1

CAµ)]. (2.22)

2.3. The cases (5a,b) can be given with the equation

zi
|
θ

µν − zi
|
θ

νµ = R
θ−2

i
pmnzpBm

µ Bn
ν + 2(−1)θ−1Γ̃π

µν
∨

zi
|
θ

π, θ ∈ {3, 4}. (2.23)

Substituting θ ∈ {3, 4} in (2), we get the equation with the left side as in
(21). According to that we get the 4th and the 5th integrability condition of the
derivation formula (1.11) (for θ ∈ {3, 4}):

R
θ−2

i
pmnzpBm

µ Bn
ν + 2(−1)θ−1Γ̃π

µν
∨

(P
θ

σ
πBi

σ +
∑
A

Q
θ

AπN i
A)

= [P
θ

π
µ|

θ

ν − P
θ

π
ν |

θ

µ + P
θ

σ
µΦ

θ

π
σν − P

θ

σ
νΦ

θ

π
σµ

−
∑
A

eAgπσ(Q
θ

AµΩ
θ

Aσν − Q
θ

AνΩ
θ

Aσµ)]Bi
π

+
∑
A

[P
θ

π
µΩ

θ
Aπν − P

θ

π
νΩ

θ
Aπµ + Q

θ
Aµ|

θ
ν − Q

θ
Aν |

θ
µ

+
∑
B

(Q
θ

BµΨ
θ

ABν − Q
θ

BνΨ
θ

ABµ)]N i
A
, θ ∈ {3, 4}. (2.24)

a) Multiplying this equation with GilB
l
λ, we get

R
θ−2

lpmnBl
λzpBm

µ Bn
ν + 2(−1)θ−1Γ̃π

µν
∨

P
θ

σ
πgλσ

= [P
θ

π
µ|

θ

ν − P
θ

π
ν |

θ

µ + P
θ

σ
µΦ

θ

π
σν − P

θ

σ
νΦ

θ

π
σµ

−
∑
A

eAgπσ(Q
θ

AµΩ
θ

Aσν − Q
θ

AνΩ
θ

Aσµ)]gλπ.
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from where, as in previous cases,

R
θ−2

lpmnBl
λzpBm

µ Bn
ν + 2(−1)θ−1Γ̃π

µν
∨

gλσ(pσ
|
θ

π + pρΦ
θ

σ
ρπ

−
∑
A

eAqAΩ
θ

Aρπgσρ) = [pπ
|
θ

µν + pσ
|
θ

νΦ
θ

π
σµ + pσΦ

θ

π
σµ|

θ

ν

−
∑
A

eA(qA|
θ

νΩ
θ

Aσµ + qAΩ
θ

Aσµ|
θ

ν)gπσ

− pπ
|
θ

νµ − pσ
|
θ

µΦ
θ

π
σν − pσΦ

θ

π
σν |

θ

µ

+
∑
A

eA(qA|
θ

µΩ
θ

Aσν + qAΩ
θ

Aσν |
θ

µ)gπσ

+(pσ
|
θ

µ + pρΦ
θ

σ
ρµ −

∑
A

eAqAΩ
θ

Aρµgσρ)Φ
θ

π
σν

−(pσ
|
θ

ν + pρΦ
θ

σ
ρν −

∑
A

eAqAΩ
θ

Aρνg
σρ)Φ

θ

π
σµ]gλπ

−
∑
A

eA[(pσΩ
θ

Aσµ + qA|
θ

µ +
∑
B

qBΨ
θ

ABµ)Ω
θ

Aλν]

−(pσΩ
θ

Aσν + qA|
θ

ν +
∑
B

qBΨ
θ

ABν)Ω
θ

Aλµ].

According to [12]:

pπ
|
θ

µν − pπ
|
θ

νµ = R̃
θ−2

π
σµνpσ + 2(−1)θ−1Γ̃σ

µν
∨

pπ
|
θ

σ, θ ∈ {3, 4}, (2.25)

the previous equation becomes

R
θ−2

ijmnBi
λ(pσBj

σ +
∑
A

qAN j
A
)Bm

µ Bn
ν

+ 2(−1)θ−1Γ̃π
µν
∨

(
θ

pσΦ
θ

λσπ −
∑
A

eAqAΩ
θ

Aλπ)

= pσ( R
θ−2

λσµν + Φ
θ

λσµ|
θ

ν − Φ
θ

λσν |
θ

µ + Φ
θ

ρ
σµΦ

θ
λρν − Φ

θ

ρ
σνΦ

θ
λρµ)

+
∑
A

eA[qA(Φ
θ

λσµΩ
θ

σ
Aν − Φ

θ
λσνΩ

θ

σ
AµΩ

θ
Aλµ|

θ
ν − Ω

θ
Aλν |

θ
µ)

+pσ(Ω
θ

AλµΩ
θ

Aσν − Ω
θ

AλνΩ
θ

Aσµ)

+
∑
B

qB(Ω
θ

AλµΨ
θ

ABν − Ω
θ

AλνΨ
θ

ABµ)], θ ∈ {3, 4} (2.26)

b) Multiplying (23) with GilN
l
c, we have

R
θ−2

lpmnN l
cz

pBm
µ Bn

ν + 2(−1)θ−1Γ̃π
µν
∨

Q
θ

cπec

= ec[P
θ

π
µΩ

θ
Cπν − P

θ

π
νΩ

θ
Cπµ + Q

θ
cµ|

θ

ν − Qcν |
θ

µ]

+
∑
B

(Q
θ

BµΨ
θ

CBν − Q
θ

BνΨ
θ

CBµ)], θ ∈ {3, 4}.
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Substituting P
θ
, Q

θ
, one obtains

ec R
θ−2

ijmnN i
cz

jBm
µ Bn

ν

+ 2(−1)θ−1Γ̃π
µν
∨

(pσΩ
θ

Cσπ + qc|
θ

π +
∑
B

qBΨ
θ

CBπ)

= (pπ
|
θ

µ + pσΦ
θ

π
σµ −

∑
A

eAqAΩ
θ

Aσµgπσ)Ω
θ

Cπν

−(pπ
|
θ

ν + pσΦ
θ

π
σν −

∑
A

eAqAΩ
θ

Aσνg
πσ)Ω

θ
Cπµ

+ pσ
|
θ

νΩ
θ

Cσµ + pσΩ
θ

Cσµ|
θ

ν + qC |
θ

µν +
∑
B

(qB |
θ

νΨ
θ

CBµ + qBΨ
θ

CB |
θ

ν)

− pσ
|
θ

µΩ
θ

Cσν − pσΩ
θ

Cσν |
θ

µ − qC |
θ

µν −
∑
B

(qB |
θ

νΨ
θ

CBµ + qBΨ
θ

CB |
θ

ν)

+
∑
B

[(pσΩ
θ

Bσµ + qB |
θ

µ +
∑
A

qAΨ
θ

CBµ)Ψ
θ

CBν

−(pσΩ
θ

Bσν + qB |
θ

ν +
∑
A

qAΨ
θ

CBν)Ψ
θ

CBµ].

Having in mind that for θ ∈ {3, 4}:

qC |
θ

µν − qC |
θ

µν = 2(−1)θ−1Γ̃π
µνqC,π, (2.27)

the previous equation, after putting in order, becomes

ec R
θ−2

ijmnN i
c(P

σBj
σ +
∑
A

qAN j
A)Bm

µ Bn
ν

+ 2(−1)θ−1Γ̃π
µν
∨

(pσΩ
θ

Cσπ +
∑
B

qBΨ
θ CBπ

)

= pσ(Φ
θ

π
σµΩ

θ
Cπν − Φ

θ

π
σνΩ

θ
Cπµ + Ω

θ
Cσµ|

θ
ν − Ω

θ
Cσν |

θ
µ)

+
∑
A

eAqA(Ω
θ

π
Cπµ

Ω
θ

π
Aν

− Ω
θ

π
Cπν

Ω
θ

π
Aµ

)

+
∑
A

[pσ(Ω
θ

AσµΨ
θ

CAν − Ω
θ

AσνΨ
θ

CAµ) + qA(Ψ
θ

CAµ|
θ

ν − Ψ
θ

CAν |
θ

µ)

+
∑
B

qB(Ψ
θ

ABµΨ
θ

CAν − Ψ
θ

ABνΨ
θ

CAµ)], θ ∈ {3, 4}. (2.28)
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2.4. For θ = 3, ω = 4 according to (2) and (6) we get

R
4

i
pµνzp = [P

3

π
µ|

4
ν − P

4

π
ν |
3
µ + P

3

σ
µΦ

4

π
σν − P

4

σ
νΦ

3

π
σµ∑

A

eAgπσ(Q
3

AµΩ
4

Aσν − Q
4

AνΩ
4

Aσµ)]Bi
π

+
∑
A

[P
3

π
µΩ

4
Aπν − P

4

π
νΩ

3
Aπµ + Q

3
Aµ|

4
ν − Q

4
Aν |

3
µ

+
∑
B

(Q
3

BµΨ
4

ABν − Q
4

BνΨ
3

ABµ)]N i
A
. (2.29)

This is the 6th integrability condition of the derivational formula (1.11) of the
deformation field zi.

a) Multiplying the previous equation with GilB
l
λ, we get

R
4

lpµνBl
λzp = [P

3

π
µ|

4
ν − P

4

π
ν |
3
µ + P

3

σ
µΦ

4

π
σν − P

4

σ
νΦ

3

π
σµ∑

A

eAgπσ(Q
3

AµΩ
4

Aσν − Q
4

AνΩ
3

Aσµ)]gλπ (2.30)

From here, analogously to the previous cases, using the Ricci type identity [12]

pπ |
3
µ|

4
ν − pπ |

4
ν |

3
µ = R̃

4

π
σµνpσ, (2.31)

where

R
4

α
βµν = Γ̃α

βµ,ν − Γ̃
α

νβ,µ + Γ̃σ
βµΓ̃α

νσ − Γ̃σ
νβΓ̃α

σµ + Γ̃σ
µν(Γ̃α

σβ − Γ̃α
βσ), (2.32)

is the 4th kind curvature tensor of a subspace, and from (29) we finally get

R
4

ijµνBi
λ(pσBj

σ +
∑
A

qAN j
A
)

= pσ(R̃
4

λσµν + Φ
3

λσµ|
4
ν + Φ

4
λσν |

3
µ + Φ

3

ρ
σµΦ

4
λρν − Φ

4

ρ
σνΦ

3
λρµ)

+
∑
A

eA[qA(Φ
3

λρµΩ
4

σ
Aν

− Φ
4

λσνΩ
3

σ
Aν

− Ω
3

Aλσµ|
4

ν + Ω
4

Aλσν |
3

µ)

+ pσ(Ω
3

AλµΩ
4

Aσν − Ω
4

AλνΩ
3

Aσµ)

+
∑
B

qB(Ω
3

AλµΨ
4

ABν − Ω
4

AλνΨ
3

ABµ)]. (2.33)
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b) Multiplying (29) with GilN
l
C and arranging, we get finally

eCR
4

ijµνN i
C(pσBj

σ +
∑
A

qAN j
A)

= pσ(Φ
3

π
σµΩ

4
Cπν − Φ

4

π
σνΩ

3
Cπµ + Ω

3
Cσµ|

4
ν − Ω

4
Cσν |

3
µ)

+
∑
A

eAqA(Ω
3

CπµΩ
4

π
Aν − Ω

4
CπνΩ

3

π
Aµ)∑

A

[pσ(Ω
3

AσµΨ
4

CAν − Ω
4

AσνΩ
3

CAµ)

+ qA(Ψ
3

CAµ|
4
ν − Ψ

4
CAν |

3
µ)

+
∑
B

qB(Ψ
3

ABµΨ
4

CAν − Ψ
4

ABνΨ
3

CAµ)] (2.34)

From the above exposed, the next theorem is valid:

Theorem 2.1 If the infinitesimal bending field zi of the subspace GRM ⊂ GRN

is expressed by virtue of tangent and normal component in the form (1.9), then
the coefficients pσ, qA satisfy the conditions (15), (16), (21), (22), (26), (28),
(33), (34).
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[9] Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci.,
New York, 89, 3 (1998), 1334–1353.
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Abstract

The paper deals with the impulsive boundary value problem

d

dt
[φ(y′(t))] = f(t, y(t), y′(t)), y(0) = y(T ), y′(0) = y′(T ),

y(ti+) = Ji(y(ti)), y′(ti+) = Mi(y
′(ti)), i = 1, . . . m.

The method of lower and upper solutions is directly applied to obtain the
results for this problems whose right-hand sides either fulfil conditions of
the sign type or satisfy one-sided growth conditions.

Key words: φ-Laplacian, impulses, lower and upper functions, pe-
riodic boundary value problem.

2000 Mathematics Subject Classification: 34B37, 34C25

0 Introduction

In this paper we study the existence of solutions to the following problem

d

dt
[φ(y′(t))] = f(t, y(t), y′(t)), (0.1)

y(0) = y(T ), y′(0) = y′(T ), (0.2)

y(ti+) = Ji(y(ti)), y′(ti+) = Mi(y′(ti)), i = 1, . . .m, (0.3)

131
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where f ∈ Car([0, T ] × R2), φ is an increasing homeomorfismus, φ(R) = R.
Ji ∈ C(R), Mi ∈ C(R) and

y′(ti) = y′(ti−) = lim
t→ti−

y′(t), y′(0) = y′(0+) = lim
t→0+

y′(t).

Let

σ1(ti) < x < σ2(ti) ⇒ Ji(σ1(ti)) < Ji(x) < Ji(σ2(ti)), i = 1, . . . , m (0.4)

hold. We will assume one of the following properties of Mi, either

Mi is increasing on R, Mi(R) = R i = 1, . . . , m, (0.5)

or only
y ≤ σ′

1(ti) ⇒ Mi(y) ≤ Mi(σ′
1(ti)),

y ≥ σ′
2(ti) ⇒ Mi(y) ≥ Mi(σ′

2(ti)), i = 1, . . . , m,
(0.6)

In the mathematical literature we can find a lot of papers studying the
equation (0.1) with various types of linear or nonlinear boundary conditions.
Particularly, the existence results for such problems have been proved e.g. in
[1–4].
On the other hand there are papers giving the existence theorems for impul-

sive problems to the second order differential equations x′′ = f(t, x, x′). Some
of them are based on the method of lower and upper functions ([5–14]). The
aim of this paper is to join problems with φ-Laplacian and problems with im-
pulses and to extend the method of lower and upper functions for the problem
(0.1)–(0.3). Here, the method of lower and upper solutions is directly applied
to obtain the results for problems (0.1)–(0.3) whose right-hand sides either fulfil
conditions of the sign type or satisfy one-sided growth conditions.
The sections are organized as follows. In Section 1, we begin by definitions of

solution and lower and upper functions of the problem (0.1)–(0.3). We state two
existence theorems for the problem (0.1)–(0.3) with right-hand sides satisfying
conditions of the sign type and one-sided growth conditions and show some
applications of these theorems on the concrete problems. In Section 2, we state
and prove the existence result for problems with bounded right-hand sides. This
problem is reduced to a fixed point problem and using the Schauder fixed point
theorem, we show its solvability. In Section 3, we use the previous result to
prove the existence theorems which are stated in Section 1.

1 Formulation of the solution and main results

For a real valued function u defined a.e. on [0, T ], we put

‖u‖∞ = sup ess
t∈[0,T ]

|u(t)|.

Let m ∈ N and 0 = t0 < t1 < . . . < tm < tm+1 = T be a division of the interval
J = [0, T ]. We denote ∆ = {t1, t2, . . . , tm} and define C1

∆(J), resp. C∆(J), as
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the set of functions u : J → R,

u(t) =

⎧⎪⎪⎨⎪⎪⎩
u[0](t), t ∈ [0, t1],
u[1](t), t ∈ (t1, t2],
. . . . . .
u[m](t), t ∈ (tm, T ],

where u[i] ∈ C1[ti, ti+1], resp. u[i] ∈ C[ti, ti+1], for i = 0, 1, . . . , m. Moreover,
AC∆(J) stands for the set of functions u ∈ C∆(J) being absolutely continuous
on each subinterval (ti, ti+1), i = 0, 1, . . . , m. For u ∈ C1

∆(J) we write

‖u‖C1
∆(J) = ‖u‖∞ + ‖u′‖∞.

Definition 1 A solution of the problem (0.1)–(0.3) is a function y ∈ C1
∆(J)

such that φ(y′) ∈ AC∆(J), y fulfils equation (0.1) for a.e. t ∈ J , further satisfies
the periodic conditions (0.2) and the impulsive conditions (0.3).

Definition 2 Functions σ1 ∈ C1
∆(J), σ2 ∈ C1

∆(J) are respectively called lower
and upper functions of the problem (0.1)–(0.3), if φ(σ′

1), φ(σ′
2) ∈ AC∆(J) and

(φ(σ′
1(t)))

′ ≥ f(t, σ1(t), σ′
1(t)), (φ(σ′

2(t)))
′ ≤ f(t, σ2(t), σ′

2(t)) for a.e. t ∈ J,

σ1(0) = σ1(T ), σ2(0) = σ2(T ),
σ′

1(0) ≥ σ′
1(T ), σ′

2(0) ≤ σ′
2(T ),

σ1(ti+) = Ji(σ1(ti)), σ2(ti+) = Ji(σ2(ti)), i = 1, . . . , m,

σ′
1(ti+) ≥ Mi(σ′

1(ti)), σ′
2(ti+) ≤ Mi(σ′

2(ti)), i = 1, . . . , m.

Remark 1.1 If Mi(0) = 0 for i = 1, . . . , m and r1 ∈ R is such that Ji(r1) = r1

for i = 1, . . . , m and
f(t, r1, 0) ≤ 0 for a.e. t ∈ J,

then σ1(t) ≡ r1 on J is a lower function of the problem (0.1)–(0.3). Similarly,
if r2 ∈ R is such that Ji(r2) = r2 for i = 1, . . . , m and

f(t, r2, 0) ≥ 0 for a.e.t ∈ J,

then σ2(t) ≡ r2 on J is an upper function of the problem (0.1)–(0.3).

The main results of this paper are contained in the following two theorems.
In Theorem 1.1 we suppose that the right-hand side f of equation (0.1) fulfils
conditions of the sign type.

Theorem 1.1 Let lower and upper functions of the problem (0.1)–(0.3) exist
and satisfy (0.4), (0.6) and σ1 ≤ σ2 on J . Let there exist functions ϕ1, ϕ2 ∈
C∆(J) such that φ(ϕ1), φ(ϕ2) ∈ AC∆(J) and

ϕ1(0) ≥ ϕ1(T ), ϕ2(0) ≤ ϕ2(T ),

ϕ1(t) ≤ σ′
i(t) ≤ ϕ2(t), on J, i = 1, 2,

ϕ1(tj+) ≥ Mj(ϕ1(tj)), ϕ2(tj+) ≤ Mj(ϕ2(tj)), j = 1, . . . , m.

(1.7)
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Furthermore, let ϕ1, ϕ2 satisfy inequalities

f(t, x, ϕ1(t)) ≤ (φ(ϕ1(t)))′, f(t, x, ϕ2(t)) ≥ (φ(ϕ2(t)))′ (1.8)

for a.e. t ∈ J and for all x ∈ [σ1(t), σ2(t)].
Then the problem (0.1)–(0.3) has a solution u ∈ C1

∆(J) such that

σ1 ≤ u ≤ σ2, ϕ1 ≤ u′ ≤ ϕ2 on J. (1.9)

Remark 1.2 If s1 ≤ σ′
j(t) on J , j = 1, 2, is such that Mi(s1) = s1 for i =

1, . . . , m and

f(t, x, s1) ≤ 0 for a.e. t ∈ J, for all x ∈ [σ1(t), σ2(t)],

then ϕ1(t) ≡ s1 on J fulfils conditions of Theorem 1.1. If s2 ≥ σ′
j(t) on J ,

j = 1, 2, is such that Mi(s2) = s2 for i = 1, . . . , m and

f(t, x, s2) ≥ 0 for a.e. t ∈ J, for all x ∈ [σ1(t), σ2(t)],

then ϕ2(t) ≡ s2 on J fulfils conditions of Theorem 1.1.

Example 1.1
d
dt [φ(x′)] = tp + xq + (x′)r +

√
T√
t
(x′)k, x(0) = x(T ), x′(0) = x′(T ),

x(ti+) = ai(x(ti))2 + (1 − ai(A + B))x(ti) + ABai = Ji(x(ti)),
i = 1, . . . , m,

x′(ti+) = bi(x′(ti))3 − bi(D + C)(x′(ti))2 + (1 + biCD)x′(ti) = Mi(x′(ti)),
i = 1, . . . , m,

(1.10)
k > 0 and q > 0 are odd, p > 0, r > 0, A < 0, B > 0, C < 0, D > 0. If
ai ∈ [− 1

B−A , 1
B−A ], i = 1, . . . , m, then Ji satisfy condition (0.4) for i = 1, . . . , m.

If bi ∈ [0, 4
(D−C)2 ], i = 1, . . . , m, thenMi satisfy condition (0.6) for i = 1, . . . , m.

Ji(A) = A, Ji(B) = B, Mi(C) = C, Mi(D) = D, i = 1, . . . , m.
If Aq + T p ≤ 0 then σ1(t) ≡ A is a lower function of the problem (1.10).

Function σ2(t) ≡ B is an upper function of the problem (1.10). Further, if
Bq +T p ≤ −Ck −Cr and |A|q ≤ Dk +Dr, then functions ϕ1(t) ≡ C, ϕ2(t) ≡ D
satisfy the conditions of Theorem 1.1, so there exists a solutions of the problem
(1.10) fulfiling inequalities (1.9).

Example 1.2(
(x′)3

)′ = 1√
t
(x′k − sgnx′) + xp + tq, k > 0, p > 0 are odd, q ≥ 0,

x(0) = x(3), x′(0) = x′(3),
x(1+) = x(1) + 1, x′(1+) = x′(1) − 2,
x(2+) = x(2) − 2, x′(2+) = x′(2) + 2.

(1.11)
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If we select functions σ1 and σ2 in the following way

σ1 =

⎧⎪⎨⎪⎩
t + 1 − 4 · 3

q
p , t ∈ [0, 1],

−t + 4 − 4 · 3
q
p , t ∈ (1, 2],

t − 2 − 4 · 3
q
p , t ∈ (2, 3],

σ2 =

⎧⎪⎨⎪⎩
t − 2 + 6 · 3

q
p , t ∈ [0, 1],

−t + 1 + 6 · 3
q
p , t ∈ (1, 2],

t − 5 + 6 · 3
q
p , t ∈ (2, 3],

then σ1, σ2 are respectively lower and upper functions of the problem (1.11). If
we select functions ϕ1 and ϕ2 in this way

ϕ1 =

⎧⎪⎨⎪⎩
−6

p+1
k · 3

q
pk , t ∈ [0, 1],

−6
p+1

k · 3
q

pk − 2, t ∈ (1, 2],
−6

p+1
k · 3

q
pk , t ∈ (2, 3],

ϕ2 =

⎧⎪⎨⎪⎩
4

p+1
k · 3

q
pk + 2, t ∈ [0, 1],

4
p+1

k · 3
q

pk , t ∈ (1, 2],
4

p+1
k · 3

q
pk + 2, t ∈ (2, 3],

then these functions satisfy the conditions of Theorem 1.1, so there exists a
solutions of the problem (1.11) fulfiling inequalities (1.9).

In Theorem 1.2 we impose one-sided conditions of the growth type on f .

Theorem 1.2 Let σ1, σ2 be respectively lower and upper functions of the prob-
lem (0.1)–(0.3) and satisfy (0.4), (0.5) and σ1 ≤ σ2 on J . Assume that k ∈ L(J)
is nonnegative a.e. on [0, T ], ω ∈ C([0,∞)) is positive on [0,∞) and∫ φ(−1)

−∞

ds

ω(|φ−1(s)|) = ∞,

∫ ∞

φ(1)

ds

ω(|φ−1(s)|) = ∞

and

f(t, x, y) ≤ ω(|y|)(k(t) + |y|) for a.e. t ∈ J and every (x, y) ∈ [σ1(t), σ2(t)] × R.
(1.12)

Then the problem (0.1)–(0.3) has a solution u such that σ1 ≤ u ≤ σ2 on J .

Example 1.3(
|x′|k−1x′)′ = 1√

t
(x′k − 1) + xm + x′k+1, k > 0 even, m > 0 odd,

x(0) = x(3), x′(0) = x′(3),

x(1+) = x(1) + 1, x′(1+) = x′(1) − 2,

x(2+) = x(2) − 2, x′(2+) = x′(2) + 2.

(1.13)
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Define functions σi : J → R, i = 1, 2

σ1(t) =

⎧⎨⎩
t − 3 if t ∈ [0, 1],
−t if t ∈ [1, 2],
t − 6 if t ∈ [2, 3],

σ2(t) =

⎧⎨⎩
t + 1 if t ∈ [0, 1],
−t + 4 if t ∈ [1, 2],
t − 2 if t ∈ [2, 3].

Then we have

f(t, σ1, σ
′
1) =

1√
t

(
σ′2

1 − 1
)

+ σ3
1 + σ′3

1

=

⎧⎪⎨⎪⎩
1√
t
(1 − 1) + (t − 3)m + 1 < 0 if t ∈ [0, 1]

1√
t
(1 − 1) + (−t)m − 1 < 0 if t ∈ (1, 2]

1√
t
(1 − 1) + (t − 6)m + 1 < 0 if t ∈ (2, 3]

⎫⎪⎬⎪⎭ =
(
φ(σ′

1)
)′

,

f(t, σ2, σ
′
2) =

1√
t

(
σ′2

2 − 1
)

+ σ3
2 + σ′3

1

=

⎧⎪⎨⎪⎩
1√
t
(1 − 1) + (t + 1)m + 1 > 0 if t ∈ [0, 1]

1√
t
(1 − 1) + (−t + 4)m − 1 > 0 if t ∈ (1, 2]

1√
t
(1 − 1) + (t − 2)m + 1 > 0 if t ∈ (2, 3]

⎫⎪⎬⎪⎭ =
(
φ(σ′

2)
)′

.

Functions σ1, σ2 are respectively lower and upper functions of the problem
(1.13). The right-hand side of the equation does not fulfil conditions of the
sign type, because f(t, x, ϕ1) is not bounded on [0, 1]. Nevertheless, one-sided
conditions of the growth type are valid.

φ−1(x) = |x| 1
k sgnx, ω(s) = 1 + sk,∫ ∞

1

ds

ω(|φ−1(s)|) = ∞,

∫ −1

−∞

ds

ω(|φ−1(s)|) = ∞,

f(t, x, y) =
1√
t

(
yk − 1

)
+ xm + yk+1 ≤ 1√

t
(|y|k + 1) + (σm

2 (t) + |y|)(|y|k + 1)

≤ (1 + |y|k)(
1√
t

+ σm
2 (t) + |y|) = ω(|y|)(k(t) + |y|).

By means of Theorem 1.2, there exists a solution of the problem (1.13).

2 Existence result for bounded right-hand sides
of equations

At the beginning of this section we introduce an auxiliary problem and find a
priori estimates for its solution. The main result of this section is contained
in Theorem 2.1. In the proof of this theorem we show that a solution of the
auxiliary problem (2.6)–(2.9) exists and is also a solution of the problem (0.1)–
(0.3).
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Assume that there is h ∈ L(J) such that |f(t, x, y)| ≤ h(t) for a.e. t ∈ J , for
all (x, y) ∈ [σ1(t), σ2(t)] × R. Define function ϕ : J × R → R

ϕ(t, x) =

⎧⎨⎩
σ2(t) if x > σ2(t),
x if σ1(t) ≤ x ≤ σ2(t),
σ1(t) if x < σ1(t),

(2.1)

and further functions ωi : J × [0, 1] → R, i = 1, 2,

ω1(t, ε) = sup{|f(t, σ1, σ
′
1) − f(t, σ1, y)| : |y − σ′

1| ≤ ε}, (2.2)

ω2(t, ε) = sup{|f(t, σ2, σ
′
2) − f(t, σ2, y)| : |y − σ′

2| ≤ ε}.

We see that ωi ∈ Car(J × [0, 1]) are nonnegative, nondecreasing in the second
variable and ωi(t, 0) = 0 for a.e. t ∈ J , i = 1, 2.
Now, define F : J × R2 → R such that

F (t, x, y) =

⎧⎪⎨⎪⎩
f(t, σ2, y) + ω2(t, x−σ2

x−σ2+1 ) + x−σ2
x−σ2+1 for x > σ2(t),

f(t, x, y) for σ1(t) ≤ x ≤ σ2(t),

f(t, σ1, y) − ω1(t, σ1−x
σ1−x+1 ) − σ1−x

σ1−x+1 for x < σ1(t).
(2.3)

This function is bounded by a Lebesgue integrable function H

|F (t, x, y)| ≤ H(t) for a.e. t ∈ J , for all (x, y) ∈ R2. (2.4)

Define a function β : R → R

β(y) =
{

y if |y| ≤ K,
K · sign y if |y| > K

and

K = max
{∣∣φ−1

(
− max{

∣∣φ(−r

δ
)
∣∣, ∣∣φ(

r

δ
)
∣∣} − ‖H‖L(J)

)∣∣, (2.5)∣∣φ−1
(
max{

∣∣φ(−r

δ
)
∣∣, ∣∣φ(

r

δ
)
∣∣} + ‖H‖L(J)

)∣∣}+ ‖σ′
1‖∞ + ‖σ′

2‖∞,

where
r = ‖σ1‖∞ + ‖σ2‖∞, δ = min

j∈{0,...,m}
(tj+1 − tj).

We consider the following modified problem

d

dt
[φ(x′(t))] = F (t, x(t), x′(t)), (2.6)

x(0) = ϕ(0, x(0) + x′(0) − x′(T )), (2.7)

x(T ) = ϕ(0, x(0) + x′(0) − x′(T )),

x(ti+) = x(ti) − ϕ(ti, x(ti)) + Ji(ϕ(ti, x(ti))) = J̃i(x(ti)), i = 1, . . .m, (2.8)

φ(x′(ti+)) − φ(x′(ti)) = φ
(
Mi(β(x′(ti)))

)
− φ
(
β(x′(ti))

)
, i = 1, . . .m. (2.9)
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For this problem the following three lemmas rule

Lemma 2.1 Let u be a solution of (2.6)–(2.9) and (0.4), (0.6) hold. Let σ1, σ2

be respectively lower and upper functions of (0.1)–(0.3) and σ1 ≤ σ2 on J . Then
u satisfies

σ1(t) ≤ u(t) ≤ σ2(t) for all t ∈ J. (2.10)

Proof We show that v(t) = σ1(t) − u(t) ≤ 0 for all t ∈ J . By (2.7), we have
v(0) = v(T ) < 0.
1. Assume, on the contrary, that there is α ∈ (0, T )\∆ such that

max{(σ1 − u)(t) : t ∈ J} = v(α) > 0.

Then (σ1 − u)′(α) = 0. This guarantees the existence of δ > 0 such that

(σ1 −u)(t) > 0, |v′(t)| <
σ1 − u

σ1 − u + 1
< 1 ∀t ∈ (α, α + δ) ⊂ (0, T )\∆. (2.11)

Using (2.3), (2.11) and the properties of σ1, we get

[φ(σ′
1(t))]

′ − [φ(u′(t))]′

≥ f(t, σ1(t), σ′
1(t))−f(t, σ1(t), u′(t))+ω1

(
t,

σ1(t) − u(t)
σ1(t) − u(t) + 1

)
+

σ1(t) − u(t)
σ1(t) − u(t) + 1

> −|f(t, σ1(t), σ′
1(t))−f(t, σ1(t), u′(t))|+ω1(t, |σ′

1(t)−u′(t)|)+|σ′
1(t)−u′(t)| > 0

for a.e. t ∈ (α, α + δ).
Hence, φ(σ′

1(t)) − φ(u′(t)) > φ(σ′
1(α)) − φ(u′(α)) = 0 for all t ∈ (α, α + δ).

Since φ is increasing, we get u′(t) < σ′
1(t) for all t ∈ (α, α+ δ). This contradicts

that v has a maximum at α. We have showed that v does not have a positive
maximum at any point of (0, T )\∆.
2. If v(t) > 0 for some t ∈ J , there is a tj ∈ ∆ such that

max{v(t) : t ∈ [0, T ]} = v(tj) > 0. (2.12)

By (2.8) and the Definition 2 we get

v(tj+) = σ1(tj+) − u(tj+) = Jj(σ1(tj)) − u(tj) + σ1(tj) − Jj(σ1(tj)) = v(tj).

Then
v′(tj+) ≤ 0. (2.13)

Futhermore, taking into account (2.12), we have v′(tj) ≥ 0, and by Definition 2,
the relations

φ(σ′
1(tj+)) ≥ φ

(
Mj(σ′

1(tj))
)
≥ φ
(
Mj(β(u′(tj)))

)
= φ(u′(tj+)) − φ(u′(tj)) + φ(β(u′(tj))) ≥ φ(u′(tj+))

⇒ φ(σ′
1(tj+)) − φ(u′(tj+)) ≥ 0

follow. It means, since a function φ is increasing,

v′(tj+) ≥ 0. (2.14)



Periodic BVP with φ-Laplacian and impulses 139

Now, by (2.13), (2.14) we get v′(tj+) = 0.
Thus, in view of the first part of the proof, there is δ > 0 such that

v(t) > 0, |v′(t)| <
σ1 − u

σ1 − u + 1
< 1 on (tj , tj + δ) ⊂ (0, T )\∆

and we deduce that v′(t) > 0 for all t ∈ (tj , tj + δ), which contradicts (2.12).
So, we have proved σ1(t) ≤ u(t) for all t ∈ J .
If we put v(t) = u(t)−σ2(t), we can prove u(t) ≤ σ2(t) on J by an analogous

argument. �

Lemma 2.2 Let u be a solution of (2.6)–(2.9) with a condition (0.6). Then u
satisfies the periodic boundary conditions (0.2).

Proof The first, we prove

σ1(0) ≤ u(0) + u′(0) − u′(T ) ≤ σ2(0). (2.15)

Suppose, on the contrary, that

u(0) + u′(0) − u′(T ) > σ2(0). (2.16)

By the definition of the function ϕ it follows that ϕ(0, u(0) + u′(0) − u′(T )) =
σ2(0). Then, by condition (2.7), we get σ2(0) = u(0). The inequality (2.16)
implies that

u′(0) > u′(T ). (2.17)

The equality σ2(0) = u(0) = u(T ) = σ2(T ) and (2.10)) yield σ′
2(0) ≥ u′(0) and

σ′
2(T ) ≤ u′(T ). This together with Definition 2, this head to

u′(0) ≤ σ′
2(0) ≤ σ′

2(T ) ≤ u′(T ),

contrary to (2.17). We can similary derive the inequality σ1(0) ≤ u(0)+u′(0)−
u′(T ).
So, if (2.15) is valid, then

u(0) = ϕ(0, u(0) + u′(0) − u′(T )) = u(0) + u′(0) − u′(T ) ⇒ u′(0) = u′(T ).

It means that a solution of (2.6)–(2.9) fulfils periodic boundary conditions. �

Lemma 2.3 Let u be a solution of (2.6)–(2.9) with a condition (0.6). Then u
satisfies the impulsive conditions (0.3).

Proof By means of Lemma 2.1 the equality ϕ(ti, u(ti)) = u(ti) holds. Then
the condition (2.8) implies u(ti+) = Ji(u(ti)) for all i ∈ {1, . . . , m}. We will
prove the impulsive condition for u′.
We show that

φ(Mj(u′(tj))) = φ
(
Mj(β(u′(tj)))

)
, φ(u′(tj)) = φ

(
β(u′(tj))

)
∀tj ∈ ∆.
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By the Mean Value Theorem there exists ξj ∈ (tj , tj+1), j = 0, . . . , m, such that

|u′(ξj)| =
|u(tj+1) − u(tj)|

tj+1 − tj
≤ r

δ
.

Then the equality

u′(tj) = φ−1
(
φ(u′(ξj)) +

∫ tj

ξj

[φ(u′(s))]′ds
)
.

holds for all j ∈ {1, . . . , m}. With respect to (2.4), (2.5) and (2.6) we have

|u′(tj)| ≤ K, j = 1, . . . , m.

By (2.9), it means that u fulfils

φ(u′(ti+)) − φ(u′(ti)) = φ(Mi(u′(ti))) − φ(u′(ti)) ∀i ∈ {1, . . . , m},

therefore u′(ti+) = Mi(u′(ti)) for all i ∈ {1, . . . , m}, which concludes the proof.
�

Now, we will prove the main result of this section concerning the existence
of a solution for problem (0.1)–(0.3) with a bounded right-hand side.

Theorem 2.1 Let σ1, σ2 be respectively lower and upper functions of the prob-
lem (0.1)–(0.3) and σ1 ≤ σ2 on J .
Assume that (0.4) and (0.6) hold. Further assume that there is h ∈ L(J)

such that |f(t, x, y)| ≤ h(t) for a.e. t ∈ J , for all (x, y) ∈ [σ1(t), σ2(t)] × R.
Then the problem (0.1)–(0.3) has a solution u fulfilling

σ1 ≤ u ≤ σ2 on J. (2.10)

Proof By means of the three previous lemmas it is sufficient to prove the
existence of a solution of the auxiliary problem (2.6)–(2.9). Denote

Ψu(t) =
m∑

i=1

χ(ti,T ](t)
[
φ
(
Mi(β(u′(ti)))

)
− φ
(
β(u′(ti))

)]
for t ∈ J, (2.18)

where χ(tj ,T ](t) means the characteristic function of the interval (tj , T ]. For
fixed v ∈ C1

∆(J) define gv : R → R such that

gv(x) =
∫ T

0

φ−1
(
x +
∫ r

0

Fv(s)ds + Ψu(r)
)
dr ∀x ∈ R,

where Fv(s) ≡ F (s, v(s), v′(s)) for a.e. s ∈ J . Since φ−1 is continuous and
increasing, gv is continuous and increasing, too. We know that there isH ∈ L(J)
such that |Fv(s)| ≤ H(s) for a.e. s ∈ J and for all v ∈ C1

∆(J) and then

|
∫ t

0

Fv(s)| ≤ ‖H‖L(J) for all t ∈ J and every v ∈ C1
∆(J). (2.19)
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By (2.18), there exists � > 0 such that∣∣Ψu(t)
∣∣ ≤ � ∀t ∈ J, u ∈ C1

∆(J). (2.20)

Since φ is increasing, for each x ∈ R and for all v ∈ C1
∆(J)

Tφ−1(x − ‖H‖L(J) − �) ≤ gv(x) ≤ Tφ−1(x + ‖H‖L(J) + �).

holds. By this inequalities and by the fact that φ−1(R) = R, we have gv(R) = R
for each v ∈ C1

∆(J). Therefore, for all v ∈ C1
∆(J) there exists a unique Av

satisfying

gv(Av) =
∫ T

0

φ−1
(
Av +

∫ r

0

Fv(s)ds + Ψv(r)
)
dr = −

m∑
i=1

(
J̃i(u(ti)) − u(ti)

)
. (2.21)

We show that there exists N > 0 such that |Av| ≤ N for every v ∈ C1
∆(J).

The Mean Value Theorem for integrals implies that there is η ∈ (0, T ) such that∫ T

0

φ−1
(
Av +

∫ r

0

Fv(s)ds + Ψv(r)
)
dr

= Tφ−1
(
Av +

∫ η

0

Fv(s)ds + Ψv(η)
)

= −
m∑

i=1

(
J̃i(u(ti)) − u(ti)

)
= C.

Then Av = φ
(

C
T

)
−
∫ η

0 Fv(s)ds − Ψv(η) and

|Av| =
∣∣∣φ(C

T

)
−
∫ η

0

Fv(s)ds − Ψv(η)
∣∣∣ ≤ ∣∣∣φ(C

T

)∣∣∣+ ∫ η

0

|Fv(s)|ds +
∣∣Ψv(η)

∣∣
≤
∣∣∣φ(C

T

)∣∣∣+ ∫ T

0

H(s)ds + � =
∣∣∣φ(C

T

)∣∣∣+ ‖H‖L(J) + �.

It means that

|Av| ≤
∣∣∣φ(C

T

)∣∣∣+ ‖H‖L(J) + � = N for all v ∈ C1
∆(J). (2.22)

Now define the following operator T : C1
∆(J) → C1

∆(J) by the formula

(T u)(t) =
m∑

i=1

χ(ti,T ](t)
(
J̃i(u(ti)) − u(ti)

)
+ ϕ(0, u(0) + u′(0) − u′(T ))

+
∫ t

0

φ−1
(
Au +

∫ r

0

Fu(s)ds + Ψu(r)
)
dr. (2.23)

Then for all t ∈ J and all u ∈ C1
∆(J)

(T u)′(t) = φ−1
(
Au +

∫ t

0

Fu(s)ds + Ψu(t)
)

(2.24)
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holds. If u ∈ C1
∆(J) is a fixed point of T , then from equation (2.24), we obtain

φ(u′(t)) = Au +
∫ t

0

Fu(s)ds + Ψu(t) for all t ∈ J and for every u ∈ C1
∆(J).

(2.25)
F ∈ Car(J × R2) means that Fu ∈ L(J), so we have φ(u′) ∈ AC∆(J). Dif-
ferentiating in equation (2.25), we obtain that u satisfies equation (2.6). Using
(2.21) we see that u satisfies conditions (2.7). From equation (2.25) we get for
all j ∈ {1, . . . , m} equalities

φ(u′(tj)) = Au +
∫ tj

0

Fu(s)ds +
j−1∑
i=1

χ(ti,T ](t)
[
φ
(
Mi(β(u′(ti)))

)
− φ
(
β(u′(ti))

)]
,

φ(u′(tj+)) = Au +
∫ tj

0

Fu(s)ds +
j∑

i=1

χ(ti,T ](t)
[
φ
(
Mi(β(u′(ti)))

)
−φ
(
β(u′(ti))

)]
.

From the difference of the left-hand and right-hand sides of these equalities we
see that for all tj ∈ ∆ condition (2.9) follows. Moreover, from equation (2.23)
we deduce

u(tj+) = J̃j(u(tj)) for every j ∈ {1, . . . , m}.
Thus, if u is a fixed point of the operator T then u is a solution of (2.6)–(2.9).
Now, we will prove that the operator T has a fixed point u ∈ C1

∆(J). We
start showing that the operator T is continuous in C1

∆(J). For {un} ⊂ C1
∆(J),

we prove
un → u in C1

∆(J) =⇒ T un → T u in C1
∆(J).

Let An correnspond to un by equation (2.21), and similarly let A correnspond
to u. We prove that An → A. By the construction of An and A and by the
Mean Value Theorem there exists ξn ∈ (0, T ) such that

lim
n→∞

jZ T

0

φ−1
`
An+

Z r

0

Fun(s)ds+Ψun(r)
´
dr−

Z T

0

φ−1
`
A+

Z r

0

Fu(s)ds+Ψu(r)
´
dr

ff

= T lim
n→∞

j
φ−1`

An+

Z ξn

0

Fun(s)ds+Ψun(ξn)
´−φ−1`

A+

Z ξn

0

Fu(s)ds+Ψu(ξn)
´ff

= 0.

(2.26)

Since φ is uniformly continuous in J , we have

lim
n→∞

{
An +

∫ ξn

0

Fun(s)ds + Ψun(ξn) − A −
∫ ξn

0

Fu(s)ds − Ψu(ξn)
}

= 0.

By the continuity of φ and β in u it follows that ‖Ψun − Ψu‖∞ → 0. Since
un → u in C1

∆(J) and F ∈ Car(J × R2), it holds that Fun → Fu a.e on J . By
the Lebesgue theorem and from (2.19) we have

lim
n→∞

∫ ξn

0

[
Fun(s) − Fu(s)

]
ds = 0.
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We conclude that limn→∞ An = A. Furthermore

An +
∫ t

0

Fun(s)ds + Ψun(t) → A +
∫ t

0

Fu(s)ds + Ψu(t) for all t ∈ J.

Now, since ∣∣∣An +
∫ t

0

Fun(s)ds + Ψun(t) − A −
∫ t

0

Fu(s)ds − Ψu(t)
∣∣∣

≤ |An − A| + ‖Fun − Fu‖L(J) + ‖Ψun − Ψu‖∞,

for all t ∈ J , the convergence is uniform. By the uniform continuity φ−1 on
compact intervals, (T un)′ → (T u)′ uniformly on J .
Since ϕ is continuous

ϕ(0, un(0) + u′
n(0) − u′

n(T )) → ϕ(0, u(0) + u′(0) − u′(T ))

in R. Since J̃i are continuous for all i ∈ ∆
m∑

i=1

χ(ti,T ](·)
(
J̃i(un(ti)) − un(ti)

)
→

m∑
i=1

χ(ti,T ](·)
(
J̃i(u(ti)) − u(ti)

)
uniformly on J . Thus T un → T u uniformly on J .
Now, we are going to prove a compactness of the operator T . Let M be

an arbitrary set in C1
∆(J) and {xn} ⊂ T (M) be an arbitrary sequence. We

prove that we can choose a subsequence convergent in C1
∆(J) to the function

x ∈ T (M). Choose sequence {xn} ⊂ T (M). Then

xn(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x

[0]
n (t), t ∈ [0, t1],

x
[1]
n (t), t ∈ (t1, t2],
. . . . . . . . . . . .

x
[m]
n (t), t ∈ (tm, T ],

where {x[i]
n } ⊂ C1[ti, ti+1], i = 0, . . . , m. Consider {x[0]

n } ⊂ C1[0, t1]. We will
show that this sequence is bounded and {(x[0]

n )′} is equicontinuous on [0, t1].
Let un ∈ M be such that xn = T un. Then by (2.19), (2.20) and (2.22)

‖x[0]
n ‖C1[0,t1] ≤

m∑
i=1

|J̃i(u(ti)) − u(ti)| + ‖σ1‖∞ + ‖σ2‖∞

+
∫ t

0

∣∣∣φ−1
(
Aun +

∫ r

0

Fun(s)ds+Ψun(r)
)∣∣∣dr+

∣∣∣φ−1
(
Aun +

∫ t

0

Fun(s)ds+Ψun(t)
)∣∣∣

≤
m∑

i=1

|J̃i(u(ti)) − u(ti)| + ‖σ1‖∞ + ‖σ2‖∞

+ (T + 1)max{|φ−1(−N − ‖H‖L(J) − �)|, |φ−1(N + ‖H‖L(J)) + �)|}.

It means that {x[0]
n } is bounded.
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On the basis of the absolute continuity of the Lebesgue integral the condition

∀ε1 > 0 ∃δ1 > 0 ∀τ1, τ2 ∈ [0, t1] ∀xn ∈ T (M) : |τ1 − τ2| < δ1

⇒
∣∣∣Aun +

∫ τ1

0

Fun(s)ds + Ψun(t1) −
(
Aun +

∫ τ2

0

Fun(s)ds + Ψun(t1)
)∣∣∣

=
∣∣∣∫ τ2

τ1

Fun(s) ds
∣∣∣ < ∣∣∣ ∫ τ2

τ1

H(s) ds
∣∣∣ < ε1 (2.27)

holds. By the uniform continuity of φ−1 we have

∀ε > 0 ∃ε2 > 0 ∀τ1, τ2 ∈ [0, t1] ∀xn ∈ T (M) :∣∣∣Aun +
∫ τ1

0

Fun(s) ds + Ψun(t1) −
(
Aun +

∫ τ2

0

Fun(s) ds + Ψun(t1)
)∣∣∣ < ε2

=⇒
∣∣∣φ−1
(
Aun +

∫ τ1

0

Fun(s) ds + Ψun(t1)
)

−φ−1
(
Aun +

∫ τ2

0

Fun(s) ds + Ψun(t1)
)∣∣∣ < ε.

If we choose δ2 corrensponding to ε2 by (2.27), then

∀ε > 0 ∃δ2 ∀τ1, τ2 ∈ [0, t1] ∀xn ∈ T (M) : |τ1 − τ2| < δ2

=⇒
∣∣(x[0]

n )′(τ1) − (x[0]
n )′(τ2)

∣∣ = ∣∣∣φ−1
(
Aun +

∫ τ1

0

Fun(s) ds + Ψun(t1)
)

−φ−1
(
Aun +

∫ τ2

0

Fun(s) ds + Ψun(t1)
)∣∣∣ < ε.

It means that {(x[0]
n )′} is equicontinuous. We can do similar considerations for

the other sequences {x[i]
n } ⊂ C1[ti, ti+1], i = 1, . . . , m. Now, we select {x[0]

n } ⊂
{x[0]

kn
} convergent in C1[0, t1], and corrensponding subsequences {x[i]

kn
} ⊂ {x[i]

n },
i = 1, . . . , m. Having {x[1]

kn
} we can select convergent subsequence. Without

loss of generality we denote it {x[1]
kn

} again, and choose corrensponding {x[i]
kn

},
i = 0, 2, . . . , m. Continuing inductively we choose convergent {x[m]

ln
} ⊂ {x[m]

n }
and corrensponding sequences {x[i]

ln
}, i = 0, . . . , m − 1. If we take

xln(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x

[0]
ln

(t), t ∈ [0, t1],
x

[1]
ln

(t), t ∈ (t1, t2],
. . . . . . . . . . . .

x
[m]
ln

(t), t ∈ (tm, T ],

we obtain the subsequence {xln(t)} ⊂ {xn(t)} ⊂ T (M), such that {xln(t)}
converges in C1

∆(J). It means that the operator T is compact.
For all u ∈ C1

∆(J) the following estimate holds

‖T u‖C1
∆(J) ≤

m∑
i=1

|J̃i(u(ti)) − u(ti)| + ‖σ1‖∞ + ‖σ2‖∞

+ (T + 1)max{|φ−1(−N − ‖H‖L(J) − �)|, |φ−1(N + ‖H‖L(J)) + �)|} = Q.
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Define Ω = {u ∈ C1
∆(J) : ‖u‖C1

∆(J) ≤ Q}. Then Ω is a nonempty closed
bounded and convex set. The operator T sends the set Ω into Ω, T is compact.
By the Schauder fixed point theorem, operator T has a fixed point u. This fixed
point is a solution of the problem (0.1)–(0.3). �

3 Proofs of main results

In this section we prove the existence results which are contained in Theorem
1.1 and Theorem 1.2.

Proof of Theorem 1.1 Define function ψ(t, y) : J × R → R

ψ(t, y) =

⎧⎪⎨⎪⎩
ϕ2(t) if y > ϕ2(t),

y if ϕ1(t) ≤ y ≤ ϕ2(t),

ϕ1(t) if y < ϕ1(t).

(3.1)

Further define function g : J × R2 → R by the formula

g(t, u, v) = f(t, u, ψ(t, v)) +
v − ψ(t, v)

|v − ψ(t, v)| + 1
. (3.2)

Then there exists h0 ∈ L(J)

|g(t, x, y)| ≤ h0(t) for a.e. t ∈ J, for all (x, y) ∈ [σ1(t), σ2(t)] × R.

Functions σ1 and σ2 are respectively lower and upper functions of the auxiliary
problem

d

dt
[φ(x′(t))] = g(t, x(t), x′(t)), (3.3)

x(0) = x(T ), ψ(0, x′(0)) = x′(T ), (3.4)

x(ti+) = Ji(x(ti)), i ∈ {1, . . . , m}, (3.5)

x′(ti+) = x′(ti) − ψ(ti, x′(ti)) + Mi(ψ(ti, x′(ti))) = M̃i(x′(ti)), i ∈ {1, . . . , m},
(3.6)

function M̃i satisfies condition (0.6) for all i ∈ ∆. Consider function ϕ defined
by (2.1), further formulas (2.2) - (2.5) defined for function g. By means of the
proof of Theorem 2.1 there exists a solution u of the following problem

d

dt
[φ(x′(t))] = F (t, x(t), x′(t)),

x(0) = ϕ(0, x(0) + ψ(0, x′(0)) − x′(T )),

x(T ) = ϕ(0, x(0) + ψ(0, x′(0)) − x′(T )),

x(ti+) = x(ti) − ϕ(ti, x(ti)) + Ji(ϕ(ti, x(ti))) = J̃i(x(ti)), i = 1, . . . m,

φ(x′(ti+)) − φ(x′(ti)) = φ
(
M̃i(β(x′(ti)))

)
− φ
(
β(x′(ti))

)
, i = 1, . . . m.

with a property σ1 ≤ u ≤ σ2 on J .
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In additions, function u is also solution of the problem (3.3)–(3.6). We will
show that the following inequalities hold

ϕ1 ≤ u′ ≤ ϕ2 on J. (3.7)

Since φ is increasing, it is enough to prove the inequality φ(ϕ1) ≤ φ(u′) ≤ φ(ϕ2)
on J .
1. Put z = φ(u′) − φ(ϕ2) on J . Assume, that there is α ∈ (0, T )\∆ such

that z has a positive local maximum at α, i.e. z(α) > 0. Since u is a solution of
the problem (3.3) - (3.6), there is δ > 0 such that z(t) > 0 on (α, α + δ) and

z′(t) = [φ(u′(t))]′ − [φ(ϕ2(t))]′ = g(t, u(t), u′(t)) − [φ(ϕ2(t))]′

≥ f(t, u(t), ϕ2(t)) +
u′ − ϕ2(t)

u′ − ϕ2(t) + 1
− f(t, u(t), ϕ2(t)) > 0

holds for a.e. t ∈ (α, α + δ) with respect to (1.8). Thus, for a.e. t ∈ (α, α + δ)
we have z′(t) > 0. By integration of this inequality we get

0 <

∫ t

α

z′(s)ds =
∫ t

α

([φ(u′(s))]′ − [φ(ϕ2(s))]′) ds

= φ(u′(t)) − φ(ϕ2(t)) − (φ(u′(α)) − φ(ϕ2(α))) = z(t) − z(α).

It means that z(t) > z(α) for all t ∈ (α, α + δ). It contradicts the assumption
of the local maximum of z in α.
2. Assume that there is tj ∈ ∆ such that z(tj) > 0. Then u′(tj) > ϕ2(tj).

Since

(u′ − ϕ2)(tj+) ≥ u′(tj) − ϕ2(tj) + Mj(ϕ2(tj)) − Mj(ϕ2(tj)) > 0,

the inequality z(tj+) > 0 holds. Then there exists δ > 0 such that

z(t) > 0 on (tj , tj + δ), z′(t) > 0 for a.e. t ∈ (tj , tj + δ). (3.8)

By the first part of the proof we have

z′(t) ≥ 0 on (tj , tj+1). (3.9)

Now, by (3.8) and (3.9) we obtain

max
t∈(tj ,tj+1]

z(t) = z(tj+1) > 0.

Continuing inductively we get z(T ) = φ(u′(T )) − φ(ϕ2(T )) > 0. It means that
u′(T ) > ϕ2(T ) ≥ ϕ2(0). It is contradiction because from (1.7) and (3.4) we
get u′(T ) ≤ ϕ2(0) ≤ ϕ2(T ). It means that the inequality u′ ≤ ϕ2 holds on J .
By an analogous argument we can prove inequality ϕ1 ≤ u′ using function
z(t) = φ(ϕ1(t)) − φ(u′(t)). So, u fulfils (3.7), consequently, u is a solution of
(0.1)–(0.3) satisfying (1.9). �

Before proving Theorem 1.2, we prove the following lemma where we derive
a priori estimates for derivatives of solutions.
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Lemma 3.1 Let σ1, σ2 be respectively lower and upper functions of the problem
(0.1)–(0.3) and σ1 ≤ σ2 on J . Assume that (0.5) holds. Further assume that
k ∈ L(J) is nonnegative a.e. on [0, T ], ω ∈ C([0,∞)) is positive on [0,∞) and∫ φ(−1)

−∞

ds

ω(|φ−1(s)|) = ∞,

∫ ∞

φ(1)

ds

ω(|φ−1(s)|) = ∞. (3.10)

Then there exists µ∗ > 0 such that for each function u ∈ C1
∆(J) fulfiling (0.2),

the conditions for derivative in (0.3) and inequalities

σ1 ≤ u ≤ σ2 on J, (3.11)

[φ(u′(t))]′ ≤ ω(|u′(t)|)(k(t) + |u′(t)|) for a.e. t ∈ J, (3.12)

the following estimate holds |u′(t)| < µ∗ for all t ∈ J .

Proof Put r = ‖σ1‖∞ + ‖σ2‖∞. By the Mean Value Theorem there is ξi ∈
(ti, ti+1) such that

|u′(ξi)| ≤
2r

δ
+ 1 = r1, i = 0, 1, . . . , m, (3.13)

where
δ = min

i=0,1,...,m
(ti+1 − ti).

The assumption (3.10) implies the existence of an increasing sequence {µj}2m+4
j=1 ∈

(r1,∞) such that

r1 < Mj(µj) < µj+1, −µm+4+j < M−1
m+1−j(−µm+3+j) < −r1

for j = 1, . . . , m and satisfying∫ φ(µ1)

φ(r1)

ds

ω(|φ−1(s)|) > r + ‖k‖L(J),

∫ φ(µm+2)

φ(µm+1)

ds

ω(|φ−1(s)|) > r + ‖k‖L(J),

∫ φ(−r1)

φ(−µm+3)

ds

ω(|φ−1(s)|) > r + ‖k‖L(J),

∫ φ(−µm+3)

φ(−µm+4)

ds

ω(|φ−1(s)|) > r + ‖k‖L(J),

∫ φ(µj+1)

φ(Mj(µj))

ds

ω(|φ−1(s)|) > r + ‖k‖L(J),

∫ φ(M−1
m+1−j(−µm+3+j))

φ(−µm+4+j)

ds

ω(|φ−1(s)|) > r + ‖k‖L(J)
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for j = 1, . . . , m. We estimate u′ from above. Assume that there is β1 ∈ (ξ0, t1]
such that

max{u′(t) : t ∈ [ξ0, t1]} = u′(β1) = c1 > r1.

Then we can find α1 ∈ (ξ0, β1) such that u′(α1) = r1, u′(t) > r1 for all t ∈
(α1, β1]. Integrating the inequality

[φ(u′(t))]′

ω(|u′(t)|) ≤ (k(t) + |u′(t)|),

which holds for a.e. t ∈ (α1, β1), we obtain∫ β1

α1

[φ(u′(t))]′dt

ω(u′(t))
≤
∫ β1

α1

(
k(t) + u′(t)

)
dt.

Using substitution s = φ(u′(t)) we get that∫ β1

α1

[φ(u′(t))]′dt

ω(u′(t))
=
∫ φ(c1)

φ(r1)

ds

ω(φ−1(s))
.

Moreover,∫ β1

α1

(
k(t) + u′(t)

)
dt =

∫ β1

α1

k(t)dt + u(β1) − u(α1) ≤ ‖k‖L(J) + |σ2(β1) − σ1(α1)|

≤ ‖k‖L(J) + (‖σ2‖C(J) + ‖σ1‖C(J)) = r + ‖k‖L(J).

So we have ∫ φ(c1)

φ(r1)

ds

ω(φ−1(s))
≤ r + ‖k‖L(J),

which implies that φ(c1) < φ(µ1). Since function φ is increasing, it means that
c1 < µ1. Thus u′(t) < µ1 for all t ∈ [ξ0, t1].
Next assume that there exists β2 ∈ (t1, t2] such that

sup{u′(t) : t ∈ (t1, t2]} = u′(β2) = c2 > M1(µ1).

Then we can find such α2 ∈ (t1, β2) that u′(α2) = M1(µ1), u′(t) > M1(µ1) for
all t ∈ (α2, β2]. Integrating inequality

[φ(u′(t))]′

ω(|u′(t)|) ≤ k(t) + |u′(t)|,

which holds for a.e. t ∈ (α2, β2), we get∫ β2

α2

[φ(u′(t))]′dt

ω(u′(t))
=
∫ φ(c2)

φ(M1(µ1))

ds

ω(φ−1(s))
≤ r + ‖k‖L(J),

so it must be c2 < µ2. We have proved that u′(t) < µ2 for all t ∈ [t1, t2]. Contin-
uing inductively over all intervals (tj , tj+1), we obtain the estimate u′(t) < µm+1
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for all t ∈ [tm, T ], from this u′(0) < µm+1 follows. Using the previous procedure
we deduce that u′(t) < µm+2 for all t ∈ [0, ξ0].
Similarly we estimate u′ from below. Assume that there exists βm+3 ∈ [0, ξ0)

such that

min{u′(t) : t ∈ [0, ξ0]} = u′(βm+3) = −cm+3 < −r1.

Then we prove that −cm+3 > −µm+3, tj. u′(t) > −µm+3 on [0, ξ0], u′(T ) >
−µm+3. From the assumption

inf{u′(t) : t ∈ (tm, T ]} = u′(βm+4) = −cm+4 < −µm+3

we get −cm+4 > −µm+4, i.e. −µm+4 < u′(t) for all t ∈ [tm, T ]. Assume that
there exists βm+5 ∈ [tm−1, tm) such that

inf{u′(t) : t ∈ (tm−1, tm]} = u′(βm+5) = −cm+5 < M−1
m (−µm+4).

Then we get −cm+5 > −µm+5, i.e. −µm+5 < u′(t) for all t ∈ [tm−1, tm]. We can
again prove inductively that −u′(t) > −µ2m+4 for every t ∈ [ξ0, t1]. If we put
µ∗ = µ2m+4, then µ∗ > µj for all j ∈ {1, . . . , 2m + 3} and therefore |u′(t)| ≤ µ∗
for all t ∈ J . �

Proof of Theorem 1.2 Define functions

χ(s, r∗) =

⎧⎪⎨⎪⎩
1 if 0 ≤ s ≤ r∗,
2 − s

r∗ if r∗ < s < 2r∗,
0 if s ≥ 2r∗

and
g(t, x, y) = χ(|x| + |y|, r∗) · f(t, x, y),

for t ∈ J , x, y ∈ R, where r∗ = ‖σ1‖∞ + ‖σ2‖∞ + max{µ∗, ‖σ′
1‖∞, ‖σ′

2‖∞} for
µ∗ given by Lemma 3.1. For (x, y) ∈ [σ1(t), σ2(t)] × R, the function g(t, x, y)
is bounded on J by a Lebesgue integrable function. In addition, σ1, σ2 are
respectively lower and upper functions of the problem

d

dt
[φ(x′(t))] = g(t, x(t), x′(t)), (0.2), (0.3). (3.14)

According to Theorem 2.1 there exists a solution u of the problem (3.14) fulfiling
σ1 ≤ u ≤ σ2 on J . Moreover,

g(t, x, y) =
= χ(|x| + |y|, r∗) · f(t, x, y) ≤ χ(|x| + |y|, r∗) · ω(|y|)(k + |y|) ≤ ω(|y|)(k + |y|)
for a.e. t ∈ J , for all x ∈ [σ1, σ2], every y ∈ R. It means that function g satisfies
condition (1.12) which implies that

[φ(u′(t))]′ = g(t, u(t), u′(t)) ≤ ω(|u′(t)|)(k(t) + |u′(t)|) for a.e t ∈ J .

Then, according to Lemma 3.1, |u′(t)| ≤ µ∗ holds for all t ∈ J . So ‖u‖∞ +
‖u′‖∞ < r∗ and g(t, u, u′) = f(t, u, u′) for a.e. t ∈ J . It means that a solution u
of the problem (3.14) is a solution of the problem (0.1)–(0.3), too. It concludes
the proof of Theorem 1.2. �
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Abstract

The paper deals with tensor fields which are semiconjugated with
torse-forming vector fields. The existence results for semitorse-forming
vector fields and for convergent vector fields are proved.

Key words: Torse-forming vector fields, Riemannian space, semisym-
metric space, T -semisymmetric space.
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1 Introduction

Torse-forming vector fields were introduced by K. Yano [8] in 1944 and their
properties in Riemannian spaces have been studied by various mathematicians.
For example some properties in Ricci semisymmetric Riemannian spaces have
been proved by J. Kowolik in [1]. In T -semisymmetric Riemannian spaces they
are studied by the authors in [4] and [5].
This paper is devoted to the study of tensor fields which are semiconjugated

with torse-forming vector fields. We are motivated by the work of J. Kowolik [1].
First we give some definitions and notations. Vn denotes an n-dimensional

Riemannian space with a metric g and an affine connection ∇. The metric g

*Supported by grant No. 201/05/2707 of The Grant Agency of Czech Republic and by the
Council of Czech Government MSM 6198959214.
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need not be positive definite. TVn is a space of all tangent vector fields on Vn.
In the whole paper we will assume that n > 2 and that all functions, vectors
and tensor fields are sufficiently smooth. Further ξ will be a non-zero vector
field, i.e. ξ(x) �= o for each x ∈ Vn.
We denote the Riemannian tensor in Vn byR. This tensor is called harmonic,

if Rα
ijk,α = 0, where “,” denotes the covariant derivative. This condition can be

written in the form Rij,k = Rik,j where Rij ≡ Rα
ijα is the Ricci tensor of Vn.

Definition 1 Vector field ξ is called torse-forming, if ∇Xξ = � · X + a(X) · ξ
for all X ∈ TVn, where � is some function on Vn, a is a linear form on Vn. In
the local transcription this formula has the form ξh

,i = �δh
i + aiξ

h, where ξh

are components of the torse-forming field ξ, δh
i is the Kronecker delta, ai are

components of the form a, which is a covector on Vn.

Definition 2 A torse-forming vector field ξ is called:

• recurrent, if � = 0,
• concircular, if the form a is gradient (or locally gradient), i.e. there exists
(locally) a function ϕ(x) such that a = ∂iϕ(x)dxi,

• convergent, if ξ is concircular and � = const · exp
(
ϕ(x)
)
,

• semitorse-forming, if R(X, ξ)ξ = 0 for each X ∈ TVn.

Properties of torse-forming vector fields in the Einsteinian spaces are proved
by the authors in [5]. In [2] and [3] J. Mikeš proved that in non-Einsteinian Ricci-
symmetric and Ricci-two-symmetric (Rij,kl = 0) spaces there are no concircular
vector fields which are not recurrent.
In what follows we will need a definition of an operator R(X, Y ) ◦ T for

tensors of the type (0, q) or (1, q).
Let T be a tensor of the type (0, q), which is defined as a q-linear form

T (X1, X2, . . . , Xq), where X1, X2, . . . , Xq ∈ TVn.
In the space Vn we introduce an operator R(X, Y ) ◦ T in the following way:

R(X, Y ) ◦ T (X1, X2, . . . , Xq)
def=

q∑
s=1

T (X1, . . . , Xs−1, R(X, Y )Xs, Xs+1, . . . , Xq).

In the local transcription the tensor R(X, Y ) ◦ T has a form

q∑
s=1

Ti1...is−1αis+1...iq R
α
isjk.

By the Ricci identity we have

Ti1...iq ,[jk] =
q∑

s=1

Ti1...is−1αis+1...iq R
α
isjk,

where [jk] denotes the alternation of the tensor with respect to j and k.
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If T is a tensor of the type (0, 0) (i.e. an invariant, which is a function or a
scalar on Vn), then we put R(X, Y ) ◦ T = 0, or locally T,[jk] = 0.
Similarly we can define an operator R(X, Y ) ◦ T for a tensor T of the

type (1, q):

R(X, Y ) ◦ T (X1, X2, . . . , Xq)
def=

q∑
s=1

T (X1, . . . , Xs−1, R(X, Y )Xs, Xs+1, . . . , Xq) − R(X, Y )
(
T (X1, . . . , Xq)

)
.

The tensor R(X, Y ) ◦ T has a local expression

q∑
s=1

T h
i1...is−1αis+1...iq

Rα
isjk − T α

i1...iq
· Rh

αjk.

By the Ricci identity we have

T h
i1...iq ,[jk] =

q∑
s=1

T h
i1...is−1αis+1...iq

Rα
isjk − T α

i1...iq
· Rh

αjk.

Now we present Kowolik’s theorems of [1] in a modified form which is more
convenient for us. These theorems will be generalized in the next parts of our
paper. First, recall notions used in the theorems.

Definition 3 A Riemannian space Vn is called semisymmetric, if

R(X, Y ) ◦ R = 0 ∀X, Y ∈ TVn. (1)

We write (1) locally in the form Rh
ijk,[lm] = 0 or

Rh
αjkRα

ilm + Rh
iαkRα

jlm + Rh
ijαRα

klm − Rα
ijkRh

αlm = 0.

Definition 4 A Riemannian space Vn is called Ricci semisymmetric, if

R(X, Y ) ◦ Ric = 0 ∀X, Y ∈ TVn. (2)

We write (2) locally

RαjR
α
ikl + RiαRα

jkl = 0 or Rij,[kl] = 0.

Simply conformaly recurrent spaces (s.c.r. spaces) were defined byW. Roter [7].
These spaces are characterized by the following conditions:
The Riemannian space Vn is a s.c.r. space, if and only if:

1. Chijk �= 0, where Chijk is a Weyl tensor of conformal curvature,

2. Chijk,l = ϕlChijk ,

3. a vector ϕk is locally gradient,

4. the Ricci tensor is a Codazzi tensor.
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Remark 1 It holds that each s.c.r. space is semisymmetric.

Theorem 1 ([1]) Let Vn (n ≥ 4) be a Ricci semisymmetric space with a har-
monic Riemannian tensor. If there is a torse-forming vector field ξ in Vn, then
ξ is either concircular or recurrent.

Theorem 2 ([1]) If there is a torse-forming vector field ξ in a s.c.r. space Vn

(n �= 4), then ξ is recurrent.

Let T be a tensor field of the type (0, q) or (1, q) and ξ be a vector field on
Vn. By means of the operator R(X, ξ) ◦ T let us define the basic notion of our
paper:

Definition 5 The tensor field T is semiconjugated with the vector field ξ, if

R(X, ξ) ◦ T = 0 for each X ∈ TVn. (3)

In the local transcription (3) has the form

T .
...,[lm]ξ

m = 0, (4)

where ξm are local components of ξ.

2 Vector fields semiconjugated with torse-forming vector
fields

In this section we will consider 1-covariant vector fields semiconjugated with a
torse-forming vector field ξ. Denote by ξ(X) a linear form generated by ξ, i.e.
ξ(X) ≡ g(X, ξ).

Theorem 3 Let T ( �= 0) be a 1-covariant vector field semiconjugated with a
non-isotropic torse-forming vector field ξ, which is not convergent. Then ξ is
semitorse-forming and T is colinear with a form ξ(X).

Proof Assume that there is a non-zero vector field T and a non-isotropic
non-convergent torse-forming vector field ξ, which satisfy (4), i.e.

TαRα
ijβξβ = 0, (5)

where Ti are local components of T and Rh
ijk are components of the Riemannian

tensor R. According to [5] we can assume that ξ is normalized, i.e. g(ξ, ξ) =
e = ±1, and the condition

ξαRα
ijk = gijck − gikcj + ξiajk (6)

holds, where ajk ≡ −eξ[j�,k] and

ck ≡ �,k + e�2ξk. (7)
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Since ξ is not convergent, we have ci �= 0.
Contracting (6) with T k def= Tαgαk and using (5) and properties of the Rie-

mannian tensor we get

gijckT k − Ticj + ξiajkT k = 0. (8)

If ckT k �= 0, then (8) gives rank ‖gij‖ ≤ 2. Since n > 2, we have ckT k = 0
and (8) leads to

−Ticj + ξiajkT k = 0. (9)

Since cj �= 0, the condition (9) implies

Ti = aξi,

where a if a non-zero function.
Substituting Ti = aξi in (6) we see, that either ξ is semitorse-forming vector

field or Ti = 0. This completes the proof of Theorem 3. �

3 Symmetric 2-covariant tensors semiconjugated with
a torse-forming vector field

We will prove the following theorem:

Theorem 4 Let n > 2 and let T (�= γg) be a 2-covariant symmetric tensor
field semiconjugated with a non-isotropic torse-forming vector field ξ, which is
not convergent. Then it holds that ξ is semitorse-forming in Vn and

T (X, Y ) = γ · g(X, Y ) + ψ · ξ(X) · ξ(Y ) ∀X, Y ∈ TVn, (10)

where γ, ψ are functions on Vn.

Proof Assume that there is a 2-covariant symmetric tensor field T on Vn,
which is semiconjugated with a normalised torse-forming vector field ξ, which
is not convergent. It means that ξ satisfies (6) and ci �= 0.
Further we have:

R(X, ξ) ◦ T = 0 ∀X ∈ TVn,

i.e. locally
TαjR

α
ilβξβ + TiαRα

jlβξβ = 0. (11)

If we substitute (6) in (11) and use properties of the Riemannian tensor we get
after computation

gliTαjc
α − Tljci + gljTiαcα − Tilcj + ξlωij = 0, (12)

where ω is some tensor of the type (0, 2) and ci ≡ cαgαi.
We will prove that

Tαic
α = γci. (13)
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Assume, that (13) does not hold. Then there exists a vector εi such that

cαεα = 0 and Tαβεαcβ = 1. (14)

Contract (12) with εiεj . Since Tij = Tji and (14) holds, we get

εl = hξl, (15)

where h
def= − 1

2ωαβεαεβ .
If we contract (12) with εj , we obtain by means of (14) and (15)

gli − Tlαεαci + ξl(hTiαcα + ωiβεβ) = 0.

This implies that rank ‖gij‖ ≤ 2, which contradicts the assumption that (13)
does not hold.
By (13) we extract the member Tαic

α in (12). After computation we obtain

Fljci + Filcj + ξlωij = 0, (16)

where
Fij

def= Tij − γgij. (17)

Since ci �= 0, then there exists ϕi such, that cαϕα = 1.
Contracting (16) with ϕiϕj we get Flαϕα = f · ξl, where f

def= − 1
2ωαβεαεβ.

Similarly, if we contract (16) with ϕj , we get

Fil = ξlχi , (18)

where χi
def= −fci − ωiαϕα.

Since Fij is a symmetric tensor, the equality (18) implies

Fij = ψ · ξiξj . (19)

By the assumption Fij �= 0, we have ψ �= 0. Substituting (17) to (19) we see,
that (10) is true. It remains to prove that the vector field ξ is semitorse-forming.
Therefore we covariantly derive the equality (19) by indices l and m, then

we alternate it with respect to l and m and finally we contract it with ξm. Since

Fij,[lm]ξ
m = 0 and ψ �= 0,

we reach the formula

ξi,[lm]ξ
m · ξj + ξi · ξj,[lm]ξ

m = 0,

wherefrom it follows
ξi,[lm]ξ

m = 0.

This means that the vector field ξ is semitorse-forming. �
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4 Antisymmetric 2-covariant tensors semiconjugated with
a torse-forming vector field

The following theorem deals with antisymmetric tensor fields.

Theorem 5 In a Riemannian space Vn (n > 3) there is no non-zero 2-covariant
antisymmetric tensor field T semiconjugated with a non-isotropic torse-forming
vector field ξ, which is not convergent.

Proof Assume that there is a 2-covariant anti-symmetric tensor field T on Vn,
which is semiconjugated with a non-isotropic torse-forming vector field ξ, which
is not convergent. It means, that ξ satisfies (6) and ci �= 0. Similarly as in the
proof of Theorem 4 we get, that (11), (12) and (13) are true. Substituting (13)
in (12) and using the antisymmetric property of T (i.e. Tij = −Tji), we get
after computation

(Tli − µgli)cj − (Tlj − µglj)ci − ξlωij = 0. (20)

Since cj �= 0, then there exists ϕi, for which ϕαcα = 1. Contracting (20)
with ϕj we find

Tli − µgli = ξlηi + χlci , (21)

where ηi and χl are some covectors.
Symmetrising (21) we obtain

−2µgli = ξlηi + ξiηl + χlci + χicl. (22)

If n > 4, we deduce that µ = 0.
Assume that n = 4 and µ �= 0. Then covectors ξi, ci, ηi, χi must be linearly

independent. Hence their coordinates in a given point x can be chosen in the
following way:

ξi = δ1
i , ηi = δ2

i , ci = δ3
i , χi = δ4

i .

Then

gij = − 1
2µ

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ .

The inverse matrix gij has the form

gij = −2µ

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ .

We can check that
gijξiξj = 0

holds, i.e. ξ is isotropic, a contradiction.
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Thus for n > 3 the formula (22) implies, that µ = 0. Therefore we can
simplify (21) and (22) as follows:

Tij = ξiηj + χicj

and
ξlηi + ξiηl + χlci + χicl = 0. (23)

Vectors ξi and χi are not colinear. Otherwise it should be Tij = 0. Therefore
there is ϕi such that

ξαϕα = 1 and χαϕα = 0.

Contracting (23) with ϕiϕl we find ηαϕα = 0 and contracting (23) with ϕl we
get ηi = −cαϕα · χi. Then (23) has a form

(ci − cαϕαξi)χl + (cl − cαϕαξl)χi = 0.

Since χl �= 0, we obtain
ci = cαϕαξi. (24)

Using (7) and (24) we derive

�,k = (cαϕα − e�2)ξk.

Hence we have � = �(ξ), where ξ is a scalar field satisfying ξk = ∂kξ. It means
that ξ is concircular and, by [3], is convergent. �

5 Main results

By means of Theorem 4 (for symmetric tensors) and Theorem 5 (for antisym-
metric tensors) we will prove the following assertion for arbitrary 2-covariant
tensors.

Theorem 6 Let n > 3 and let T (�= γg) be a 2-covariant tensor field semi-
conjugated with a non-isotropic torse-forming vector field ξ, which is not con-
vergent. Then it holds that ξ is semitorse-forming in Vn and

T (X, Y ) = γ · g(X, Y ) + ψ · ξ(X) · ξ(Y ) ∀X, Y ∈ TVn,

where γ, ψ are functions on Vn.

Proof Assume that there is a 2-covariant tensor field T on Vn, which is semicon-
jugated with a normalised torse-forming vector field ξ, which is not convergent.
Tensor T can be uniquely expressed in the form T = U + V , where U is a

symmetric part and V is an antisymmetric part of T . It holds

U(X, Y ) =
1
2
(
T (X, Y ) + T (Y, X)

)
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and

V (X, Y ) =
1
2
(
T (X, Y ) − T (Y, X)

)
for any vector fields X, Y ∈ TVn. Therefore U and V are also semiconjugated
with ξ. Theorem 5 implies, that V = 0. Hence T ≡ U and so T is symmetric
and the assertion of Theorem 6 follows from Theorem 4. �

Now we will prove theorems for Riemannian spaces having Riemannian and
Ricci tensors semiconjugated with a torse-forming vector field. These theorems
generalize Kowolik’s results in [1].

Theorem 7 Let n > 2 and let Vn be a non-Einsteinian Riemannian space,
where the Ricci tensor is semiconjugated with a non-isotropic torse-forming
vector field ξ. Then ξ is convergent.

Proof Assume that the Ricci tensor Ric is semiconjugated with a torse-forming
vector field ξ.
Since Ric is a symmetric tensor, we get by Theorem 4

Ric(X, Y ) = γg(X, Y ) + ψ · ξ(X) · ξ(Y ) ∀X, Y ∈ TVn, (25)

where ξ(X) def= g(X, ξ) and ψ is a function on Vn.
Semitorse-forming fields fulfil Rh

αjβξαξβ = 0. Contracting it with respect to
h and j we obtain Rαβξαξβ = 0, which can be written in the form

Ric(ξ, ξ) = 0.

Let us put X = ξ a Y = ξ in (25). Since we can assume that ξ is normalized,
i.e. g(ξ, ξ) ≡ ξ(ξ) = e = ±1, we get ψ = −eγ and so the formula (25) has the
form

Ric(X, Y ) = γ ·
(
g(X, Y ) − eξ(X) · ξ(Y )

)
∀X, Y ∈ TVn. (26)

Substituting Y = ξ in (26) we obtain

Ric(X, ξ) = 0 ∀X ∈ TVn.

It means that ξ is an eigenvector of the Ricci tensor corresponding to the zero
eigenvalue. Therefore ξ is convergent. �

Theorem 8 Let n > 2 and let Vn be a Riemannian space with a non-constant
curvature, where the Riemannian tensor is semiconjugated with a non-isotropic
torse-forming vector field ξ. Then ξ is convergent.

Proof Assume that a Riemannian space Vn with a non-constant curvature
has the Riemannian tensor which is semiconjugated with a torse-forming vector
field ξ which is not convergent. Then Vn has the Ricci tensor which is also
semiconjugated with ξ. Therefore by Theorem 7 the space Vn has to be an
Einsteinian space. We can easily see that ξ is concircular.
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Then, according to the result of [4] the Riemannian tensor has the form

Rhijk = K(ghjgik − ghkgij),

which means that Vn has a constant curvature, a contradiction. We have proved
that ξ has to be convergent. �
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Sufficient conditions are established for the asymptotic stability of the
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1 Introduction

In the current paper, we consider the nonlinear differential equation of the form

x(4) + a(
..
x,

...
x)

...
x +b(x,

.
x)

..
x +c(

.
x) + d(x) = p(t, x,

.
x,

..
x,

...
x). (1.1)

It can be written in the phase variables form

.
x = y,

.
y = z,

.
z = u,

.
u = −a(z, u)u − b(x, y)z − c(y) − d(x) + p(t, x, y, z, u),

(1.2)

161
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in which the functions a, b, c, d and p depend only on the arguments displayed
and the dots denote differentiation with respect to t. The functions a, b, c, d
and p are continuous for all values of their respective arguments.The derivatives
∂a(z,u)

∂u ≡ au(z, u), ∂b(x,y)
∂x ≡ bx(x, y), dc

dy ≡ c′(y), and dd
dx ≡ d′(x) exist and are

continuous. Moreover, the existence and the uniqueness of the solutions of (1.1)
will be assumed.
It is well known that the stability and boundedness of solutions of ordinary

differential equations are very important problems in the theory and applications
of differential equations. So far, perhaps, the most effective method to study
the stability and boundedness of solutions of nonlinear differential equations is
still the Lyapunov’s direct (or second) method. In the relevant literature, for
the fourth order nonlinear differential equations, many stability and bounded-
ness results have been established by using this method. We refer to [1-8] and
the references cited there for some of those topics. In [5], Ponzo discussed the
stability of solutions of the equation (1.1) in the case p(t, x,

.
x,

..
x,

...
x) = 0. Nearly

four decades later, Hu [4] proved that the result of Ponzo [5] was not true in
general, except the special case b(x, y) ≡ constant and d(x) ≡ cx (c is a con-
stant) in (1.1). Recently, in [8], Wu and Xiong also investigated the asymptotic
stability of the zero solution of the differential equations described as follows:

x(4) + a1
...
x + a2

..
x + a3

.
x + f(x) = 0

and
x(4) + a1

...
x + f(x,

.
x)

..
x +a3

.
x + a4x = 0,

in which a1, a2, a3 and a4 are constants. The motivation for the present work
has come from the papers of Ponzo [5], Hu [4], Wu and Xiong [8] and the papers
mentioned above. Our aim is to obtain similar results and improve some results
in the papers stated above. It should also be noted that the domain of attraction
of the zero solution x = 0 of the equation (1.1) (for p ≡ 0) in the following first
result is not going to be determined here.

2 The stability and the boundedness results of solutions
of (1.2)

In what follows we shall use the following notations:

a1(z, 0) :=

⎧⎨⎩
1
z

∫ z

0

a(z, 0)dz, z �= 0

a(0, 0), z = 0

and

c1(y) :=

⎧⎨⎩
c(y)

y , y �= 0

c′(0), y = 0.

For the case P ≡ 0 in (1.1) the following result is established.
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Theorem 1 Further to the basic assumptions on the functions a, b, c and d
assume that the following conditions are satisfied (α, β, µ, γ, δ, η, ε and ε1—some
positive constants):

(i) 0 ≤ a(z, u) − α ≤ ε1 for all z and u.

(ii) c1(y) ≥ β for all y �= 0, c(0) = 0.

(iii) 0 ≤ b(x, y) − µ ≤
√

δε1
4β and

y

∫ y

0

bx(x, y)y dy ≤ −
(

β2

αγ

)
y2

for all x and y.

(iv) d(x)x > 0 for all x �= 0, 0 ≤ γ − d′(x) ≤
√

δ
2 for all x, and d(0) = 0.

(v) αβµ − βc′(y) − αγa(z, u) ≥ δ for all y, z and u.

(vi) c′(y) − c1(y) ≤ η < 2δγ
αβ2 for all y �= 0, and a1(z, u)− a(z, u) ≤ ε < 2δ

α2β for
all z �= 0 and u.

(vii) γyau(z, u) + βzau(z, u) ≥ 0 for all y, z and u.

Then the trivial solution of the system (1.2) is asymptotically stable.

Remark 1 From the conditions (ii) and (v) of Theorem 1 we can obtain

a(z, u) <
βµ

γ
and c′(y) < αµ.

Remark 2 When a(
..
x,

...
x) = α, b(x,

.
x) = µ, c(

.
x) = β

.
x and d(x) = γx, equa-

tion (1.1) reduces to the linear constant coefficient differential equation and
conditions (i)–(vii) of Theorem 1 reduce to the corresponding Routh–Hurwitz
criterion.

Remark 3 Theorem 1 includes and revises the result of Ponzo [5], and also
includes and improves the result of Hu [4] except the restrictions on a(z, u),
b(x, y) and d(x), that is, a(z, u) ≤ α + ε1,

b(x, y) ≤ µ +

√
δε1

2β
, y

∫ y

0

bx(x, y)y dy ≤ −
(
β2α−1γ−1

)
y2

and γ − d′(x) ≤
√

δ
2 , and the results of Wu and Xiong [8] except the same

restrictions on b(x, y).

In the case p �= 0 we have the following result
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Theorem 2 Suppose the following conditions are satisfied:

(i) conditions (i)–(vii) of Theorem 1 hold,

(ii) |p(t, x, y, z, u)| ≤ (A + |y| + |z| + |u|)q(t), where q(t) is a non-negative
continuous function of t, and satisfies∫ t

0

q(s) ds ≤ B < ∞

for all t ≥ 0, A and B are some positive constants.

Then for any given finite constants x0, y0, z0 and u0, there exists a constant
K = K(x0, y0, z0, u0), such that any solution (x(t), y(t), z(t), u(t)) of the system
(1.2) determined by

x(0) = x0, y(0) = y0, z(0) = z0, u(0) = u0

satisfies for all t ≥ 0,

|x(t)| ≤ K, |y(t)| ≤ K, |z(t)| ≤ K, |u(t)| ≤ K.

If p is a bounded function, then the constant K above can be fixed independent
of x0, y0, z0 and u0, as will be seen from our the following result.

Theorem 3 Assume that the conditions (i)–(vii) of Theorem 1 hold, and that
p(t, x, y, z, u) satisfies

|p(t, x, y, z, u)| ≤ A < ∞
for all values of t, x, y, z and u, where A is a positive constant. Then there exists
a constant K1 whose magnitude depends α, β, µ, γ, δ, η, ε and ε1 as well as on
the functions a, b, c and d such that every solution (x(t), y(t), z(t), u(t)) of the
system (1.2) ultimately satisfies

|x(t)| ≤ K1, |y(t)| ≤ K1, |z(t)| ≤ K1, |u(t)| ≤ K1.

Remark 4 Theorem 2 and Theorem 3 based on the results in ([4], [5], [8]) give
additional results to those obtained in ([4], [5], [8]).

The proofs of Theorem 1 and Theorem 2 depend on some certain fun-
damental properties of a continuously differentiable Lyapunov function V =
V (x, y, z, u) defined by:

V = αγ

∫ x

0

d(x) dx + αγ

∫ y

0

b(x, y)y dy −
(

βγ

2

)
y2 + αβ

∫ y

0

c(y) dy

+
(

βµ

2

)
z2 + αβ

∫ z

0

a(z, 0)z dz −
(αγ

2

)
z2 +

(
β

2

)
u2 + αβd(x)y

+ βd(x)z + βc(y)z + αγy

∫ z

0

a(z, 0) dz + αγyu + αβzu. (2.1)

The first property of V is stated in the following.
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Lemma 1 Assume that the conditions of Theorem 1 hold. Then

(I) V (x, y, z, u) = 0 at x2 + y2 + z2 + u2 = 0. (2.2)

(II) V (x, y, z, w) > 0 if x2 + y2 + z2 + u2 > 0; (2.3)

V̇ |(1.2)≤ 0 for all t ≥ 0. (2.4)

(III) Any of the positive semi-trajectory of the system (1.2) is bounded.

(IV) The setM =
{
(x, y, z, u) : V̇ = 0, (x, y, z, u) ∈ R4

}
, except (x, y, z, u) = 0,

does not contain the entire positive semi trajectory of the solution of the
system (1.2).

Proof Part (I): V (0, 0, 0, 0) = 0, since c(0) = d(0) = 0. Hence (2.2) is verified.
Rewrite the function V (x, y, z, u) as follows:

V =
(

αβ

2c1(y)

)[
d(x) + c(y) +

c1(y)z
α

]2
+
(

αβ

2a1(z, 0)

)[
u + za1(z, 0) +

γ

β
ya1(z, 0)

]2
+
(

βµ

2

)
z2 −

(
βc1(y)

2α

)
z2 −

(αγ

2

)
z2

+ αγ

∫ y

0

b(x, y)y dy −
(

βγ

2

)
y2 −

(
αγ2a1(z, 0)

2β

)
y2

+
(

β

2

)[
1 − α

a1(z, 0)

]
u2 +

3∑
i=1

Wi, (2.5)

where

W1 = αγ

∫ x

0

d(x)dx − αβd2(x)
2c1(y)

,

W2 = αβ

∫ y

0

c(y) dy − αβc2(y)
2c1(y)

,

W3 = αβ

∫ z

0

a(z, 0)z dz − αβa1(z, 0)
2

z2.

Part (II): Now we verify (2.3). To do this we have four cases.
(a) Let y �= 0, z �= 0. From (iv) of Theorem 1 it follows that

W1 ≥ αγ

∫ x

0

d(x) dx − αd2(x)
2

≥ α

∫ x

0

d(x)[γ − d′(x)] dx ≥ 0.

Now note that

yc(y) ≡
∫ y

0

c(y) dy +
∫ y

0

c′(y)y dy.
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Therefore,

W2 = αβ

∫ y

0

c(y) dy − αβc(y)
2

=
αβ

2

∫ y

0

[c1(y) − c′(y)]y dy ≥ −
(

αβη

4

)
y2

by (vi). From the identity∫ z

0

za(z, 0) dz ≡ z

∫ z

0

a(z, 0) dz −
∫ z

0

za1(z, 0) dz

we find

W3 = αβ

∫ z

0

a(z, 0)z dz − αβ

2
z

∫ z

0

a(z, 0) dz

=
αβ

2

∫ z

0

[a(z, 0) − a1(z, 0)]z dz ≥ −
(

αβε

4

)
z2

by (vi) of Theorem 1. On gathering the estimates forW1, W2 andW3 into (2.5),
we have that

V ≥ α

∫ x

0

d(x)[γ − d′(x)] dx +
(

αβ

2a1(z, 0)

)[
u + za1(z, 0) +

γ

β
ya1(z, 0)

]2
+
(

αβ

2c1(y)

)[
d(x) + c(y) +

c1(y)z
α

]2
+
(

βµ

2

)
z2

−
(

1
2α

)[
βc1(y) + α2γ +

α2βε

2

]
z2 + αγ

∫ y

0

b(x, y)y dy

−
(

βγ

2

)
y2 −

(
γ

2β

)[
αγa1(z, 0) +

αβ2η

2γ

]
y2

+
(

β

2

)[
1 − α

a1(z, 0)

]
u2. (2.6)

Now consider the terms

W4 =
(

βµ

2

)
z2 −

(
1
2α

)[
βc1(y) + α2γ +

α2βε

2

]
z2

and

W5 = αγ

∫ y

0

b(x, y)y dy −
(

βγ

2

)
y2 −

(
γ

2β

)[
αγa1(z, 0) +

αβ2η

2γ

]
y2

which are contained in (2.6).
By using the assumptions (i), (v), (vi) of Theorem 1 and the mean value

theorem (for derivative), we find

W4 =
(

1
2α

)[
αβµ − βc′(θ1y) − α2γ − α2βε

2

]
z2

≥
(

1
2α

)[
αβµ − βc′(θ1y) − αγa(z, u) − α2βε

2

]
z2

≥
(

1
2α

)[
δ − α2βε

2

]
z2 > 0,
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where 0 ≤ θ1 ≤ 1. Similarly, from (iii), (v), (vi) of Theorem 1 and the mean
value theorem (for integral), we obtain

W5 ≥
(

γ

2β

)[
αβµ − β2 − αγa1(z, 0) − αβ2η

2γ

]
y2

=
(

γ

2β

)[
αβµ − β2 − αγa(θ2z, 0) − αβ2η

2γ

]
y2

≥
(

γ

2β

)[
δ − αβ2η

2γ

]
y2 > 0,

where 0 ≤ θ2 ≤ 1. On substituting the estimate for W4 and W5 into (2.6) we
have

V ≥ α

∫ x

0

d(x)[γ − d′(x)] dx +
(

αβ

2a1(z, 0)

)[
u + za1(z, 0) +

γ

β
ya1(z, 0)

]2
+
(

αβ

2c1(y)

)[
d(x) + c(y) +

c1(y)z
α

]2
+
(

1
2α

)[
δ − α2βε

2

]
z2

+
(

γ

2β

)[
δ − αβ2η

2γ

]
y2 +

(
β

2

)[
1 − α

a1(z, 0)

]
u2 > 0.

(b) Let y2 + z2 = 0. Then it follows from (2.5) that

V ≥ αγ

∫ x

0

d(x) dx +
(

β

2

)
u2 > 0 if x2 + u2 > 0.

(c) Let y �= 0, z = 0. Similarly, it is easy to see that

V ≥ α

∫ x

0

d(x)[γ − d′(x)] dx

+
(

αβ

2a1(0, 0)

)[
u +

γ

β
ya1(0, 0)

]2
+
(

αβ

2c1(y)

)
[d(x) + c(y)]2

+
(

γ

2β

)[
δ − αβ2η

2γ

]
y2 +

(
β

2

)[
1 − α

a1(0, 0)

]
u2 > 0.

(d) Let y = 0, z �= 0. It is clear from (a) that

V ≥ α

∫ x

0

d(x)[γ − d′(x)] dx

+
(

αβ

2a1(z, 0)

)
[u + za1(z, 0)]2 +

(
αβ

2c1(0)

)[
d(x) +

c1(0)z
α

]2
+
(

1
2α

)[
δ − α2βε

2

]
z2 +

(
β

2

)[
1 − α

a1(z, 0)

]
u2 > 0

by (2.5). Because of the estimates given by (a)–(d) we get the desired result
(2.3).



168 Cemil TUNÇ

From (2.1) and (1.2) it is trivial that the time derivative of V as follows:

V̇ = −αβ

[
c(y)
y

γ

β
− d′(x)

]
y2

−
[
αβb(x, y) − βc′(y) − αγ

(
1
z

)∫ z

0

a(z, 0) dz

]
z2

− β [a(z, u) − α] u2 − β [b(x, y) − µ] zu − β [γ − d′(x)] yz

+ αγy

∫ y

0

bx(x, y)y dy

− αγ [a(z, u) − a(z, 0)] yu − αβ [a(z, u) − a(z, 0)] zu.

Hence the assumptions (i)–(v) of Theorem 1 and the mean value theorem (for
the integral) show that

V̇ ≤ − [αβµ − βc′(y) − αγa(θ3z, 0)] z2

− (βε1)u2 − β [b(x, y) − µ] zu − β [γ − d′(x)] yz

+ αγy

∫ y

0

bx(x, y)y dy

− αγ [a(z, u) − a(z, 0)] yu − αβ [a(z, u) − a(z, 0)] zu, (0 ≤ θ3 ≤ 1),

≤ −
(

3βε1

4

)
u2 −

(
δ

2

)
z2 −

(
3β2

4

)
y2 − W6 − W7 − W8, (2.7)

where

W6 =
(

δ

4

)
z2 + β [b(x, y) − µ] zu +

(
βε1

4

)
u2,

W7 =
(

β2

4

)
y2 + β [γ − d′(x)] yz +

(
δ

4

)
z2,

W8 = αγ [a(z, u) − a(z, 0)] yu + αβ [a(z, u) − a(z, 0)] zu.

From (iii) of Theorem 1

W6 ≥
(

δ

4

)
z2 − β [b(x, y) − µ] |zu| +

(
βε1

4

)
u2 =

[√
δ

2
z ±

√
βε1

2
u

]2
≥ 0.

Similarly, by (iv) of Theorem 1, we find

W7 ≥
(

β2

4

)
y2 − β [γ − d′(x)] |yz| +

(
δ

4

)
z2 =

[
β

2
y ±

√
δ

2
z

]2
≥ 0.

The assumption (vii) of Theorem 1 (for u �= 0) also shows that

W8 = α [γyau(z, θ4u) + βzau(z, θ4u)] u2 ≥ 0, 0 ≤ θ4 ≤ 1,

but W8 = 0, when u = 0. Hence W8 ≥ 0 for all y, z and u.
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On combining the estimates for W6, W7 and W8 into (2.7) we find

V̇ ≤ −
(

3βε1

4

)
u2 −

(
δ

2

)
z2 −

(
3β2

4

)
y2.

This completes the proof of Part (II).
The proofs of Part (III) and Part (IV) follow the lines indicated in [4], except

some minor modification. And hence the proof is omitted.
This completes the proof of the lemma. �

The proof of Theorem 1 From Lemma 1, we see that the function V (x, y, z, u)
is a Lyapunov function for the system (1.2). Hence, the zero solution of the sys-
tem (1.2) is asymptotically stable (see [8]).
This completes the proof. �

The proof of Theorem 2 The proof of this theorem is similar to that of
Theorem 2 of Tunc [7] and hence is omitted.
Finally, the actual proof of Theorem 3 will rest mainly on the existence of a

piecewise continuously differentiable function V1 = V1(x, y, z, u) satisfying

V1(x, y, z, u) ≥ −D for all (x, y, z, u), (2.8)

V1(x, y, z, u) → ∞ as x2 + y2 + z2 + u2 → ∞; (2.9)

and also such that the limit

V̇ +
1 (t) = lim sup

h→0+

»
V1(x(t + h), y(t + h), z(t + h), u(t + h)) − V1(x(t), y(t), z(t), u(t))

h

–

(2.10)

exists corresponding any solution (x(t), y(t), z(t), u(t)) of the system (1.2), and
satisfies

V̇ +
1 (t) ≤ −1 if x2(t) + y2(t) + z2(t) + u2(t) ≥ D1,

where D and D1 are certain positive constants to be determined in the proof.
Once the existence of such a V1 is established an appeal to Yoshizawa’s

argument (see [2]) concludes the proof of Theorem 3.
We define the required V1 as follows:

V1 = V0 + V, (2.11)

where

V0(x, u) :=
{

x sgnu, if |u| ≥ |x|
u sgnx, if |u| ≤ |x| (2.12)

and V is defined by (2.1).

The property of V̇ +
1 is required and is stated in Lemma 2.

Lemma 2 Subject to the conditions of Theorem 3, the function V1 defined in
(2.11) satisfies the properties in (2.8), (2.9) and (2.10).
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Proof Let (x, y, z, u) be any solution of the system (1.2). From (2.12) we
obtain |V0(x, u)| ≤ |u| for all x and u. It follows that |V0(x, u)| ≥ − |u| for all x
and u. Now, V here is the same as the function V defined by (2.1). Since V is
positive definite, then it has infinite inferior limit and infinitesimal upper limit,
that is, there exists a positive constant τ such that

V (x, y, z, u) > τ(x2 + y2 + z2 + u2).

From these estimates for V0 and V we get the estimate for V1 as

V1 > τ(x2 + y2 + z2 + u2) − 2 |u| = τ(x2 + y2 + z2) + τ

(
|u| − 1

τ

)2

− 1
τ

.

So it is evident that (2.8) and (2.9) are verified, where D = 1
τ .

Next, in accordance with the representation V1 = V + V0 we have a rep-
resentation v1 = v + v0. Hence, the function v1 = v1(t) can be defined by
v1(t) = V1(x(t), y(t), z(t), u(t)). Then, the existence of

.
v
+
1 , that is,

.
v
+
1 (t) = lim sup

h→0+

[
v1(t + h) − v1(t)

h

]
is quite immediate, since v has continuous first partial derivatives and v0 is
easily shown to be locally Lipschitizian in x and u so that the composite function
v1 = v + v0 is at the least locally Lipschitizian in x, y, z and u. Subject to the
assumptions of the theorem an easy calculation from (2.11) and (1.2) shows that

.
v
+
1 =

.
v +

.
v
+
0 ≤ −

(
3βε1

4

)
u2−
(

δ

2

)
z2−
(

3β2

4

)
y2+D2(|y|+|z|+|u|), if |u| ≥ |x|

or

.
v
+
1 =

.
v +

.
v
+
0 ≤ −

(
3βε1

4

)
u2 −

(
δ

2

)
z2 −

(
3β2

4

)
y2 − d(x)sgnx + |c(y)|

+ D3(1 + |y| + |z| + |u|), if |u| ≤ |x| .

The following arguments are similar to those in [3] and hence we omit the
details of the proof. The proof of this lemma is now complete. �

The proof of Theorem 3 By considering the results obtained in Lemma 2,
the usual Yoshizawa-type argument (see the result established in [2]) applied to
(2.8), (2.9) and (2.10) would then show that, for any solution (x, y, z, u) of the
system (1.2), we have

|x(t)| ≤ K1, |y(t)| ≤ K1, |z(t)| ≤ K1, |u(t)| ≤ K1,

for all sufficiently large t, which proves the theorem.
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