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Abstract

In this paper, we shall give sufficient conditions for the ultimate bound-
edness of solutions for some system of third order non-linear ordinary
differential equations of the form

...
X +F (Ẍ) + G(Ẋ) + H(X) = P (t, X, Ẋ, Ẍ)

where X, F (Ẍ), G(Ẋ), H(X), P (t, X, Ẋ, Ẍ) are real n-vectors with F, G,
H : R

n → R
n and P : R × R

n × R
n × R

n → R
n continuous in their

respective arguments. We do not necessarily require that F (Ẍ), G(Ẋ) and
H(X) are differentiable. Using the basic tools of a complete Lyapunov
Function, earlier results are generalized.

Key words: Ultimate boundedness, complete Lyapunov functions,
nonlinear third order system.
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1 Introduction

In a sequence of results, Afuwape [1, 2, 3], Ezeilo [5], Ezeilo and Tejumola [8, 9],
Meng [10] and Tiryaki [12] studied particular cases of the third-order nonlinear
system of differential equations of the form

...
X +F (Ẍ) + G(Ẋ) + H(X) = P (t, X, Ẋ, Ẍ) (1.1)

where X, F (Ẍ), G(Ẋ), H(X), P (t, X, Ẋ, Ẍ) are real n-vectors with F, G, H :
R

n → R
n and P : R × R

n × R
n × R

n → R
n continuous in the respective

arguments.
Boundedness and Periodicity results were discussed by imposing differentia-

bility conditions in [5, 8, 9, 12] on the nonlinear functions in the particular cases
of (1.1), while not necessarily differentiable conditions were imposed in [1, 3, 10]
for the study of ultimate boundedness of particular cases of (1.1). Furthermore,
the Lyapunov second method was used with the aid of a suitable differentiable
Lyapunov function.

For n = 1 and f(ẍ) = aẍ, g(ẋ) = bẋ this reduces to

...
x +aẍ + bẋ + h(x) = p(t, x, ẋ, ẍ) (1.2)

which was studied by Ezeilo [6,7]. In [7], Ezeilo studied the ultimate bounded-
ness and convergence of solutions of (1.2) by assuming

h(ξ + η)− h(η)
ξ

∈ I0 (1.3)

for some designated ξ, η(�= 0) with I0 ≡ [δ, kab] where δ > 0 is an arbitrary
constant and 0 < k < 1. I0 is a subset of the generalized Routh–Hurwitz
interval (0, ab).

When η = 0, ξ �= 0 in (1.3) we have

H0 = H0(ξ) ≡ {h(ξ)− h(0)}
ξ

(1.4)

and

H0 =
h(ξ)

ξ
if h(0) = 0. (1.5)

On the other hand if F (Ẍ) = AẌ, G(Ẋ) = BẊ in (1.1) we have

...
X +AẌ + BẊ + H(X) = P (t, X, Ẋ, Ẍ) (1.6)

where A, B are real symmetric n× n matrices.
Afuwape [1] and Meng [10] studied (1.6) for the ultimate boundedness and

periodicity of solutions for which H is of class C(Rn) by satisfying

H(X) = H(Y ) + A(X, Y )(X − Y ) (1.7)
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where A(X, Y ) is a real n × n operator for any X, Y in R
n, and having real

eigenvalues λi(A(X, Y )) (i = 1, 2, . . . , n).
It was assumed that these eigeuvalues satisfy

0 < δh ≤ λi(A(X, X)) ≤ ∆h (1.8)

with δh, ∆h as fixed constants.
Moreover, the matrices A, B have real positive eigenvalues λi(A) and λi(B)

respectively with δa = min λi(A), δb = min λi(B), ∆a = maxλi(A),
∆b = max λi(B), i = 1, 2, . . . , n and that for some constant k(< 1) the “gener-
alized” Routh–Hurwitz condition,

∆h ≤ kδaδg (1.9)

was satisfied. Furthermore, when F (Ẍ) = AẌ in (1.1) we have

...
X +AẌ + G(Ẋ) + H(X) = P (t, X, Ẋ, Ẍ) (1.10)

where A is a real symmetric n× n matrix.
In [3], Afuwape studied (1.10) for the ultimate boundedness of solutions for

which G, H are of class C(Rn) by satisfying

G(Y1) = G(Y2) + Bg(Y1, Y2)(Y1 − Y2) (1.11a)

H(X1) = H(X2) + Ch(X1, X2)(X1 −X2) (1.11b)

where Bg(Y1, Y2), Ch(X1, X2) are n× n real continuous operators, having real
eigenvalues λi(Bg(Y1, Y2)), λi(Ch(X1, X2)), (i = 1, 2, . . . , n) respectively and
which satisfy

0 < δg ≤ λi(Bg(Y1, Y2)) ≤ ∆g (1.12a)

0 < δh ≤ λi(Ch(X1, X2)) ≤ ∆h (1.12b)

with δg, δh, ∆g, ∆h as fixed constants.
Also, the matrix A has real positive eigenvalues λi(A) with δa = min λi(A),

∆a = maxλi(A), i = 1, 2, . . . , n and that for some constant k(< 1) the “gener-
alized” Routh Hurwitz condition (1.9) was satisfied.

In this paper, we shall extend earlier results of [1, 3, 5, 8, 9, 10, 12] to systems
of the form (1.1) and for which generalized Routh–Hurwitz condition (1.9) is
satisfied. A new differentiable Lyapunov function which is a modification of the
one used in [10] is used to prove ultimate boundedness of solutions of (1.1). In
addition to (1.11a) and (1.11b) we assume that F is of class C(Rn) and satisfies

F (Z1) = F (Z2) + Af (Z1, Z2)(Z1 − Z2) (1.11c)

where Af (Z1, Z2) is n × n real continuous operator having real eigenvalues
λi(Af (Z1, Z2)) (i = 1, 2, . . . , n). These real eigenvalues satisfy

0 < δf ≤ λi(Af (Z1, Z2)) ≤ ∆f (1.12c)

with δf , ∆f as fixed constants.
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Furthermore, these eigenvalues satisfy, for some constant k(k < 1, defined
later) the “generalized” Routh–Hurtwitz condition (1.9).

Finally, we shall assume that P (t, X, Y, Z) satisfies

‖P (t, X, Y, Z)‖ ≤ p1(t) + p2(t)
{‖X(t)‖2 + ‖Y (t)‖2 + ‖Z(t)‖2}ρ/2

+ p3(t)
{‖X(t)‖2 + ‖Y (t)‖2 + ‖Z(t)‖2}1/2

(1.13)

for any X, Y, Z in R
n, where p1(t), p2(t), p3(t) are continuous functions in t and

0 ≤ ρ ≤ 1.

Remark 1 The estimate (1.13) reduces to [8, 1.3 (3)] if p3(t) = δ0. When
specialized to the case n = 1, the estimate (1.13) reduces to estimate (4.96) of
[11, p. 339] if p3(t) = q.

2 Notations

We shall use the notations as given in [1]. Throughout this paper, δ’s and
∆’s with or without suffices will denote positive constants whose magnitudes
depend on vector functions F, G, H and P . The δ’s and ∆’s with numerical or
alphabetical suffices shall retain fixed magnitudes, while those without suffices
are not necessarily the same at each occurrences.

Finally, we shall denote the scalar product 〈X, Y 〉 of any vectors X, Y in R
n,

with respective components (x1, x2, . . . , xn) and (y1, y2, . . . , yn) by
∑n

i=1 xiyi.
In particular, 〈X, X〉 = ‖X‖2.

3 Statement of the results

Our first main result in this paper is the following:

Theorem 1 Suppose F (0) = G(0) = H(0) = 0, and that

(i) there exist n× n real continuous operators

Af (Z1, Z2), Bg(Y1, Y2), Ch(X1, X2)

for any vectors X1, X2, Y1, Y2, Z1, Z2 in R
n, such that the functions F, G, H

are of class C(Rn), satisfy (1.11a,b,c), with the eigenvalues, λi(Af (Z1, Z2)),
λi(Bg(Y1, Y2)), λi(Ch(X1, X2)) (i = 1, 2, . . . , n) satisfying (1.12a,b,c);

(ii) the operators Af , Bg and Ch are associative and commute pairwise, and

(iii) the vector function P satisfies inequality (1.13) for all X, Y, Z in R
n,

where p1(t), p2(t) and p3(t) are continuous functions of t, with 0 ≤ ρ < 1.

Then, there exist constants ρ3, ∆1, ∆2, ∆3 such that if |p3(t)| ≤ ρ3, for all t in
R, with ρ3 chosen small enough, then every solution X(t) of (1.1) with X(t0) =
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X0, Ẋ(t0) = Y0, Ẍ(t0) = Z0, and for any constant r, whatever in the range
1
2 ≤ r ≤ 1, satisfies

{‖X(t)‖2 + ‖Ẋ(t)‖2 + ‖Ẍ(t)2‖}r ≤ ∆1 exp{−∆2(t− t0)}

+ ∆3

∫ t

t0

{
p2r
1 (τ) + p

2r/(1−ρ)
2 (τ)

}
exp{−∆2(t− τ)} dτ ; (3.1)

for all t ≥ t0 ≥ 0, where ∆1 ≡ ∆1(X0, Y0, Z0).

Remark 2 (1) When specialized to the case n = 1 with P dependent only on
t the above estimate (3.1) reduces to the estimate (4.86) of [11, Theorem (4.24)
p. 335].

(2) In fact this result generalizes Theorem 1 of [3] if ρ3 = δ0 : A number of
quite important results can be deduced from the above. For example, we have

Corollary 1 If P ≡ 0 and all the conditions of Theorem 1 hold, then every
solution X(t) of (1.1) satisfies

{‖X(t)‖2 + ‖Ẋ(t)‖2 + ‖Ẍ(t)2‖} −→ 0 (3.2)

as t→∞, provided that ρ3 is small enough.

Indeed by setting ρ1(t) = 0 = ρ2(t) in (1.13), we have that

{‖X(t)‖2 + ‖Ẋ(t)‖2 + ‖Ẍ(t)2‖}r ≤ ∆1 exp{−∆2(t− t0)}, t ≥ t0

from which (3.2) follows on letting t→∞.

Remark 3 When specialized to the case n = 1 with p1(t) = p2(t) = 0 i.e.
satisfying condition (C′′) of [11, Theorem 4.25] then the above estimate (3.2)
reduces to the estimate (4.97) of [11, Theorem 4.25].

Further, if P �= 0, but such that∫ t+µ

t

{
pν
1(τ) + p

ν/(1−ρ)
2 (τ)

}
dτ −→ 0 (3.3)

as t→∞, then we have

Corollary 2 Suppose that there are some fixed constants ν ( 1 ≤ ν ≤ 2), and
µ > 0, such that (3.3) is true, and all the conditions of Theorem 1 hold. Then,
every solution X(t) of (1.1) satisfies (3.2) as t→∞.

Remark 4 This result is a direct generalization of [6, Theorem 2] when spe-
cialized to the case n = 1. Its proof can be obtained from (3.1) by using an
obvious modification of the arguments in [6, §3.2].

The next result is on the ultimate boundedness of solutions of (1.1).
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Theorem 2 Suppose that F (0) = G(0) = H(0) = 0 and that all the conditions
of Theorem 1 hold. Suppose further that |p3(t)| ≤ ρ3 for all t in R with ρ3

sufficiently small and that the functions p1(t), p2(t) satisfy

|p1(t)| ≤ δ0 and |p2(t)| ≤ δ1

for all t in R.
Then, there exists a constant ∆4 such that every solution X(t) of (1.1)

ultimately satisfies.

{‖X(t)‖2 + ‖Ẋ(t)‖2 + ‖Ẍ(t)‖2} ≤ ∆4 (3.4)

Remark 5 (1) If |p1(t)| ≤ δ0, |p2(t)| ≤ δ1 and |p3(t)| ≤ ρ3, with ρ3 sufficiently
small, then Theorem 2 reduces to Corollary 3 of [8] for which equation (1.6) was
considered.

(2) If ρ = 0 in (1.13) we have the estimates (3.6) of [1, Theorem 1] which im-
proves on estimates (3.4) of [1, Theorem 1] and (1.8) of [10, Theorem 1]. Thus,
Theorem 2 reduces to Theorem 1 of [1,10] for which (1.6) was considered. More-
over, the estimate (1.13) is a generalization of all the bounds on P (t, X, Y, Z)
mentioned earlier.

4 Some preliminary results

We shall state, for completeness, some standard results needed in the proofs of
our results.

Lemma 1 (1,§4) Let Q, D be real symmetric commuting n×n matrices. Then,

(i) for any X in R
n,

δd‖X‖2 ≤ 〈DX, X〉 ≤ ∆d‖X‖2 (4.1)

where δd, ∆d are respectively, the least and greatest eigenvalues, of ma-
trix D;

(ii) the eigenvalues λi(QD), (i = 1, 2, . . . , n) of the product matrix QD are all
real and satisfy

min
1≤j,k≤n

λj(Q)λk(D) ≤ λi(QD) ≤ max
1≤j,k≤n

λj(Q)λk(D) (4.2)

(iii) the eigenvalues λi(Q+D), (i = 1, 2, . . . , n) of the sum of Q and D are all
real and satisfy{

min
1≤j≤n

λj(Q) + min
1≤k≤n

λk(D)
}
≤ λi(Q + D)

≤
{

max
1≤k≤n

λj(Q) + max
1≤k≤n

λk(D)
}

(4.3)

where λj(Q) and λk(D) are respectively the eigenvalues of Q and D.
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5 The function V

Our main tool in the proof of the results is the continuous function V =
V (X, Y, Z) defined for any X, Y, Z in R

n by

2V = β(1 − β)δ2
g‖X‖2 + βδg‖Y ‖2 + αδgδ

−1
f ‖Y ‖2 + αδ−1

f ‖Z‖2
+ ‖Z + δfY + (1− β)δgX‖2. (5.1)

where 0 < β < 1 and α > 0
The following result is immediate from (5.1):

Lemma 2 Assume that all the hypothesis on vectors F (Z), G(Y ) and H(X) in
Theorem 1 are satisfied. Then, there exist positive constants δ2 and δ3 such that

δ2(‖X‖2 + ‖Y ‖2 + ‖Z‖2) ≤ 2V ≤ δ3(‖X‖2 + ‖Y ‖2 + ‖Z‖2) (5.2)

Proof The proof follows if we use Lemma 1 repeatedly and then choose

δ2 = min
{

β(1− β)δ2
g ; δg(β + αδ−1

f ); αδ−1
f

}
and

δ3 = max
{

δg(1 − β)(1 + δg + δf ); δg(β + αδ−1
f ) + δf [1 + δg(1− β) + δf ];

1 + αδ−1
f + δf + δg(1− β)

}
�

6 Proof of Theorem 1

Let us replace system of differential equations of form (1.1) in the equivalent
system form

Ẋ = Y, Ẏ = Z, Ż = −F (Z)−G(Y )−H(X) + P (t, X, Y, Z) (6.1)

for which a typical solution will be (X(t), Y (t), Z(t)).
To prove Theorem 1, it suffices to show that the function V (defined in (5.1))

satisfies for any solution (X(t), Y (t), Z(t)) of (6.1) and for any r in the range
1
2 ≤ r ≤ 1.

V̇ ≤ −δ4ψ
2 + δ5

{
p2r
1 (t) + p

2r
(1−ρ)
2 (t)

}
ψ2(1−r) (6.2)

for some constants δ4, δ5 where ψ2 = {‖X(t)‖2 + ‖Y (t)‖2 + ‖Z(t)‖2}. We note
that from Lemma 2, (6.2) becomes

V̇ ≤ −δ6V + δ7

{
p2r
1 (t) + p

2r
(1−ρ)
2 (t)

}
V (1−r) (6.3)

with δ6 = δ2δ4 and δ7 = δ3δ5. If we choose U = V r, this reduces to

U̇ ≤ −rδ6U + rδ7

{
p2r
1 (t) + p

2r
(1−ρ)
2 (t)

}
. (6.3)
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which can be solved for U to obtain

U(t) ≤ U(t0) exp {−rδ6(t− t0)}

+ ∆5

∫ t

t0

{
p2r
1 (τ) + p

2r
(1−ρ) (τ)

}
exp {−rδ6(t− τ)} dτ (6.4)

for all t ≥ t0.
Rewriting this with V r = U and applying Lemma 2, we shall obtain (3.1)

with

∆1 = δ{‖X(t0)‖2 + ‖Y (t0)‖2 + ‖Z(t0)‖2}r;
∆2 = rδ6 and ∆3 = δ∆5

Thus the proof of Theorem 1 is complete as soon as inequality (6.2) is proved.

7 The derivative of V and the proof of (6.2)

Let (X(t), Y (t), Z(t)) be any solution of (6.1). The total derivative of V , with
respect to t along the solution path after simplification is

V̇ = −W1 −W2 −W3 −W4 −W5 −W6 −W7 + W8 (7.1)

where

W1 = {γ1δg(1− β)〈X, H(X)〉+ η1δf 〈Y, G(Y )− δg(1− β)Y 〉
+ ξ1αδ−1

f 〈Z, F (Z)〉+ 〈Z, F (Z)− δfZ〉
}

W2 =
{

γ2δg(1 − β)〈X, H(X)〉+ ξ2αδ−1
f 〈Z, F (Z)〉+ (1 + αδ−1

f )〈Z, H(X)〉
}

W3 = {γ3δg(1− β)〈X, H(X)〉+ η2δf 〈Y, G(Y )− δg(1− β)Y 〉+ δf 〈Y, H(X)〉}
W4 =

{
γ4δg(1 − β)〈X, H(X)〉+ ξ3αδ−1

f 〈Z, F (Z)〉
+ δg(1− β)〈X, F (Z) − δfZ〉}

W5 = {γ5δg(1− β)〈X, H(X)〉+ η3δf 〈Y, G(Y )− δg(1− β)Y 〉
+ δg(1− β)〈X, G(Y )− δgY 〉}

W6 =
{

ξ4αδ−1
f 〈Z, F (Z)〉+ η4δf 〈Y, G(Y )− δg(1− β)Y 〉

+ (1 + αδ−1
f )〈Z, G(Y )− δgY 〉

}
W7 =

{
ξ5αδ−1

f 〈Z, F (Z)〉+ η5δf 〈Y, G(Y )− δg(1− β)Y 〉 + δf 〈Y, F (Z)− δfZ〉}

W8 =
{
〈(1− β)δgX + δfY + (1 + αδ−1

f )Z, P (t, X, Y, Z)〉
}

with ξi, ηi, γi; (i = 1, 2, 3, 4, 5) are strictly positive constants such that

5∑
i=1

ξi = 1;
5∑

i=1

ηi = 1 and
5∑

i=1

γi = 1.

To arrive at (6.2), we first prove the following:
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Lemma 3 Subject to a conveniently chosen value of k in (1.9), we have for all
X, Y, Z in R

n

Wj ≥ 0, (j = 2, 3, 4, 5, 6, 7).

Proof For strictly positive constants k1, k2, conveniently chosen later, we have

〈(1 + αδ−1
f )Z, H(X)〉 =

= ‖k1(1 + αδ−1
f )1/2Z + 2−1k−1

1 (1 + αδ−1
f )1/2H(X)‖2

− 〈k2
1(1 + αδ−1

f )Z, Z〉 − 〈4−1k−2
1 (1 + αδ−1

f )H(X), H(X)〉 (7.2a)

and

〈δfY, H(X)〉 = ‖k2δ
1/2
f Y + 2−1k−1

2 δ1/2H(X)‖2
− 〈k2

2δfY, Y 〉 − 〈4−1k−2
2 δfH(X), H(X)〉. (7.2b)

Now, using (1.11) and the assumptions that F (0) = G(0) = H(0) = 0, we have

W2 = ‖k1(1 + αδ−1
f )1/2Z + 2−1k−1

1 (1 + αδ−1
f )1/2H(X)‖2

+ 〈Z, ξ2αδ−1
f F (Z)− k2

1(1 + αδ−1
f )Z〉

+ 〈H(X), γ2δg(1− β)X − 4−1k−2
1 (1 + αδ−1

f )H(X)〉 (7.3a)

and

W3 = ‖k2δ
1/2
f Y + 2−1k−1

2 δ1/2H(X)‖2
+ 〈Y, η2δf [G(Y )− δg(1− β)Y ]− k2

2δfY 〉
+ 〈H(X), γ3δg(1− β)X − 4−1k−2

2 δfH(X)〉. (7.3b)

Furthermore, by using Lemma 1 repeatedly, we obtain for all X, Z in R
n,

W2 ≥ 0 (7.4a)

if k2
1 ≤ ξ2αδf

α+δf
with

∆h ≤
4γ2ξ2α(1 − β)δ2

fδg

(α + δf )2
(7.5a)

and for all X, Y in R
n,

W3 ≥ 0. (7.4b)

If k2
2 ≤ η2βδg with

∆h ≤ 4γ3η2β(1 − β)δ2
g/δf . (7.5b)

Combining all the inequalities in (7.3) and (7.4), we have for all X, Y, Z in R
n,

W2 ≥ 0 and W3 ≥ 0, if ∆h ≤ kδfδg with

k = min

{
4γ2ξ2α(1− β)δf

(α + δf )2
;
4η2γ3β(1− β)δg

δ2
f

}
< 1. (7.6)
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To complete the proof of Lemma 3, we need to show that for all X, Y, Z in R
n

Wi ≥ 0 (i = 4, 5, 6, 7).

By hypothesis (1.11) the assumptions that F (0) = G(0) = H(0) = 0, and for
strictly positive constants k3, k4, k5, k6 conveniently chosen later, we have

〈δg(1− β)X, F (Z)− δfZ〉 = 〈δg(1− β)X, [Af (Z, O) − δfI]Z〉
= ‖2−1k−1

3 δ1/2
g (1− β)1/2[Af (Z, O)− δfI]1/2X

+ k3δ
1/2
g (1− β)1/2[Af (Z, O)− δfI]1/2Z‖2

− 〈4−1k−2
3 δg(1− β)[Af (Z, O) − δfI]X, X〉

− 〈k2
3δg(1− β)[Af (Z, O) − δfI]Z, Z〉 (7.7a)

δg(1− β)〈X, G(Y )− δgY 〉 = 〈δg(1− β)X, [Bg(Y, O)− δgI]Y 〉
= ‖2−1k−1

4 δ1/2
g (1− β)1/2[Bg(Y, O) − δgI]1/2X

+ k4δ
1/2
g (1− β)1/2[Bg(Y, O)− δgI]1/2Y ‖2

− 〈4−1k−2
4 δg(1 − β)[Bg(Y, O)− δgI]X, X〉

− 〈k2
4δg(1− β)[Bg(Y, O)− δgI]Y, Y 〉 (7.7b)

(1 + αδ−1
f )〈Z, G(Y )− δgY 〉 = 〈(1 + αδ−1

f )Z, [Bg(Y, O)− δgI]Y 〉
= ‖2−1k−1

5 (1 + αδ−1
f )1/2[Bg(Y, O) − δgI]1/2Z

+ k5(1 + αδ−1
f )1/2[Bg(Y, O)− δgI]1/2Y ‖2

− 〈4−1k−2
5 (1 + αδ−1

f )[Bg(Y, O) − δgI]Z, Z〉
− 〈k2

5(1 + αδ−1
f )[Bg(Y, O)− δgI]Y, Y 〉 (7.7c)

δf 〈Y, F (Z)− δfZ〉 = 〈δfY, [Af (Z, O)− δfI]Z〉
= ‖2−1k−1

6 δ
1/2
f [Af (Z, O)− δfI]1/2Y + k6δ

1/2
f [Af (Z, O) − δfI]1/2Z‖2

− 〈4−1k−2
6 δf [Af (Z, O) − δfI]Y, Y 〉

− 〈k2
6δf [Af (Z, O) − δfI]Z, Z〉. (7.7d)

Thus,

W4 = ‖2−1k−1
3 δ1/2

g (1− β)1/2[Af (Z, O) − δfI]1/2X

+ k3δ
1/2
g (1− β)1/2[Af (Z, O)− δfI]1/2Z‖2

+ 〈X, {γ4δg(1− β)Ch(X, O)− 4−1k−2
3 δg(1 − β)[Af (Z, O)− δfI]}X〉

+ 〈Z, {ξ3αδ−1
g Af (Z, O)− k2

3δg(1− β)[Af (Z, O) − δfI]}Z〉 (7.8a)
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W5 = ‖2−1k−1
4 δ1/2

g (1 − β)1/2[Bg(Y, O) − δgI]1/2X

+ k4δ
1/2
g (1− β)1/2[Bg(Y, O)− δgI]1/2Y ‖2

+ 〈X, {γ5δg(1 − β)Ch(X, 0)− 4−1k−2
4 δg(1− β)[Bg(Y, O)− δgI]}X〉

+ 〈Y, {η3δf [Bg(Y, O)− δg(1− β)I]− k2
4δg(1− β)[Bg(Y, O)− δgI]}Y 〉 (7.8b)

W6 = ‖2−1k−1
5 (1 + αδ−1

f )1/2[Bg(Y, O)− δgI]1/2Z

+ k5(1 + αδ−1
f )1/2[Bg(Y, O)− δgI]1/2Y ‖2

+ 〈Z, {ξ4αδ−1
g Af (Z, O) − 4−1k−2

5 (1 + αδ−1
f )[Bg(Y, O) − δgI]}Z〉

+ 〈Y, {η4δf [Bg(Y, O)− δg(1− β)I]
− k2

5(1 + αδ−1
f )[Bg(Y, O)− δgI]}Y 〉 (7.8c)

and

W7 = ‖2−1k−1
6 δ

1/2
f [Af (Z, O)− δfI]1/2Y + k6δ

1/2
f [Af (Z, 0)− δfI]1/2Z‖2

+ 〈Y, {η5δf [Bg(Y, O)− δg(1− β)I]− 4−1k−2
6 δf [Af (Z, O)− δfI]}Y 〉

+ 〈Z, {ξ5αδ−1
f Af (Z, O) − k2

6δf [Af (Z, O)− δfI]}Z〉. (7.8d)

Thus, for all X, Z in R
n

W4 ≥ 0 (7.9a)

if
∆f − δf

4γ4δh
≤ k2

3 ≤
ξ3α

(1− β)(δg − δf )
. (7.10a)

For all X, Y in R
n

W5 ≥ 0 (7.9b)

if
∆g − δg

4γ5δh
≤ k2

4 ≤
η3βδf

(1− β)(∆g − δg)
. (7.10b)

For all Y, Z in R
n

W6 ≥ 0 (7.9c)

if
δg(α + δf )(∆g − δg)

4ξ4αδ2
f

≤ k2
5 ≤

βη4δgδ
2
f

(α + δf )(∆g − δg)
. (7.10c)

Also, for all Y, Z in R
n

W7 ≥ 0 (7.9d)

if
∆f − δf

4η5βδg
≤ k2

6 ≤
αξ5

δf (∆f − δf )
. (7.10d)

This completes the proof of Lemma 3. �
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We are now left with the estimates for W1 and W8.
From (7.1), we clearly have

W1 ≥ γ1δgδh(1− β)‖X‖2 + η1δfδgβ‖Y ‖2 + ξ1α‖Z‖2

≥ δ8(‖X‖2 + ‖Y ‖2 + ‖Z‖2) (7.11)

where δ8 = min {γ1δgδh; η1δfδgβ; ξ1α}. For the remaining part of the proof of
(6.2); let us for convenience denote (‖X‖2 + ‖Y ‖2 + ‖Z‖2) by ψ2.

Since P (t, X, Y, Z) satisfies (1.5), Schwarz’s inequality gives for W8.

|W8| ≤
{
(1− β)δg‖X‖+ δf‖Y ‖+ (1 + αδ−1

1 )‖Z‖} ‖P (t, X, Y, Z)‖

≤ 31/2δ9

{
p3(t)ψ2 + p2(t)ψ(1+ρ) + p1(t)ψ

}
; (7.12)

where δ9 = max
{
(1− β)δg ; δf ; (1 + αδ−1

f )
}

.

Combining inequalities (7.3), (7.11) and (7.13) with the assumption that
|p3(t)| ≤ ρ3 for all t in R, we obtain from (7.1) that

V̇ ≤ −(δ8 − 31/2δ9ρ3)ψ2 + 31/2δ9

{
p2(t)ψ(1+ρ) + p1(t)ψ

}
. (7.14)

This we can rewrite as
V̇ ≤ −δ10ψ

2 + ψ1 + ψ2 (7.15)

where
3δ10 = δ8 − 31/2δ9ρ3, ψ1 = {δ11p1(t)− δ10ψ}ψ;

and
ψ2 =

{
δ11p2(t)ψ(1+ρ) − δ10ψ

2
}

.

If we choose ρ3 small enough such that δ10 > 0 (following [6, p. 306]), with the
necessary modification we obtain

ψ1 ≤ δ12ψ
2(1−r)p2r

1 (t) (7.16a)

and
ψ2 ≤ δ13ψ

2(1−r)p
2r/(1−ρ)
2 (t) (7.16b)

for any constant r in the range 1
2 ≤ r ≤ 1.

Thus, (7.15) reduces to

V̇ ≤ −δ10ψ
2 + δ14

{
p2r
1 (t) + p

2r/(1−ρ)
2 (t)

}
ψ2(1−r) (7.17)

with
δ14 = max {δ12; δ13}

This is (6.2) with δ4 = δ10 and δ5 = δ14.
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8 Proof of Theorem 2

As pointed out in [1], to prove Theorem 2, if suffices to prove that the function
V satisfies

(i) V (X, Y, Z)→∞ as (‖X‖2 + ‖Y ‖2 + ‖Z‖2)→∞; and

(ii) V̇ ≤ −1

along paths of any solution (X(t), Y (t), Z(t)) of (6.1) for which (‖X(t)‖2 +
‖Y (t)‖2 + ‖Z(t)‖2) is large enough. We only need to concern ourselves with
property (ii), since by Lemma 2, inequality (5.3), property (i) has been taken
care of.

If all the conditions of Theorem 1 are satisfied, then, for any solution (X(t),
Y (t), Z(t)) of (6.1), V̇ satisfies inequality (7.17). That is

V̇ ≤ −δ10ψ
2 + δ14

{
p2r
1 (t) + p

2r/(1−ρ)
2 (t)

}
ψ2(1−r)

for any r in the range 1
2 ≤ r ≤ 1.

Now, if p1(t) and p2(t) are bounded for all t in R, then there exists some
constant δ15 > 0 such that

V̇ ≤ −δ10ψ
2 + δ15ψ

2(1−r) ≤ −1

if
ψ ≥ δ16 > (δ−1

10 δ15)1/2r.

Thus property (ii) is proved for V , and this completes the proof of Theorem 2.
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Abstract

N. S. Sinyukov [5] introduced the concept of an almost geodesic map-
ping of a space An with an affine connection without torsion onto An and
found three types: π1, π2 and π3. The authors of [1] proved completness
of that classification for n > 5.
By definition, special types of mappings π1 are characterized by equa-

tions
P h

ij,k + P α
ijP

h
αk = aijδ

h
k ,

where P h
ij ≡ Γ

h
ij − Γh

ij is the deformation tensor of affine connections of
the spaces An and An.
In this paper geometric objects which preserve these mappings are

found and also closed classes of such spaces are described.
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1 Introduction

In this paper the theory of almost geodesic mappings of type π∗
1 of spaces with

affine connection without torsion is studied. These mappings are a special case
of almost geodesic mappings of type π1 introduced by N. S. Sinyukov [5].

General properties of mappings π∗
1 are shown and invariant objects with re-

spect to these mappings are found. Mappings π∗
1 of spaces of constant curvature

and affine spaces are studied.
First we recall basic formulas and properties of the theory of almost geodesic

mappings of spaces An with affine connection which are described in [5], [6].
A curve  defined in a space with affine connection An is called almost

geodesic if there exists a two-dimensional parallel distribution along , to which
the tangent vector of this curve belongs at every point.

A diffeomorphism f : An → An is an almost geodesic mapping if, as a result
of f , every geodesic of the space An passes into an almost geodesic curve of the
space An.

A mapping f from An onto An is almost geodesic if and only if, in a common
coordinate system x ≡ (x1, x2, . . . , xn) with respect to the mapping f , the

connection deformation tensor P h
ij(x) ≡ Γ

h

ij(x)−Γh
ij(x) satisfies the relations [5]

Ah
αβγλαλβλγ ≡ a P h

αβλαλβ + b λh,

where Ah
ijk ≡ P h

ij,k + Pα
ijP

h
αk, Γh

ij (Γ
h

ij) are components of the affine connection

of spaces An (An), λh is any vector, a and b are some functions of variables
xh and λh. Hereafter “,” denotes the covariant derivative with respect to the
connection of the space An.

Three types of almost geodesic mappings, π1, π2 and π3, were found in [5].
We proved [1] that for n > 5 other types do not exist. Almost geodesic mappings
of type π1 are characterized by the following conditions

Ah
(ijk) = δh

(i ajk) + b(i P h
jk),

where aij is a symmetric tensor, bi is a covector, δh
i is the Kronecker symbol,

(ijk) is the symmetrization of indices.
Many papers are dedicated to study of mappings π2 and π3 (see [5], [6],

[4]) in contrast to mappings π1. The reason is that basic equations of these
mappings are difficult to study. Therefore in this paper we deal with a special
case of mappings π1. This special case does not imply that geodesic mappings
are either π2 or π3 mappings.

2 Almost geodesic mappings π∗
1

Let a diffeomorphism from An onto An satisfy

P h
ij,k + Pα

ijP
h
αk = aij δh

k , (1)

where aij is a symmetric tensor.
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Diffeomorphisms of this kind are a special case of almost geodesic mappings
of type π1. We denote them by π∗

1 .
Let us derive the integrability condition arising from (1). We differentiate

(1) covariantly by xm and then alternate with respect to the indices k and m.
Next in the integrability condition of (1) we contract with respect to the indices
h and m. After editing we have

(n− 1) aij,k = Pα
ijRαk − P β

α(iR
α
j)βk − (n− 1)Pα

ijaαk, (2)

where Rh
ijk is the Riemannian tensor in An, Rij ≡ Rα

ijα is the Ricci tensor, (i j)
denotes the symmetrization of indices.

Evidently, equations (1) and (2) represent a system of differential equations
of Cauchy type in the space An which is solvable with respect to unknown
functions P h

ij(x) and aij(x), which, naturally, satisfy the algebraic conditions

P h
ij(x) = P h

ji(x), aij(x) = aji(x). (3)

We have

Theorem 1 The space An with affine connection admits an almost geodesic
mapping π∗

1 onto An if and only if there exists a solution P h
ij and aij of system

of Cauchy type (1) and (2) satisfying (3).

Integrability conditions of this system have the form

−Pα
ijR

h
αkm + P h

α(iR
α
j)km =

1
n− 1

[
(Pα

ijRαm − P β
α(iR

α
j)mβ)δh

k − (Pα
ijRαk − P β

α(iR
α
j)kβ)δh

m

]
,

(n− 1)aα(iR
α
j)km = Pα

ijR
h
α[k,m] + P β

α(iR
α
j)mk,β

+ R[mk]aij + P β
γ[mRh

|i|k]βP γ
αj + Pα

ijP
β
αγRγ

[km]β − Pα
ijP

β
γ[kRγ

|α|m]β,

where [i j] denotes the alternation of indices.

3 Invariant object of mappings π∗
1

If P h
ij is the deformation tensor ([5]) then Riemannian tensors Rh

ijk and R
h

ijk of

spaces An and An satisfy the following condition

R
h

ijk = Rh
ijk + P h

i[k,j] + Pα
i[kP h

j]α. (4)

Using formulas (1) and (4) we obtain

∗
W

h

ijk=
∗

Wh
ijk , (5)

where

∗
Wh

ijk≡ Rh
ijk −

1
n− 1

Ri[jδ
h
k],

∗
W

h

ijk≡ R
h

ijk −
1

n− 1
Ri[jδ

h
k]. (6)
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Clearly,
∗

Wh
ijk and

∗
W

h

ijk is a tensor of type
(
1
3

)
in the space An and An,

respectively.
Condition (5) shows that this tensor is invariant with respect to almost

geodesic mappings π∗
1 .

We contract condition (5) in indices h and i to obtain the equality

Wij = W ij , (7)

where
Wij ≡ R[ij], W ij ≡ R[ij], (8)

Subtract (7) from (5) to write

Wh
ijk = W

h

ijk, (9)

where Wh
ijk and W

h

ijk are Weyl projective curvature tensors of spaces An and

An, respectivelly. We get

Theorem 2 The Weyl projective curvature tensor Wh
ijk and tensors

∗
Wh

ijk and
Wij , which are defined by (6) and (8), are invariant with respect to almost
geodesic mappings π∗

1 .

4 Mappings π∗
1 of affine and projective-euclidean spaces

From Theorem 2 it follows

Theorem 3 If a projective-euclidean space or equiaffine space admits an al-
most geodesic mapping π∗

1 onto An then An is also a projective-euclidean space
or an equiaffine space.

The proof of Theorem 3, evidently, follows from the condition Wh
ijk = 0 in

the projective-euclidean space and from the condition Wij = 0 in the equiaffine
space.

It means that projective-euclidean spaces and equiaffine spaces make up
closed classes with respect to mappings π∗

1 .
Clearly, the Riemannian tensor is preserved by mappings π∗

1 if and only if
the tensor aij vanishes. In this case basic equations have the form

P h
ij,k = −Pα

ijP
h
αk. (10)

Equations (10) are completely integrable in the affine space. Evidently, these
equations have a solution for any initial conditions P h

ij(xo).
If the initial conditions are such that P h

ij(xo) �≡ δh
(iψj)(xo) then every solution

generates a mapping π∗
1 which is not a geodesic mapping of the affine space An

onto the affine space An. Therefore we can write

Theorem 4 Mappings π∗
1 of an affine space An onto itself exist. All lines map

into planar curves (not necessary lines).
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Moreover, integrability conditions (1) and (2) in affine space are always true.
We obtain

Theorem 5 Riemannian spaces Vn with non constant curvature admit non
geodesic mappings π∗

1 which are necessarilly mappings of type π3 and preserve
the quadratic complex of geodesics.

Proof Let a Riemannian space Vn with non constant curvature K admit a non
geodesic mapping π∗

1 . Integrability conditions (1) then have the form

K(P h
k(igj)l − P h

l(igj)k) + δh
l Bijk − δh

kBijl = 0, (11)

where Bijk ≡ aij,k + Pα
ij(aαk + K gαk), gij is the metric tensor of the space Vn.

From the last formula it follows

P h
ij = P hgij (12)

where P h is a vector. Then the mapping is F -planar [4]. Clearly, on the basis
of results in [1], such mappings are almost geodesic mappings of type π3. It is
proved in the paper [1] that mappings π1 ∩ π3 preserve the quadratic complex
of geodesics [3].

After substituting (12) in (1) we have

P h
,k + P hPk = αδh

k ,

where α is a function, Pk is a covector.
These conditions characterize concircular vector fields P h, which always exist

in spaces with constant curvature. �

5 Examples of almost geodesic mappings π∗
1

We present an example of an almost geodesic mapping of type π∗
1 of an affine

space An onto an affine space An.
Let x1, x2, . . . , xn and x1, x2, . . . , xn be affine coordinate in An and An, re-

spectively.
The mapping

xh =
1
2
Ch

α(xα − Cα)2 + xh
o , (13)

where Ch
i , Ch, xh

o are some constants, xh �= Ch, and the determinant det
∣∣Ch

i

∣∣ �≡
0, defines an almost geodesic mapping π∗

1 of the space An onto An.
We can prove directly that the deformation tensor P h

ij in the coordinate
system x1, x2, . . . , xn has the form

P i
ii =

1
xi − Ci

, i = 1, n,

and the other components are equal to zero.
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Evidently, the tensor P h
ij corresponds to equations (10). This mapping is

not of type π2 or π3.
Lines in the space An which are defined by equations xh = ah + bh t where

t is the parameter, map into parabolas (or lines) of the space An, which are
defined by equations

xh = Dh + Eh t + Fh t2

where

Dh =
1
2
Ch

α(aα − Cα)2, Eh = Ch
α(aα − Cα)bα, Fh =

1
2
Ch

α(bα)2

in this mapping.
The image is a line if vectors Eh and Fh are collinear.
Finally we remark that formula (13) generates a system of almost geodesic

mappings of type π1 of planar spaces if the coefficients Ch
i , Ch and xh

o are
continuous.
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Abstract

In this paper we shall give some results on irreducible deductive sys-
tems in BCK-algebras and we shall prove that the set of all deductive
systems of a BCK-algebra is a Heyting algebra. As a consequence of this
result we shall show that the annihilator F ∗ of a deductive system F is
the the pseudocomplement of F . These results are more general than that
the similar results given by M. Kondo in [7].

Key words: BCK-algebras, deductive system, irreducible deductive
system, Heyting algebras, annihilators.
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1 Introduction and preliminaries

In [7] it was shown that the set of all ideals (or deductive systems, in our
terminology) of a BCK-algebra A is a pseudocomplement distributive lattice and
that the annihilator F ∗ of a deductive system F of A is the pseudocomplement
of F. Related results on annihilators in Hilbert algebras and Tarski algebras (or
also called commutative Hilbert algebras [6] or Abbot’s implication algebras)
are given in [2] and [3]. On the other hand, it was shown in [9] that the set
of deductive systems Ds(A) of a BCK-algebra A is an infinitely distributive
lattice, and thus it is a Heyting algebra. In this note we will give a description
of this fact and we shall prove that the annihilator F ∗ of the deductive system F
can be obtained as F ∗ = F ⇒ {1}, where ⇒ is the Heyting implication defined
in the lattice Ds(A).
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In the remaining part of this section we shall review some results on BCK-
algebras. In section 2 we shall study the notion of irreducible deductive system.
In particular, we shall give a generalization of a result given in [8] for BCK-
algebras with supremum. In Section 3 we shall prove that the lattice of deductive
system of a BCK-algebra is a Heyting algebra.

Definition 1 An algebra A = 〈A,→, 1〉 of type (2, 0) is a BCK-algebra if for
all a, b, c ∈ A the following conditions hold:

1. a → a = 1,

2. (a → b)→ ((b → c)→ (a → c)) = 1,

3. a → (b → c) = b → (a → c),

4. a → (b → a) = 1

5. a → b = 1 and b → a = 1, implies a = b.

If A is a BCK-algebra and we define the binary relation ≤ on A by a ≤ b if
and only if a → b = 1, then ≤ is a partial order in A.

Let us recall that in all BCK-algebras A the following properties are satisfied:

P1 1 → a = a,

P2 a → ((a → b)→ b) = 1

P3 a → b ≤ (c → b)→ (c → a),

P4 a → b = ((a → b)→ b)→ b,

P5 if a ≤ b, then c → a ≤ c → b and b→ c ≤ a → c.

A BCK-algebra with supremum, or BCK∨-algebra is an algebra

A = 〈A,→,∨, 1〉
where 〈A,→, 1〉 is a BCK-algebra, 〈A,∨, 1〉 is a join-semilattice, and a → b = 1
if and only if a∨ b = b. For a, b ∈ A we define inductively a →n b as a →0 b = b
and a →n+1 b = a → ((a →n b)).

Let A be a BCK-algebra. A deductive system or filter of A is a nonempty
subset F of A such that 1 ∈ F , and for every a, b ∈ A, if a, a → b ∈ F , then
b ∈ F . It is clear that if F is a deductive system, a ≤ b and a ∈ F , then b ∈ F .
The set of all deductive system of a BCK-algebra A is denoted by Ds(A). The
deductive system generated by a set X ⊆ A is denoted by 〈X〉. Let us recall
that

〈X〉 = {a ∈ A : x1 → (. . . (xn → a) . . .) = 1 for some x1, . . . , xn ∈ X} .

In particular, 〈x〉 = {a ∈ A : x→ (. . . (x → a) . . .) = x →n a = 1}.
Let A be a BCK-algebra. In [9] (see also [10]) it was proved that the struc-

ture 〈Ds(A),∨,∧, {1}, A〉 is a bounded (infinitely) distributive lattice where the
operations ∧ and ∨ are defined by:

F1 ∧ F2 = F1 ∩ F2

F1 ∨ F2 = {a ∈ A : ∃(x, y) ∈ F1 × F2; x → (y → a) = 1} .
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We note that

F ∨ 〈a〉 = {c ∈ A : a →n c ∈ F for some n ≥ 0}
for F ∈ Ds(A) and a ∈ A. Indeed, let c ∈ F ∨ 〈a〉. Then there exist x ∈ F and
n ≥ 0 such that x→ (y → c) = 1 and a →n y = 1. Since x → (y → c) = 1 ∈ F ,
y → c ∈ F . So, y → c ≤ (a →n y)→ (a →n c) = 1→ (a →n c) = a →n c ∈ F .

2 Irreducible deductive systems

In [8] the separation theorem for BCK∨-algebras was proved. In this section
following the paper [1], we prove a separation theorem for any BCK-algebra.

Let A be a BCK-algebra. A deductive system F is irreducible if and only if
for any F1, F2 ∈ Ds(A) such that F = F1 ∩F2, we have F = F1 or F = F2. We
denote by X(A) the set of all irreducible deductive systems of a BCK-algebra A.

Lemma 2 Let A be a BCK-algebra. Let F ∈ Ds(A). Then F is irreducible if
and only if for every a, b /∈ F there exist c /∈ F and n ≥ 0 such that a →n c,
b→n c ∈ F .

Proof ⇒) Let a, b /∈ F . Let us consider the deductive systems Fa = 〈F ∪ {a}〉 =
F ∨ 〈a〉 and Fb = 〈F ∪ {b}〉 = F ∨ 〈b〉. Since F �= Fa and F �= Fb, then
by irreducibility of F we have F ⊂ Fa ∩ Fb . It follows that there exists
c ∈ (Fa ∩ Fb)− F . Then a →n c ∈ F and b→m c ∈ F for some n, m ≥ 0. If we
assume that n ≥ m, then by property P4 we have that b →m c ≤ b →n c. So,
a →n c ∈ F and b →n c ∈ F .
⇐). Let F1, F2 ∈ Ds(A) such that F = F1 ∩ F2. Suppose that F �= F1 and

F �= F2. Then there exist a ∈ F1 − F and b ∈ F2 − F . So, by the assumption,
there exists c /∈ F and n ≥ 0 such that a →n c ∈ F and b →n c ∈ F . As,
a, a →n c ∈ F1 and F1 ∈ Ds(A), then c ∈ F1. Similarly, c ∈ F2. Thus,
c ∈ F1 ∩ F2 = F , which is a contradiction. �

Let A be a BCK-algebra. A subset I of A is called an ideal of A if:

1. If b ∈ I and a ≤ b, then a ∈ I.

2. If a, b ∈ I there exists c ∈ I such that a ≤ c and b ≤ c.

The set of all ideals of A will be denoted by Id(A).

Theorem 3 Let A be a BCK-algebra. Let F ∈ Ds(A) and I ∈ Id(A) such
that F ∩ I = ∅. Then there exists P ∈ X(A) such that F ⊆ P and P ∩ I = ∅.
Proof Let us consider the following subset of Ds(A):

F = {H ∈ Ds(A) : F ⊆ H and H ∩ I = ∅} .

Since F ∈ F , then F �= ∅. It is clear that the union of a chain of elements of F
is also in F . So, by Zorn’s lemma, there exists a maximal element P of F . We
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prove that P ∈ X(A). Let a, b /∈ P and let us consider the deductive systems
Pa = 〈P ∪ {a}〉 and Pb = 〈P ∪ {b}〉. Clearly, P ⊂ Pa ∩ Pb. Then, Pa, Pb /∈ F .
Thus, Pa ∩ I �= ∅ and Pa ∩ I �= ∅. It follows that there exist x, y ∈ I such that
a →n x ∈ P and b →m y ∈ P for some n, m ≥ 0. Suppose that m ≤ n. Then
b →m y ≤ b →n y ∈ P . Since I is an ideal, there exists c ∈ I such that x ≤ c
and y ≤ c. So, a →n x ≤ a →n c ∈ P and b →n y ≤ b →n c ∈ P . Therefore, by
Lemma 2, we conclude that P ∈ X(A). �

Corollary 4 Let A be a BCK-algebra. Let F ∈ Ds(A).

1. For each a /∈ F there exists P ∈ X(A) such that a /∈ P and F ⊆ P .

2. F =
⋂ {P ∈ X(A) : F ⊆ P}.

3 Annihilators

Let us recall that a Heyting algebra is an algebra 〈A,∨,∧,⇒, 0, 1〉 of type
(2, 2, 2, 0, 0) such that 〈A,∨,∧, 0, 1〉 is a bounded distributive lattice and the
operation ⇒ satisfies the condition: a ∧ b ≤ c if and only if a ≤ b ⇒ c, for
all a, b, c ∈ A. The pseudocomplement of an element x ∈ A is the element
x∗ = x⇒ 0.

Let A be a BCK-algebra. Let a ∈ A. Define the set [a) = {x ∈ A : a ≤ x}.
We note that in general the set [a) /∈ Ds(A).

For each pair F, H ∈ Ds(A) let us define the subset F ⇒ H of A as follows:

F ⇒ H = {a ∈ A : [a) ∩ F ⊆ H} .

Theorem 5 Let A be a BCK-algebra. Let F, H ∈ Ds(A). Then

1. F ⇒ H ∈ Ds(A).

2. F ⇒ H = {x ∈ A : (x→ f)→ f ∈ H for each f ∈ F}.
3. 〈Fi(A),∨,∧,⇒, {1}, A〉 is a Heyting algebra.

Proof 1. Since, [1) ∩ F = {1} ⊆ H , then 1 ∈ F ⇒ H .
Let x, x → y ∈ F ⇒ H . Then, [x) ∩ F ⊆ H and [x → y) ∩ F ⊆ H . Let

z ∈ [y) ∩ F . As, y ≤ z, then by the property P5, x → y ≤ x → z. By property
P4., we have x → z ∈ F . Thus,

x → z ∈ [x→ y) ∩ F.

On the other hand, as x ≤ (x → z) → z and z ≤ (x → z) → z, we get
(x→ z)→ z ∈ [x) ∩ F . Therefore,

x→ z, (x → z)→ z ∈ H,

and consequently z ∈ H . So, F ⇒ H ∈ Ds(A).
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2. We prove that

F ⇒ H ⊆ G = {x ∈ A : (x→ f)→ f ∈ H for each f ∈ F} .

Let x ∈ A such that [x) ∩ F ⊆ H . Let f ∈ F . Since, x ≤ (x → f) → f and
f ≤ (x → f)→ f , then (x → f)→ f ∈ [x) ∩ F ⊆ H . Thus, x ∈ G.

Let x ∈ G. Let y ∈ A such that x ≤ y and y ∈ F . Since (x → y) → y ∈ H
and x → y = 1, then 1 → y = y ∈ H . Thus, x ∈ F ⇒ H .

3. Let F, H, K ∈ Ds(A). Then it is easy to check that

F ∩H ⊆ K if and only if F ⊆ H ⇒ K.

Thus, 〈Ds(A),∨,∧,⇒, {1}, A〉 is a Heyting algebra. �

As a corollary we have the following result, first given by M. Kondo in [7].

Corollary 6 Let A be a BCK-algebra. The annihilator of a deductive system
F is the deductive system

F ∗ = F ⇒ {1} = {x ∈ A : [x) ∩ F = {1}} .

Proof It is immediate by the above theorem. �

For BCK∨-algebras we can give the following result which generalize a similar
result given by M. Kondo in [7] for commutative BCK-algebras.

Proposition 7 Let A be a BCK∨-algebra. Then for every F ∈ Ds(A)

F ∗ = {x ∈ A : x ∨ f = 1 for each f ∈ F} .

Proof Let x ∈ A such that x ∨ f = 1 for each f ∈ F . We prove that
[x) ∩ F = {1}. Let a ∈ A such that x ≤ a and a ∈ F . Then a = x ∨ a = 1.
Thus, x ∈ F ∗.

Let x ∈ F ∗. Then [x) ∩ F = {1}. Since x ≤ x ∨ f , f ≤ x ∨ f , for each
f ∈ F , and as F is increasing, then x ∨ f ∈ [x) ∩ F . Thus, x ∨ f = 1, for each
f ∈ F . �

Now we prove that the annihilator of a subset X is the annihilator of the
deductive system generated by X . This result was proved for Tarski algebras
in [2].

Theorem 8 Let A be a BCK∨-algebra. Then for every subset X of A, we have
X∗ = 〈X〉∗.
Proof Since X ⊆ 〈X〉, then 〈X〉∗ ⊆ X∗. Let x ∈ X∗. We prove that for every
a ∈ 〈X〉, x ∨ a = 1. Suppose that there exists a ∈ 〈X〉 such that a ∨ x �= 1.
Then there exist x1, . . . , xk ∈ X such that

x1 → (x2 → . . . (xk → a) . . .) = 1.

As x ∈ X∗, x∨xi = 1 for every xi ∈ {x1, . . . , xk}. Since, a∨x �= 1, by Theorem
3 there exists an irreducible deductive system P such that x /∈ P , a /∈ P and
taking into account that x ∨ xi = 1, then xi ∈ P for every xi ∈ {x1, . . . , xk}.
But since, x1 → (x2 → . . . (xk → a) . . .) = 1 ∈ P , then a ∈ P , which is a
contradiction. Thus, a ∨ x = 1 for every a ∈ 〈X〉 and consequently x ∈ 〈X〉∗.

�
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Abstract

In the paper we consider the impulsive periodic boundary value prob-
lem with a general linear left hand side. The results are based on the
topological degree theorems for the corresponding operator equation (I −
F )u = 0 on a certain set Ω that is established using properties of strict
lower and upper functions of the boundary value problem.

Key words: Boundary value problem, topological degree, upper
and lower functions, impulsive problem, periodic solution, differen-
tial equation.
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1 Introduction

In this paper we will study the boundary value problem

(1.1) x′′ + a(t)x′ + b(t)x = f(t, x, x′)

(1.2) x(t1+) = J(x(t1)), x′(t1+) = M(x′(t1−)),

(1.3) x(0) = x(2π), x′(0) = x′(2π).
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We suppose, that a, b are Lebesgue integrable functions on [0, 2π] and f fulfils
the Carathéodory conditions on [0, 2π] × R2. Furthermore, we suppose that
t1 ∈ (0, 2π) and

(1.4) J, M are continuous mappings R → R and,
J is increasing on R and M is nondecreasing on R.

Our main assertions (Theorem 3.2 and Theorem 3.6) are based on the proper-
ties of the Leray–Schauder topological degree. We search an operator problem
u = Fu which corresponds to (1.1)–(1.3) and such that operator I − F has
nonzero topological degree on a certain set Ω. For establishing Ω the existence
of strict lower and upper functions of the problem is assumed.

We consider two cases of ordering of strict lower and upper functions σ1

and σ2:
i) The functions are well ordered i.e. σ1(t) < σ2(t) for all t ∈ [0, 2π]. In this

case, we get the existence of a solution u which lies between the strict lower and
upper functions i.e. σ1(t) < u(t) < σ2(t) on [0, 2π] (Corollary 3.3).

ii) The functions are in the opposite order i.e. σ2(t) < σ1(t) for all t ∈ [0, 2π].
In this case, we get the existence of a solution u, at least one point of which lies
between the strict functions i.e. σ2(tu) < u(tu) < σ1(tu) for some tu ∈ [0, 2π]
(Corollary 3.7).

This work generalizes the results published in [1],[2] where the equation
x′′ = f(t, x, x′), which is a special case of the equation (1.1), has been studied.

1.1 Definitions

L[0, 2π] is the Banach space of the Lebesgue integrable functions on [0, 2π] with
the norm ‖x‖1 =

∫ 2π

0 |x(t)|dt.
L∞[0, 2π] denotes the Banach space of essentially bounded functions on

[0, 2π] with the norm ‖x‖∞ = ess sup{|x(t)|; t ∈ [0, 2π]}.
C[0, 2π] and C1[0, 2π] are the spaces of functions continuous on [0, 2π] and

of functions with continuous first derivatives on [0, 2π], respectively.
Similarly, AC[0, 2π] and AC1[0, 2π] denote spaces of functions absolutely

continuous on [0, 2π] and of functions with absolutely continuous first derivatives
on [0, 2π], respectively.

Let t1 ∈ (0, 2π). Then C̃1[0, 2π] means the set of functions

u(t) =
{

u1(t) for 0 ≤ t ≤ t1

u2(t) for t1 < t ≤ 2π
,

where u1 ∈ C1[0, t1] and u2 ∈ C1[t1, 2π]. ÃC
1
[0, 2π] specifies the set of func-

tions u ∈ C̃1[0, 2π] with absolutely continuous first derivatives on (0, t1) and on
(t1, 2π). For u ∈ C̃1[0, 2π] we establish

u′(0) = lim
τ→0+

u′(τ), u′(2π) = lim
τ→2π−

u′(τ),
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u′(t1) = lim
τ→t1−

u′(τ),

‖u‖
C̃1 = ‖u‖∞ + ‖u′‖∞.

Moreover, for u ∈ C̃1[0, 2π] and t ∈ (0, 2π) we will use notations

(1.5) ∆u(t) = u(t+)− u(t), ∆u′(t) = u′(t+)− u′(t).

C̃1[0, 2π] with the norm ‖ · ‖
C̃1 is the Banach space.

Definition 1.1 By a solution of the impulsive problem (1.1)–(1.3) we call

u ∈ ÃC
1
[0, 2π] which fulfils the equation (1.1) for a.e. t ∈ [0, 2π] and satis-

fies conditions (1.2) and (1.3).
By a solution of the problem (1.1), (1.3) (without impulses) we call u ∈

AC1[0, 2π] which fulfils the equation (1.1) for a.e. t ∈ [0, 2π] and satisfies con-
ditions (1.3).

Definition 1.2 A function σ1 ∈ ÃC1[0, 2π] is a lower function of (1.1)–(1.3) if

(1.6) σ′′
1 + a(t)σ′

1 + b(t)σ1 ≥ f(t, σ1, σ
′
1) for a.e. t ∈ [0, 2π],

(1.7) σ1(t1+) = J(σ1(t1)), σ′
1(t1+) ≥M(σ′

1(t1)),

(1.8) σ1(0) = σ1(2π), σ′
1(0) ≥ σ′

1(2π).

Definition 1.3 A function σ2 ∈ ÃC1[0, 2π] is an upper function of (1.1)–(1.3)
if

(1.9) σ′′
2 + a(t)σ′

2 + b(t)σ2 ≤ f(t, σ2, σ
′
2) for a.e. t ∈ [0, 2π],

(1.10) σ2(t1+) = J(σ2(t1)), σ′
2(t1+) ≤M(σ′

2(t1)),

(1.11) σ2(0) = σ2(2π), σ′
2(0) ≤ σ′

2(2π).

Definition 1.4 A lower function σ1 of (1.1)–(1.3) is a strict lower function of
(1.1)–(1.3) if it is not a solution of (1.1)–(1.3) and there exists ε > 0 such that

(1.12) σ′′
1 + a(t)y + b(t)x ≥ f(t, x, y) for a.e. t ∈ [0, 2π]

and each
x ∈ [σ1(t), σ1(t) + ε], y ∈ [σ′

1(t)− ε, σ′
1(t) + ε].

Similarly, an upper function σ2 of (1.1)–(1.3) is a strict upper function of (1.1)–
(1.3) if it is not a solution of (1.1)–(1.3) and there exists ε > 0 such that

(1.13) σ′′
2 + a(t)y + b(t)x ≤ f(t, x, y) for a.e. t ∈ [0, 2π]

and each
x ∈ [σ2(t)− ε, σ2(t)], y ∈ [σ′

2(t)− ε, σ′
2(t) + ε].
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2 Auxiliary problem

In this chapter we will study the auxiliary Dirichlet problem and present asser-
tions which consist of the relation of the strict lower and upper functions to a
solution of the auxiliary problem. The assertions will be used in next chapters.

Consider the boundary value problem

(2.1) x′′ + a(t)x′ + b(t)x = h(t),

(2.2) x(0) = x(2π) = c,

where h ∈ L[0, 2π] and c ∈R and the corresponding homogeneous problem

(2.3) x′′ + a(t)x′ + b(t)x = 0,

(2.4) x(0) = x(2π) = 0.

We study two cases of the problem:
i) The problem (2.3), (2.4) has only the trivial solution. In this case there is

the Green function of (2.3), (2.4) and we can prove that there exists an operator
F corresponding to (2.1), (2.2) such that every solution u of x = Fx fulfils

(2.5) u(t1+) = u(t1) + d, u′(t1+) = u′(t1) + e, d, e ∈ R.

ii) The problem (2.3), (2.4) has the nontrivial solution. In this case we
transform the problem to an equivalent form to be able to use the way in i).

Lemma 2.1 Let the homogeneous boundary value problem (2.3), (2.4) has only

the trivial solution. Then there exists a unique solution u ∈ ÃC
1
[0, 2π] of the

impulsive problem (2.1), (2.2), (2.5).

The solution can be written in the form

(2.6) u = c + g̃(t, t1)d + g(t, t1)e +

2π∫
0

g(t, s)[h(s)− cb(s)]ds,

where g(t, s) is the Green function of (2.3),(2.4) and g̃(t, s) is a function which
fulfills (2.3) for a.e. t ∈ [0, s) ∪ (s, 2π] and each fixed s ∈ [0, 2π] and satisfies
conditions (2.4) and

(2.7) g̃(s +, s) = g̃(s, s) + 1,
∂g̃(t, s)

∂t

∣∣∣∣
t→s+

=
∂g̃(t, s)

∂t

∣∣∣∣
t→s−

for each s ∈ (0, 2π). At first, we need to prove that such function g̃(t, s) exists.

Lemma 2.2 Let the homogeneous boundary value problem (2.3), (2.4) has only
the trivial solution. Then for each fixed s ∈ [0, 2π] there exists a function g̃ which
fulfills (2.3) for a.e t ∈ [0, 2π] and satisfies (2.4), (2.7).
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Proof Consider fixed s ∈ [0, 2π] and a problem (2.4),

(2.8) x′′(t) + a(t)x′(t) + b(t)x(t) = h̃s(t),

where

h̃s(t) = h∗
s(t) +

1
2π

a(t)−
(
1− 1

2π
t
)
b(t), h∗

s(t) =
{

b(t) for t ≤ s
0 for s < t

.

Since the corresponding homogeneous problem has only the trivial solution and
h̃s ∈ L[0, 2π] then there exists a solution ws ∈ AC1[0, 2π]

ws(t) =

2π∫
0

g(t, τ)h̃s(τ)dτ

satisfying for a.e. t ∈ [0, 2π]

w′′
s (t) + a(t)w′

s(t) + b(t)ws(t) = h∗
s(t) +

1
2π

a(t)−
(
1− 1

2π
t
)
b(t),

ws(0) = 0, ws(2π) = 0.

Denote

us(t) =
{

ws(t)− 1
2π t for t ≤ s

ws(t) + 1− 1
2π t for t > s

.

Then us ∈ AC1([0, 2π]\{s}) and

u′′
s (t) + a(t)u′

s(t) + b(t)us(t) = w′′
s (t) + a(t)

[
w′

s(t)−
1
2π

]
+b(t)

[
ws(t)− 1

2π t

]
= h∗

s(t)− b(t) = 0

for a.e. t ∈ (0, s) and

u′′
s (t) + a(t)u′

s(t) + b(t)us(t) = w′′
s (t) + a(t)

[
w′

s(t)−
1
2π

]
+b(t)

[
ws(t) + 1− 1

2π t

]
= h∗

s(t) = 0

for a.e. t ∈ (s, 2π). Moreover

∆us(s) = ws(s) + 1− 1
2π

s−
[
ws(s)− 1

2π
s

]
= 1,

∆u′
s(s) = w′

s(s)−
1
2π
−
[
w′

s(s)−
1
2π

]
= 0,

us(0) = 0, us(2π) = 0.

Hence we can define g̃(t, s) = us(t) for each fixed s ∈ [0, 2π]. �
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Proof of Lemma 2.1 Now, we prove that u given by (2.6) is a solution of
(2.1), (2.2), (2.5). For fixed t1 ∈ [0, 2π] we denote

φ(t) = g(t, t1), φ̃(t) = g̃(t, t1),

u1(t) = φ̃(t)d + φ(t)e, u2(t) =

2π∫
0

g(t, s)[h(s)− cb(s)] ds.

In view to properties of functions g, g̃ we have φ, φ̃ ∈ ÃC
1
[0, 2π] and

∆φ(t1) = 0, ∆φ′(t1) = 1,

∆φ̃(t1) = 1, ∆φ̃′(t1) = 0.

Then u1 ∈ ÃC
1
[0, 2π] is a solution of (2.3)–(2.5). Moreover u2 ∈ AC1[0, 2π] is

a solution of (2.4),

x′′ + a(t)x′ + b(t)x = h(t)− cb(t)

i.e. u2 + c is a solution of the problem (2.1), (2.2) without impulses. Thus

u = c + u1 + u2 ∈ ÃC
1
[0, 2π] is a solution of the impulsive problem (2.1), (2.2),

(2.5). �

Lemma 2.3 Let

(2.9) b(t) ≤ 0 for a.e. t ∈ [0, 2π] and

2π∫
0

b(t) dt �= 0.

Then the homogeneous boundary value problem (2.3), (2.4) has only the trivial
solution.

Proof On the contrary, suppose that there exists a nontrivial solution u of (2.3),
(2.4). Since −u is a solution of (2.3), (2.4), as well, without loss of generality
we can suppose that there exists a maximum point

max
t∈J

u(t) = u(tM ) > 0, u′(tM ) = 0, tM ∈ (0, 2π).

Then, with respect to (2.4), there exists t0 ∈ (tM , 2π) such that u(t) > 0 for all
t ∈ (tM , t0) and u′(t0) < 0. On the contrary

u′(t0) = −e−A(t0)

t0∫
tM

eA(s)b(s)u(s) ds ≥ 0,

where A(t) =
∫ t

tM
a(s) ds, a contradiction. �
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Lemma 2.4 Let (2.9) be fulfilled, let σ2(t) be a strict upper function of the
problem (1.1)–(1.3) and let f̃(t, x, y) satisfy Carathéodory conditions on [0, 2π]×
R2 and

(2.10) f̃(t, x, y) > f(t, σ2, y) for a.e. t ∈ [0, 2π], x > σ2, y ∈ R.

Then

(2.11) u(t) ≤ σ2(t)

is valid for t ∈ [0, 2π] for every solution u of (1.2),

(2.12) x′′ + a(t)x′ + b(t)x = f̃(t, x, x′),

which fulfils

(2.13) u(0) = u(2π) ≤ σ2(0).

Proof Denote v(t) = u(t)− σ2(t) for t ∈ [0, 2π].
(i) Let there exist t0 ∈ (0, t1) ∪ (t1, 2π) such that v(t0) = max{v(t) : t ∈

(0, t1) ∪ (t1, 2π)} > 0, v′(t0) = 0. Then there exists δ > 0 such that v(t) > 0,
|v′(t)| < ε for all t ∈ (t0, t0 + δ), where ε is from (1.13) and so for a.e. t ∈
(t0, t0 + δ)

v′′(t) = u′′(t)− σ′′
2 (t) = f̃(t, u(t), u′(t))− a(t)u′(t)− b(t)u(t)− σ′′

2 (t)
> f(t, σ2(t), u′(t))− a(t)u′(t)− b(t)u(t)− σ′′

2 (t) ≥ −b(t)(u(t)− σ2(t)) ≥ 0.

Hence, v′(t) > 0 and v(t) > v(t0) for each t ∈ (t0, t0 + δ), a contradiction.
(ii) Now, we suppose that v(t1) > v(t) for all t ∈ (0, t1) and v(t1) > 0. Then

u′(t1) − σ′
2(t1) = v′(t1) ≥ 0 and u(t1) > σ2(t1). From the properties of J and

M we get

v(t1+) = J(u(t1))− J(σ2(t1)) > 0, v′(t1+) = M(u′(t1))−M(σ′
2(t1)) ≥ 0.

Let v′(t1+) > 0. Then in view to (2.13) there is a maximum point t0 ∈ (t1, 2π)
and v(t0) > 0 which contradicts to (i). Then v′(t1+) = 0 and there exists
β ∈ (t1, 2π) such that v′(β) < 0, v(t) > 0, |v′(t)| < ε for all t ∈ (t1, β), where ε
is from (1.13) and then

v′′(t) = u′′(t)− σ′′
2 (t) = f̃(t, u(t), u′(t))− a(t)u′(t)− b(t)u(t)− σ′′

2 (t) ≥ 0,

for a.e. t ∈ (t1, β) and hence v′(β) ≥ 0, a contradiction.
(iii) Suppose that v(t1+) > v(t) for all t ∈ (t1, 2π] and v(t1+) > 0. Then

u′(t1+) − σ′
2(t1+) = v′(t1+) ≤ 0 and u(t1+) > σ2(t1+). If v′(t1+) = 0 then

we get a contradiction as in (i). Hence v′(t1+) < 0. From the properties of
functions J, M we get

v(t1) = u(t1)− σ2(t1) > 0, v′(t1) = u′(t1)− σ′
2(t1) < 0.

In view to (2.13) there exists a maximum point t0 ∈ (0, t1) such that v(t0) > 0,
a contradiction with (i). �
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Lemma 2.5 Let (2.9) be fulfilled and σ2 be a strict upper function of the prob-
lem (1.1)–(1.3). Then

(2.14) u(t) < σ2(t) on [0, 2π]

is valid for every solution u of (1.1)–(1.3) which satisfies (2.11).

Proof Denote v(t) = u(t)− σ2(t) for t ∈ [0, 2π].
(i) Let there exist t0 ∈ (0, t1), such that v(t0) = max{v(t) : t ∈ (0, t1)} = 0.

Then v′(t0) = 0 and there exist α, β such that 0 ≤ α < t0 < β ≤ t1 and
−ε < v(t) ≤ 0, |v′(t)| < ε for each t ∈ (α, β) . From the property of the strict
upper function, we get for a.e. t ∈ (α, β)

v′′(t) = u′′(t)− σ′′
2 (t) = f(t, u(t), u′(t))− a(t)u′(t)− b(t)u(t)− σ′′

2 (t) ≥ 0

and so v′(t) ≥ 0, v(t) ≥ 0 for t ∈ (t0, β) and v′(t) ≤ 0, v(t) ≥ 0 for t ∈ (α, t0).
With respect to (2.11) it is possible only if v(t) = v′(t) = 0 for t ∈ (α, β) where
α = 0, β = t1. From (1.3), (1.11) we get v(2π) = v(0) = 0, v′(2π) ≤ v′(0) = 0
i.e. v(2π) = v′(2π) = 0 and hence, we obtain v(t) = v′(t) = 0 for t ∈ (t1, 2π], as
well. Then u(t) = σ2(t) for t ∈ [0, 2π], which contradicts to the definition of the
strict upper function. In the case t0 ∈ (t1, 2π), we can use the same arguments
to get a contradiction.

(ii) Let v(t) < v(t1) = 0 for t ∈ [0, t1). Then v′(t1) ≥ 0 and

v(t1+) = J(u(t1))− J(σ(t1)) = 0, v′(t1+) = M(u′(t1))−M(σ′(t1)) ≥ 0.

If v′(t1+) > 0 then there exists γ1 ∈ (t1, 2π) such that v(γ1) > 0, a contradiction.
Thus v′(t1+) = v(t1+) = 0 and so v′(t) = v(t) = 0 for t ∈ (t1, 2π]. Using
boundary value conditions we get v(t) = 0 for t ∈ [0, t1), as well. Then u(t) =
σ2(t) for t ∈ [0, 2π], a contradiction.

(iii) Now, let v(t) < v(t1+) = 0 for t ∈ (t1, 2π]. Then v′(t1+) ≤ 0. Suppose
v′(t1+) = 0. Then there is β ∈ (t1, 2π] such that 0 > v(t) > −ε and |v′(t)| < ε
for t ∈ (t1, β) where ε > 0 is the constant from Definition 1.4. Thus, we get
v′(t) = 0 for all t ∈ (t1, β) with β = 2π and the same result we get on [0, t1),
a contradiction. Then v′(t1+) < 0 and from the properties of functions J and
M we obtain v(t1) = 0, v′(t1) < 0. Hence there exists γ2 ∈ (0, t1) such that
v(γ2) > 0, a contradiction.

(iv) Let v(0) = v(2π) = 0. From (1.2), (1.11) we get v′(0) = v′(2π) = 0. We
get a contradiction as in (i). �

Lemma 2.6 Let (2.9) be fulfilled, let σ1(t) be a strict lower function of the
problem (1.1)–(1.3) and let f̃(t, x, y) satisfy Carathéodory conditions on [0, 2π]×
R2 and

(2.15) f̃(t, x, y) < f(t, σ1, y) for a.e. t ∈ [0, 2π], x < σ1, y ∈ R.

Then

(2.16) u(t) ≥ σ1(t)
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is valid for t ∈ [0, 2π] for every solution u of (2.12), (1.2) which fulfils

(2.17) u(0) = u(2π) ≥ σ1(0).

Proof We can use similar arguments as in the proof of Lemma 2.4. �

Lemma 2.7 Let (2.9) be fulfilled, let σ1(t) be a strict lower function of the
problem (1.1)–(1.3). Then

(2.18) u(t) > σ1(t) on [0, 2π]

is valid for every solution u of (1.1)–(1.3) which satisfies (2.16).

Proof We can use similar arguments as in the proof of Lemma 2.5. �

We can rewrite the periodic conditions (1.3) to the equivalent form of Dirich-
let type boundary conditions

(2.19) x(0) = x(0) + x′(0)− x′(2π), x(2π) = x(0) + x′(0)− x′(2π).

In view to Lemma 2.1 and (2.19), we can rewrite problem (1.1)–(1.3) to the
operator form

(2.20) (Fx)(t) = x(0) + x′(0)− x′(2π)

+
∫ 2π

0

g(t, s)
[
f(s, x(s), x′(s))− (x(0) + x′(0)− x′(2π)

)
b(s)
]
ds

+ g̃(t, t1)[J(x(t1))− x(t1)] + g(t, t1)[M(x′(t1))− x′(t1)], t ∈ [0, 2π].

The operator F : C̃1[0, 2π]→ C̃1[0, 2π] is completely continuous (see [2], Lemma
3.1) and every fixed point u ∈ C̃1[0, 2π] of F is a solution of (1.1)–(1.3).

Now, assume that problem (2.3), (2.4) has a nontrivial solution. Then we
choose an arbitrary µ ∈ (−∞, 0) and instead of (1.1) we will use the equation

(2.21) x′′ + a(t)x′ + µx = fµ(t, x, x′),

where

(2.22) fµ(t, x, x′) = f(t, x, x′) + (µ− b(t))x.

Then in view to Lemma 2.3 the corresponding homogeneous problem

(2.23) x′′ + a(t)x′ + µx = 0,

(2.4) has only the trivial solution and hence we can rewrite problem (2.21),
(1.2), (1.3) to the operator form

(2.24) (Fµx)(t) = x(0) + x′(0)− x′(2π)

+
∫ 2π

0

gµ(t, s)
[
fµ(s, x(s), x′(s))− (x(0) + x′(0)− x′(2π)

)
µ
]
ds

+ g̃µ(t, t1)[J(x(t1))− x(t1)] + gµ(t, t1)[M(x′(t1))− x′(t1)], t ∈ [0, 2π],
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where gµ is the Green function of (2.23), (2.2) and g̃µ is a function which fulfils
(2.23) for a.e. t ∈ [0, s) ∪ (s, 2π] and each fixed s ∈ [0, 2π] satisfies (2.4) and

(2.25) g̃µ(s+, s) = g̃µ(s, s) + 1,
∂g̃µ(t, s)

∂t

∣∣∣∣
t=s+

=
∂g̃µ(t, s)

∂t

∣∣∣∣
t=s−

.

The operator Fµ : C̃1[0, 2π] → C̃1[0, 2π] is completely continuous and every its
fixed point u ∈ C̃1[0, 2π] is a solution of (1.1)–(1.3).

3 Strict lower and upper functions and topological degree

Lemma 3.1 Suppose that r0 ∈ (0,∞), p ∈ L[0, 2π], q ∈ L∞[0, 2π] , p, q are
positive a.e. on [0, 2π]. Then there exists r∗ ∈ (0,∞) such that for each x ∈
ÃC

1
[0, 2π] fulfilling (1.2), (1.3),

(3.1) ‖x‖∞ < r0

and

(3.2) |x′′ + a(t)x′ + b(t)x(t)| ≤ (1 + |x′|)(p(t) + q(t)|x′|)
for a.e. t ∈ [0, 2π], the estimate

(3.3) ‖x′‖∞ < r∗

is valid.

Proof Let (3.1), (3.2) be valid. In view to the mean value theorem there exist
τ1 ∈ [0, t1), τ2 ∈ (t1, 2π] such that

|x′(τ1)| ≤ 2r0

t1
, |x′(τ2)| ≤ 2r0

2π − t1
.

Denote

(3.4)

A(t) = exp[
∫ t

0
a(τ) dτ ],

y(t) = A(t)x′(t), Ã = ‖A‖∞,

N = ‖p‖1 + 2‖q‖∞r0 + ‖b‖1r0,

r̃ > max
{

A(τ1)2r0
t1

, A(τ2) 2r0
2π−t1

}
.

(i) At first, suppose x′(tsup) = sup{x′(t) : t ∈ [0, 2π]} > 0.
Assume 0 ≤ tsup ≤ t1. Then there are α, β such that 0 ≤ α < β ≤ t1 and

tsup ∈ [α, β] and such that x′(t) > 0 for each t ∈ [α, β]. From (3.2) we get for
a.e. t ∈ [α, β]

|x′′(t) + a(t)x′(t)| ≤ (1 + x′(t))[p(t) + q(t)x′(t)] + |b(t)|r0,
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|[A(t)x′(t)]′| ≤ A(t)(1 + x′(t))(p(t) + q(t)x′(t)) + A(t)|b(t)|r0,

∣∣∣∣ y′(t)

Ã + y(t)

∣∣∣∣ ≤ |[A(t)x′(t)]′|
A(t)(1 + x′(t))

≤ p(t) + q(t)x′(t) + |b(t)|r0,

(3.5) −p(t)− q(t)x′(t)− |b(t)|r0 ≤ y′(t)

Ã + y(t)
≤ p(t) + q(t)x′(t) + |b(t)|r0.

Let τ1 ≤ tsup. Then we can choose τ1 such that x′(τ1) ≥ 0 and x′(t) > 0 on
(τ1, tsup). Then by integrating of the right hand inequality of (3.5) on (τ1, tsup),
we get

ln
(

Ã + y(tsup)

Ã + y(τ1)

)
≤ ‖p‖1 + 2‖q‖∞r0 + ‖b‖1r0 = N,

(3.6) x′(tsup) ≤ 1
A(tsup)

[(Ã + r̃)eN − Ã].

Let τ1 ≥ tsup. Then we can choose τ1 such that x′(τ1) ≥ 0 and x′(t) > 0 on
(tsup, τ1). Then we get (3.6) by integrating of the left hand inequality of (3.5).
Similarly we get (3.6) with τ2 instead of τ1 for t1 < tsup ≤ 2π .

Assume x′(t1+) > x′(t) for each t ∈ (t1, 2π]. Then there exists β ∈ (t1, 2π)
such that x′(t) > 0 on (t1, β). Thus (3.5) is valid for each t ∈ (t1, β). We can
choose τ2 such that x′(τ2) ≥ 0 and x′(t) > 0 on (t1, τ2). By integrating of the
left hand inequality of (3.5) on (t1, τ2) we get

x′(t1+) ≤ 1
A(t1)

[(Ã + r̃)eN − Ã].

(ii) Now, suppose x′(tinf ) = inf{x′(t) : t ∈ [0, 2π]} < 0.
Assume 0 ≤ tinf ≤ t1. Then there are α, β such that 0 ≤ α < β ≤ t1 and

tinf ∈ [α, β] and such that x′(t) < 0 for each t ∈ [α, β]. From (3.2) we get for
a.e. t ∈ [α, β]

|x′′(t) + a(t)x′(t)| ≤ (1− x′(t))[p(t) − q(t)x′(t)] + |b(t)|r0,

|[A(t)x′(t)]′| ≤ A(t)(1 − x′(t))(p(t) − q(t)x′(t)) + A(t)|b(t)|r0,

∣∣∣∣ y′(t)

Ã− y(t)

∣∣∣∣ ≤ |[A(t)x′(t)]′|
A(t)(1 − x′(t))

≤ p(t)− q(t)x′(t) + |b(t)|r0,

(3.7) −p(t) + q(t)x′(t)− |b(t)|r0 ≤ y′(t)

Ã− y(t)
≤ p(t)− q(t)x′(t) + |b(t)|r0.
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Let τ1 ≤ tinf . Then we can choose τ1 such that x′(τ1) ≤ 0 and x′(t) < 0 on
(τ1, tinf ). By integrating of the right hand inequality of (3.7) on (τ1, tinf ), we
get

− ln
(

Ã− y(τ1)

Ã− y(tinf )

)
≤ ‖p‖1 + 2‖q‖∞r0 + ‖b‖1r0 = N,

(3.8) x′(tinf ) ≥ − 1
A(tinf )

[(Ã + r̃)eN − Ã].

Let τ1 ≥ tinf .Then we can choose τ1 such that x′(τ1) ≤ 0 and x′(t) < 0 on
(tinf , τ1). By integrating of the left hand inequality of (3.7) on (tinf , τ1) we get
(3.8), as well. Similarly we get (3.8) with τ2 instead of τ1 for t1 < tinf ≤ 2π.

Assume x′(t1+) < x′(t) for each t ∈ (t1, 2π]. Then there exists β ∈ (t1, 2π)
such that x′(t) < 0 on (t1, β). Thus (3.7) is valid for each t ∈ (t1, β). We can
choose τ2 such that x′(τ2) ≥ 0 and x′(t) > 0 on (t1, τ2). By integrating of the
left right inequality of (3.7) on (t1, τ2) we get

x′(t1+) ≥ − 1
A(t1)

[(Ã + r̃)eN − Ã].

Hence for

r∗ >
1

min{A(t) : t ∈ [0, 2π]} [(Ã + r̃)eN − Ã]

the inequality (3.3) is valid. �

Theorem 3.2 Let σ1, σ2 ∈ ÃC
1
[0, 2π] be strict lower and upper functions of

(1.1)–(1.3) such that

(3.9) σ1(t) < σ2(t) for t ∈ [0, 2π]

and let there exist functions p, q ∈ L[0, 2π] positive a.e. on [0, 2π] such that

(3.10) |f(t, x, y)| ≤ (1 + |y|)(p(t) + q(t)|y|)
for a.e. t ∈ [0, 2π] and all (x, y) ∈ [σ1(t), σ2(t)] × R. Then

d[I − Fµ, Ω] = 1

for any µ ∈ (−∞, 0) and Fµ defined by (2.24), where

(3.11) Ω = {x ∈ C̃1[0, 2π] : σ1(t) < x(t) < σ2(t) on [0, 2π],

σ1(t1+) < x(t1+) < σ2(t1+), ‖x′‖∞ < C},

C >

[
1 +
(‖σ1‖C̃1

+ ‖σ2‖C̃1

)
max

{
1
t1

;
1

2π − t1

}]
e‖p‖1+2‖q‖∞r0+‖b‖1r0 ,

r0 = max{‖σ1‖∞, ‖σ2‖∞}.
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Proof Let us choose a constant C satisfying (3.11) and define auxiliary func-
tions

(3.12) α(t, x) =

⎧⎨⎩σ1(t) for x < σ1(t)
x for σ1(t) ≤ x ≤ σ2(t)
σ2(t) for σ2(t) < x

,

(3.13) β(y) =

{−C for y < −C
y for − C ≤ y ≤ C
C for C < y

,

(3.14) fµ(t, x, y) = fµ(t, x, β(y)) = f(t, x, β(y)) + (µ− b(t))x,

(3.15) f̃µ(t, x, y) =

⎧⎪⎨⎪⎩
fµ(t, σ1(t), y)− σ1(t)−x

1+σ1(t)−x for x < σ1(t)
fµ(t, x, y) for σ1(t) ≤ x ≤ σ2(t)
fµ(t, σ2(t), y) + x−σ2(t)

1+x−σ2(t)
for σ2(t) < x

,

and an operator

(2.24) (F̃µx)(t) = α(0, x(0) + x′(0)− x′(2π)) + g̃(t, t1)[J(α(t1, x(t1)))

− α(t1, x(t1))] + g(t, t1)[M(β(x′(t1−)))− β(x′(t1−))]

+

2π∫
0

g(t, s)[f̃µ(s, x(s), x′(s))− α(0, x(0) + x′(0)− x′(2π))b(s)] ds

for t ∈ [0, 2π] and µ ∈ (−∞, 0). We can see that f̃µ fulfills the Carathéodory
conditions on [0, 2π]× R2 and α : R2 → R, β: R→R are continuous mappings.
Therefore F̃µ : C̃1[0, 2π] → C̃1[0, 2π] is completely continuous. Consider the
parameter system of operator equations

(3.17) x− λF̃µx = 0, λ ∈ [0, 1].

With respect to (3.12)–(3.16), we can show that there is r ∈ (0,∞) that

(3.18) ‖F̃µx‖
C̃1 ≤ r for x ∈ C̃1[0, 2π].

Hence, there is ρ > 0 such that for any λ ∈ [0, 1] every solution of (3.17) lies
inside the set

K(ρ) = {x ∈ C̃1[0, 2π]; ‖x‖
C̃1 < ρ}.

Then G = I − λF̃µ is a homotopic map on K(ρ)× [0, 1] and

d[I − F̃µ, K(ρ)] = d[I , K(ρ)] = 1.
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Therefore there exists a solution u of (3.17) with λ = 1. In view to (3.16), u is
a solution of

(3.19) x′′ + a(t)x′ + µx = f̃µ(t, x, x′),

(3.20) x(t1+) = J̃(x(t1)), x′(t1+) = M̃(x′(t1)),

(3.21) x(0) = x(2π) = α(0, x(0) + x′(0)− x′(2π)),

where

(3.22)
J̃(x) = x + J(α(t, x)) − α(t, x) for x ∈ R,

M̃(y) = y + M(β(y))− β(y) for y ∈ R.

With respect to (3.12) we have

σ1(0) ≤ α(0, u(0) + u′(0)− u′(2π)) ≤ σ2(0),

f̃µ(t, x, y) > fµ(t, σ2, y) for a.e. t ∈ [0, 2π], each x ∈ (σ2,∞), y ∈ R,

f̃µ(t, x, y) < fµ(t, σ1, y) for a.e. t ∈ [0, 2π], each x ∈ (−∞, σ1), y ∈ R.

In view to (3.22), J̃ and M̃ satisfy conditions (1.4). Let ε > 0 be from
Definition 1.4. Since ‖σ1‖C̃1 + ‖σ2‖C̃1 < C, then there exists ε1 < ε such

that ‖σ1‖∞ + ε1 < C and ‖σ2‖∞ + ε1 < C. Then fµ(t, x, y) = fµ(t, x, y)
for (x, y) ∈ [σ1(t), σ1(t) + ε1] × [σ′

1(t) − ε1, σ
′
1(t) + ε1] i.e. σ1 fulfils condition

(1.12), (1.7), (1.8) with fµ(t, x, y) instead of f(t, x, y). Hence σ1 is a strict lower
function of

(3.23) x′′ + a(t)x′ + µx = fµ(t, x, x′),

(1.2), (1.3). Similarly fµ(t, x, y) = fµ(t, x, y) for (x, y) ∈ [σ2(t) − ε1, σ2(t)] ×
[σ′

2(t)−ε1, σ
′
2(t)+ε1] i.e. σ2 fulfils conditions (1.13), (1.10), (1.11) with fµ(t, x, y)

instead of f(t, x, y). Hence σ2 is a strict upper function of (3.23), (1.2), (1.3).
In view to (3.12) and (3.21) we have σ1(0) ≤ u(0) = u(2π) ≤ σ2(0). Then using
lemmas 2.4-2.7 with fµ(t, x, y) and f̃µ(t, x, y) instead of f(t, x, y) and f̃(t, x, y)
we get

(3.24) σ1(t) < u(t) < σ2(t) on [0, 2π].

Furthermore, f̃(t, x, y) fulfills (3.10) and thus from Lemma 3.1 we get

‖u′‖∞ < C.

Moreover, in view to (3.15) for a.e. t ∈ [0, 2π] we have

f̃µ(t, u(t), u′(t)) = fµ(t, u(t), u′(t)).
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Then we get that u is a solution of the equation (2.21) and satisfies condition
(1.2) and u(0) = u(2π). Now, we need to prove the second condition in (1.3)
i.e. we prove that

u′(0) = u′(2π).

Especially, we prove

(3.25) σ1(0) ≤ u(0) + u′(0)− u′(2π) ≤ σ2(0).

On the contrary, suppose that

(3.26) u(0) + u′(0)− u′(2π) > σ2(0).

Then from (3.21) we get

(3.27) u(0) = u(2π) = α(0, u(0) + u′(0)− u′(2π)) = σ2(0) = σ2(2π)

and using (3.26)

(3.28) u′(0) > u′(2π).

On the other side we proved

u(t) ≤ σ2(t) t ∈ [0, 2π]

and with (3.27) and (3.28) this yields

σ′
2(0) ≥ u′(0) > u′(2π) ≥ σ′

2(2π)

which contradicts to (1.11). Similarly we will prove that

σ1(0) ≤ u(0) + u′(0)− u′(2π).

With respect to (3.21) and (3.12) we have u′(0) = u′(2π). Thus, we have proved
that every solution of (3.17) with λ = 1 is a solution of (2.21), (1.2), (1.3) which
satisfies (3.24). Hence u ∈ Ω. Since Fµ = F̃µ on Ω and x �= Fµx for x ∈ ∂Ω, we
use the excision property of the topological degree and get

d(I − Fµ, Ω) = d(I − F̃µ, Ω) = d(I − F̃µ, K(ρ)) = 1. �

Corollary 3.3 Let the assumptions of Theorem 3.2 be satisfied. Then the prob-
lem (1.1)–(1.3) has a solution u, which fulfills (3.24).

Lemma 3.4 Let σ1, σ2 be strict lower and upper functions such that

(3.29) σ2(t) < σ1(t) for each t ∈ [0, 2π].

Moreover, let p, q ∈ L[0, 2π] be positive a.e. on [0, 2π] such that for a.e. t ∈
[0, 2π] and all x, y ∈ R

(3.30) |f(t, x, y)− b(t)x| < p(t) + q(t)|y|.
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Then for every solution u ∈ ÃC
1
[0, 2π] of (1.1)–(1.3) which fulfills

(3.31) σ2(tu) < u(tu) < σ1(tu) for some tu ∈ [0, 2π]

the estimate

(3.32) ‖u′‖
C̃

< N1, ‖u‖
C̃

< N2,

where

N1 = (2 + ‖σ′
1‖∞ + ‖σ′

2‖∞)e‖p‖1+‖q‖1+‖a‖1 , N2 = ‖σ1‖∞ + ‖σ2‖∞ + 2πN1,

is valid.

Proof At first, we prove the existence of such r ∈ (0,∞) that the condition

(3.33) |u′(su)| < r

is valid for some su ∈ [0, 2π]. Denote vi(t) = (−1)i(σi(t)− u(t)), i = 1, 2
i) Let

(3.34) v′i(su) = 0

for some su ∈ (0, t1) ∪ (t1, 2π). Then

|u′(su)| = |σ′
i(su)| ≤ ‖σ′

i‖∞.

ii) Assume that (3.34) is not valid. Then from (1.3),(1.8) and (1.11) we have
v′i(t) < 0 for t ∈ (0, t1) and v′i(t) > 0 for t ∈ (t1, 2π) i.e.

v′i(t1) ≤ 0 and v′i(t1+) ≥ 0.

On the other hand,

v′i(t1+) ≤ (−1)i[M(σ′
i(t1))−M(u′(t1))] ≤ 0

and hence v′i(t1+) = 0. Then |u′(t1+)| = |σ′
i(t1+)| and there exists su ∈ (t1, 2π),

that
|u′(su)| ≤ ‖σ′

i‖∞ + 1.

The condition (3.33) is proved for r = ‖σ′
1‖∞ + ‖σ′

2‖∞ + 1. Now, suppose that
(3.30) is valid. Then for a.e. t ∈ [0, 2π] we get

|u′′(t) + a(t)u′(t)| = |f(t, u(t), u′(t)) − b(t)u(t)| ≤ p(t) + q(t)|u′(t)|,

|u′′(t)| ≤ p(t) + (q(t) + |a(t)|)|u′(t)|,

(3.35) −p(t)− q(t)− |a(t)| ≤ u′′(t)u′(t)
1 + u′2(t)

≤ p(t) + q(t) + |a(t)|.
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We integrate the left inequality of (3.35) on (t, su) for t ∈ (t1, su) and the right
inequality of (3.35) on (su, t) for t ∈ (su, 2π] and using (1.3) we can extend that
for t ∈ [0, t1). Thus we have for each t ∈ [0, 2π]

1 + u′2(t) ≤ (1 + u′2(su))e2(‖p‖1+‖q‖1+‖a‖1) ≤ (1 + |u′(su)|)2e2(‖p‖1+‖q‖1+‖a‖1),

|u′(t)| ≤ (1 + |u′(su)|)e‖p‖1+‖q‖1+‖a‖1 < N1.

Moreover for each t ∈ [0, t1) ∪ (t1, 2π]

|u(t)| ≤ |u(tu)|+
∣∣∣∣ ∫ t

tu

u′(τ)dτ

∣∣∣∣ < ‖σ1‖∞ + ‖σ2‖∞ + 2πN1 = N2,

is valid and then we get (3.32). �

Remark 3.5 Let p, q ∈ L[0, 2π] be positive a.e. on [0, 2π] such that for a.e.
t ∈ [0, 2π] and all x, y ∈ R (3.30) is satisfied. Then

(3.36) |fµ(t, x, y)− µx| < p(t) + q(t)|y|
is valid for a.e. t ∈ [0, 2π] and each x, y ∈ R where fµ(t, x, y) is given by (2.22).

Theorem 3.6 Let σ1 and σ2 be respectively strict lower and upper functions of
(1.1)–(1.3) which fulfill (3.29), let M(0) = 0 and let there exist p, q ∈ L[0, 2π]
positive a.e. on [0, 2π] such that (3.30) is satisfied. Then for any µ ∈ (−∞, 0)

(3.37) d[I − Fµ, Ω2] = −1,

where Fµ is defined by (2.24),

(3.38) Ω2 = {x ∈ C̃1[0, 2π]; ‖x‖∞ < Ñ2, ‖x′‖∞ < Ñ1,

σ2(tx) < x(tx) < σ1(tx) for some tx ∈ [0, 2π]},

Ñ1 = (1 + ‖σ′
1‖∞ + ‖σ′

2‖∞)e2(‖a‖1+‖q‖1+3‖p‖1)

and
Ñ2 = ‖σ1‖∞ + ‖σ2‖∞ + 2πÑ1.

Proof Let � > Ñ2. Denote

(3.39) f̃(t, x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f(t, x, y) + p(t) for x ≥ �

f(t, x, y) + x−Ñ2

�−Ñ2
p(t) for Ñ2 < x < �

f(t, x, y) for − Ñ2 ≤ x ≤ Ñ2

f(t, x, y)− x+Ñ2

−�+Ñ2
p(t) for − � < x < −Ñ2

f(t, x, y)− p(t) for x ≤ −�

.

Then for a.e. t ∈ [0, 2π] and each x, y ∈ R

|f̃(t, x, y)− b(t)x| ≤ |f(t, x, y)− b(t)x|+ p(t) ≤ 2p(t) + q(t)|y|.
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In view to (3.30)
−p(t) < f(t, x, 0)− b(t)x < p(t)

is valid for a.e. t ∈ [0, 2π] and each x ∈ R and hence

f̃(t, �, 0)− b(t)� = f(t, �, 0)− b(t)� + p(t) > 0,

f̃(t,−�, 0) + b(t)� = f(t,−�, 0) + b(t)�− p(t) < 0.

Consider a problem (1.3),

(3.40) x′′ = f(t, x, x′),

(3.41) x(t1+) = J̃(x(t1)), x′(t1+) = M(x′(t1)),

where

(3.42) f(t, x, y) = f̃(t, x, y)− a(t)y − b(t)x,

(3.43) J̃(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x for x ≤ −�,

− x+Ñ2

−�+Ñ2
� +
[
1− x+Ñ2

−�+Ñ2

]
J(−Ñ2) for − � < x < −Ñ2,

J(x) for − Ñ2 ≤ x ≤ Ñ2,
x−Ñ2

�−Ñ2
� +
[
1− x−Ñ2

�−Ñ2

]
J(Ñ2) for Ñ2 < x < �,

x for x ≥ �.

We can see that J̃ is a continuous and increasing on R and

J̃(�) = �, J̃(−�) = −�.

Moreover σ1, σ2 are strict lower and strict upper functions of (1.3), (3.40), (3.41).
For a.e. t ∈ J and each x, y ∈ R define a function

(3.44) h(t, x, y) =

⎧⎪⎨⎪⎩
f(t,−�, y)− ω1(t, −�−x

1−�−x ) for x < −�

f(t, x, y) for − � < x < �
f(t, �, y) + ω2(t, x−�

1+x−�) for x > �

,

where

(3.45) ωi(t, ε) = sup
y∈[−ε,ε]

{|f(t, (−1)i�, y)− f(t, (−1)i�, 0)|}, i = 1, 2

for ε > 0. ωi is positive and nondecreasing with the second variable and with
respect to (3.42) and (3.30) we have

ωi(t, ε) = sup
y∈[−ε,ε]

{|f̃(t, (−1)i�, y)− f̃(t, (−1)i�, 0)− a(t)y|},

(3.46) ωi(t, ε) ≤ 4p(t) + (q(t) + |a(t)|)|y|
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for a.e. t ∈ [0, 2π] and each y ∈ [−ε, ε]. Now, consider the problem (1.3), (3.41)

(3.47) x′′ = h(t, x, x′).

Choose η > 0 and put σ3(t) = −� − η, σ4(t) = � + η for t ∈ [0, 2π]. Then for
a.e. t ∈ [0, 2π]

h(t, � + η, 0) = f(t, �, 0) + ω2

(
t,

η

1 + η

)
= f(t, �, 0)− b(t)� + ω2

(
t,

η

1 + η

)
> 0.

For ε = η/2
1+η/2 and for x ∈ [�+η−ε, �+η] , y ∈ [−ε, ε] we obtain x ∈ (�+η/2, �+η]

and |y| < x−�
1+x−� i.e. ω2(t, |y|) ≤ ω2(t, x−�

1+x−�).
Hence, in view of (3.44), we get

h(t, x, y) = f(t, �, y) + ω2

(
t,

x− �

1 + x− �

)
≥ f(t, �, 0)− |f(t, �, y)− f(t, �, 0)|+ ω2

(
t,

x− �

1 + x− �

)
> 0.

Thus σ4 is a strict upper function of (3.47), (3.41), (1.3). Similarly we can
prove, that σ3 is a strict lower function of (3.47), (3.41), (1.3). Now, we choose
an arbitrary µ ∈ (−∞, 0) and rewrite the equation to the form

(3.48) x′′ + a(t)x′ + µx = hµ(t, x, x′),

(3.49) hµ(t, x, y) = h(t, x, y) + (µ− b(t))x,

(3.50) h(t, x, y) = h(t, x, y) + a(t)y + b(t)x.

Then σ1, σ3 are strict lower and σ2, σ4 strict upper functions of (3.48), (3.41),
(1.2) such that

(3.51) σ3(t) < σ2(t) < σ1(t) < σ4(t) for all t ∈ [0, 2π].

Denote
Ω̃ = {x ∈ C̃1[0, 2π] : ‖x‖∞ < � + η, ‖x′‖∞ < Ñ1},

∆1 = {x ∈ Ω̃ : x(t) > σ1(t) for t ∈ [0, 2π]},
∆2 = {x ∈ Ω̃ : x(t) < σ2(t) for t ∈ [0, 2π]}.

In view to (3.44)–(3.48) there exist functions p̃, q̃ ∈ L[0, 2π] positive a.e. on
[0, 2π] such that for a.e. t ∈ [0, 2π] and each (x, y) ∈ [−� − η, � + η] × R the
inequality

|hµ(t, x, y)| ≤ p̃(t) + q̃(t)|y|
is fulfilled. Then by Theorem 3.2 we obtain

d[I −Hµ, Ω̃] = 1, d[I −Hµ, ∆1] = 1 and d[I −Hµ, ∆2] = 1,
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where

(Hµx)(t) = x(0) + x′(0)− x′(2π)

+
2π∫
0

gµ(t, s)
[
hµ(s, x(s), x′(s))− (x(0) + x′(0)− x′(2π)

)
µ
]
ds

+ g̃µ(t, t1)[J̃(x(t1))− x(t1)] + gµ(t, t1)[M(x′(t1))− x′(t1)].

Denote

(3.52) ∆ = Ω̃\(∆1 ∪∆2).

Then, from the additivity of the Leray–Schauder topological degree, we have

d[I −Hµ, ∆] = −1.

Thus there is a solution u of the problem

(3.53) (I −Hµ)x = 0

which for some tu ∈ [0, 2π] satisfies (3.31). Moreover from (3.39), (3.42), (3.44),
(3.46), (3.50) we can see that u is a solution of the equation

x′′ + a(t)x′ + b(t)x = h(t, x, x′),

and we have for a.e. t ∈ [0, 2π]

|u′′| = |h(t, u, u′)| ≤ |f(t, u, u′)|+ (|a(t)|+ q(t))|u′|+ 4p(t)

≤ |f̃(t, u, u′)−a(t)u′+b(t)u|+(|a(t)|+q(t))|u′|+4p(t) ≤ 2(|a(t)|+q(t))|u′|+6p(t),∣∣∣∣ u′′u′

1 + u′2

∣∣∣∣ ≤ 2(|a(t)|+ q(t)) + 6p(t).

Integrating this inequality on (tu, t) we get for each t ∈ [0, 2π]

1 + u′2(t) ≤ (1 + u′2(tu))e4(‖a‖1+‖q‖1+3‖p‖1)

|u′(t)| ≤ (1 + |u′(tu)|)e2(‖a‖1+‖q‖1+3‖p‖1) < Ñ1.

Then we have ‖u′‖∞ < Ñ1, ‖u‖∞ < Ñ2 for every solution u ∈ ∆ of (3.48) and
from the excision property of the degree we have

d[I −Hµ, ∆] = d[I −Hµ, Ω2] = −1

Finally, from (3.42)–(3.44) and (3.52) Hµ = Fµ for x ∈ Ω2 follows and so

d[I −Hµ, Ω2] = d[I − Fµ, Ω2] = −1. �

Corollary 3.7 Let the assumptions of Theorem 3.6 be satisfied. Then the prob-
lem (1.1)–(1.3) has a solution u, which fulfills

σ2(tu) < u(tu) < σ1(tu)

for some tu ∈ [0, 2π].
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Abstract

We give a short overview on the subject of canonical reduction of a
pair of bilinear forms, each being symmetric or alternating, making use of
the classification of pairs of linear mappings between vector spaces given
by J. Dieudonné.

Key words: Kronecker modules, bilinear forms.
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The problem of a simultaneous reduction of a pair of symmetric bilinear
forms over a given field is classic: this problem has been solved, for fields of
characteristic zero, in 1868 by K. Weierstrass, under the assumption that both
the forms are not degenerate. Two papers, the first of which by L. Kronecker
[4], dated 1890, the second by L. E. Dickson [1], dated 1909, give a complete
answer for fields of characteristic zero. Later J. Williamson [9] (1935), [10] (1945)
showed that similar results were also valid for any field of characteristic �= 2,
but the condition that one of the form is not degenerate is needed again. The
case where both the forms are degenerate has been solved by W. Waterhouse [7]
(1976), as well as the case of a pair of symmetric bilinear forms (even degenerate)
over a field of characteristic 2, [8] (1977).
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Two papers of the 70’s by P. Gabriel [3] and R. Scharlau [6] showed that the
classification of pairs of linear mappings (or Kronecker modules) by J. Dieudonné
[2] (1946), which goes back to the mentioned paper of Kronecker, plays a fun-
damental role in studying pairs of bilinear forms. More precisely, Scharlau gives
a complete answer for a pair of alternating bilinear forms, as pointed out by
Waterhouse in [8].

The case where one of the forms is symmetric and the other is alternating
has been treated by several authors and can be found in two papers by C. Riehm
[5] and Gabriel [3], but the arguments used by Riehm, as well as the ones used
by Waterhouse, do not concern any longer the theory of Kronecker modules.

We provide a statement (Theorem 2 and following discussion) which gives
an overview on the subject from the point of view of Kronecker modules. This
allows us to give an alternative proof of some results which had been given in
the mentioned papers.

1. A Kronecker module over the field K is a pair

Φ = (ϕ1 : V ′ → V ′′; ϕ2 : V ′ → V ′′)

of linear mappings from a K-vector space V ′ into a K-vector space V ′′. We
write for short Φ = (V ′, V ′′; ϕ1, ϕ2), or simply Φ = (V ′, V ′′). An isomorphism
ι : Φ → Ψ from Φ onto the Kronecker module Ψ = (W ′, W ′′; ψ1, ψ2) is a pair
of bijective linear mappings ι = (ι′ : V ′ → W ′; ι′′ : V ′′ → W ′′) such that
ι′′ϕh = ψhι′ (h = 1, 2).

From the Kronecker module Φ we obtain two further Kronecker modules:
the opposite of Φ, that is the Kronecker module

Φ◦ := (V ′, V ′′; ϕ2, ϕ1),

and the transpose of Φ, that is the Kronecker module

tΦ := (V ′′∗, V ′∗; tϕ1,
tϕ2),

where, for a given linear mapping ϕ, we denote by tϕ the transpose of ϕ, from
the dual V ′′∗ of V ′′ into the dual V ′∗ of V ′, defined by

tϕ(x′′∗)(x′) = x′′∗(ϕ(x′))

for all x′ ∈ V ′ and x′′∗ ∈ V ′′∗. The Kronecker module Φ is self-transpose if
there exists an isomorphism Φ → tΦ.

Any Kronecker module can be decomposed into the direct sum of inde-
composable submodules and, for two such decompositions, the Krull–Remak–
Schmidt Theorem applies. This means Φ(F ) = Φ1

⊕
. . .
⊕

Φt for a fixed num-
ber t of indecomposable submodules Φi, determined up to permutations and iso-
morphisms. Indecomposable Kronecker modules were classified by Kronecker [4]
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and Dieudonné [2]: let

Φϕ = (Kn, Kn; id, ϕ) n > 0, ϕ ∈ EndKKn,

Φn = (Kn, Kn+1; ϕ1, ϕ2) n ≥ 0, where
ϕ1 : (x1, . . . , xn) �→ (x1, . . . , xn, 0),
ϕ2 : (x1, . . . , xn) �→ (0, x1, . . . , xn),

(1)

then an indecomposable Kronecker module is isomorphic to one of Φn, tΦn, Φϕ,
or Φ◦

ϕ, for a suitable endomorphism ϕ ∈ EndK(Kn) which makes Kn into an
indecomposable K[ϕ]-module. Note that Φϕ is self-transpose, whereas Φn is
not, hence Φ is self-transpose precisely if dimV ′ = dimV ′′.

The Krull–Remak–Schmidt Theorem has the following useful corollary (the
exchange theorem): let Φ = Υ1

⊕
Υ2 and Φ = Ῡ1

⊕
Ῡ2 be two decompositions

of Φ. Assume that no indecomposable component of Υ1 (resp. Ῡ1) is isomorphic
to any indecomposable component of Υ2 (resp. Ῡ2), then Φ = Υ1

⊕
Ῡ2 =

Ῡ1

⊕
Υ2.

2. Let fh : V × V → K, h = 1, 2, be a pair of bilinear forms, each being
symmetric or alternating, defined on a K-vector space V . We can associate to
the triple F = (V ; f1, f2) the self-transpose Kronecker module

Φ(F ) := (f̄1 : V → V ∗, f̄2 : V → V ∗),

where, for x ∈ V , f̄h(x) is the mapping y �→ fh(x, y). For a subspace U of V ,
we can set

U⊥ = {v ∈ V : f1(v, x) = f2(v, x) = 0 for any x ∈ U}.
We say that F is decomposable if V = U + U⊥ for some nontrivial subspace U .

Manifestly, any decomposition of V into the direct sum of two subspaces U1

and U2, orthogonal with respect to both f1 and f2, provides a decomposition of
Φ(F ). The converse is generally not true.

The canonical identification V = V ∗∗ yields the consequent identification
Φ(F ) = tΦ(F ). Hence, the number of components of Φ(F ) isomorphic to Φn is
the same of the ones isomorphic to tΦn. This provides a decomposition of Φ(F )
into self-transpose submodules, having no isomorphic components in common,
which gives in turn an orthogonal decomposition of V , as the following lemma
claims.

Lemma 1 Let Φ(F ) = Υ1

⊕
Υ2 with self-transpose Υh, h = 1, 2. Assume that

no component of Υ1 is isomorphic to any component of Υ2, then F decomposes.

Proof Let Υh ≡ (Uh, W ∗
h ), then V = U1

⊕
U2 and V ∗ = W ∗

1

⊕
W ∗

2 . Conse-
quently V = W1

⊕
W2, corresponding to the decomposition Φ(F ) = tΦ(F ) =

tΥ1

⊕
tΥ2. By the exchange theorem, we have the further decompositions

Φ(F ) = tΥ1

⊕
Υ2 = Υ1

⊕
tΥ2, hence V = W1

⊕
U2 = U1

⊕
W2. As we

have f̄1(x), f̄2(x) ∈ W ∗
i for any x ∈ Ui, then for any y ∈ Wj , j �= i, it follows

fh(x, y) = 0, that is, the latter decompositions of V are orthogonal. �



58 G. FALCONE, M. A. VACCARO

In view of the above lemma, indecomposable F correspond to Kronecker
modules Φ(F ) isomorphic to either (Φϕ)r or (Φ◦

ϕ)r, or (Φn)s
⊕

(tΦn)s. More-
over, direct computations on the bases show that s = 1 and

r = 1 for an indecomposable pair of symmetric forms,
r = 1, 2 for an indecomposable pair, where one is symmetric and the other is

alternating,
r = 2 for an indecomposable pair of alternating bilinear forms,

according to [7], [8], [5] and [6]. Therefore we have

Theorem 2 Let F be indecomposable. Then the Kronecker module Φ(F ) is
isomorphic to either Φϕ or Φϕ

◦, or Φn

⊕
tΦn.

Let U , W be bases such that Φ(F ) is represented by matrices (S1, S2), the
entries of which are given in (1), and A be the matrix of the rowed coordinates
of the vectors in W∗ with respect to U∗. A simultaneous reduction to canonical
form is now reached through the condition that the product ShA, (h = 1, 2), as
a representation of F , is symmetric or alternating.

In particular, if both the forms are degenerate, i.e. Φ(F ) = Φn

⊕
tΦn, by

definition of Φn the bases

U =
{
u′

1, . . . , u
′
n, u′′

1 , . . . , u′′
n+1

}
and W =

{
w′

1, . . . , w
′
n+1, w

′′
1 , . . . , w′′

n

}
of V are such that,

f1(u′
i, w

′
j) = f1(w′′

i , u′′
j ) = δi, j ,

f2(u′
i, w

′
j) = f2(w′′

i , u′′
j ) = δi, j−1,

(2)

where 1 ≤ i ≤ n and 1 ≤ j ≤ n + 1.
Let (J1, J2) be the matrix representation of Φ(F ) with respect to U and W∗,

the entries of which are given by (2). Then, the matrix A fulfills the equations
JhA = Sh (h = 1, 2). The partitions U = {u′

1, . . . , u
′
n} ∪ {u′′

1 , . . . , u′′
n+1} and

W = {w′
1, . . . , w

′
n+1}∪{w′′

1 , . . . , w′′
n} allow one to write the equations JhA = Sh

in blocks as(
Jh 0
0 tJh

)(
A11 A12

A21 A22

)
=
(

S11
h S12

h

εtS12
h S22

h

)
ε = ±1, (3)

where we put

Jh =
(

Jh 0
0 tJh

)
,

and

(J1,J2) =

⎛⎝⎛⎝ 1 0
. . .

...
1 0

⎞⎠ ,

⎛⎝ 0 1
...

. . .
0 1

⎞⎠⎞⎠
is the current representation of the Kronecker module Φn.
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One sees that the products tJhA22 = S22
h are symmetric or alternating just

if A22 = 0, hence S22
h = 0. Furthermore, the square matrix A12 cannot be

singular, so, up to replacing each of the vectors u′′
1 , . . . , u′′

n+1 by a suitable linear
combination of themselves, we may assume U such that A12 = In+1. Therefore,
the equations (3) turn into(

Jh 0
0 Yh

)(
A11 In+1

A21 0

)
=
(

S11
h Jh

εtJh 0

)
, (4)

for suitable matrices Yh which play no role for our purposes. Hence F has a
representation ((

T1 J1

εtJ1 0

)
,

(
T2 J2

εtJ2 0

))
, (5)

where we write Th instead of S11
h .

Replace now each of the vectors u′
i in U by u′

i +
∑n+1

j=1 ciju
′′
j , then

f1

(
u′

r +
n+1∑
j=1

crju
′′
j , u′

s +
n+1∑
j=1

csju
′′
j

)
= f1(u′

r, u
′
s) + crs + csr,

f2

(
u′

r +
n+1∑
j=1

crju
′′
j , u′

s +
n+1∑
j=1

csju
′′
j

)
= f2(u′

r, u
′
s) + cr, s+1 + cs, r+1,

for r, s = 1, . . . , n. Let charK �= 2, then it is possible to find entries cij which
make the above quantities zero. Let charK = 2, then it is still possible to do
that, provided r �= s.

The above arguments can be summarized in the following result, which has
been proved by Scharlau [6] for pairs of alternating forms, while Waterhouse
[7], [8] proved it for pairs of symmetric forms, but there he made use of other
tecniques.

Theorem 3 Let F be an indecomposable pair of degenerate bilinear forms on
a K-vector space V , each being symmetric or alternating. Then, V has odd
dimension 2n + 1 over K and F has a representation((

D1 J1

εtJ1 0

)
,

(
D2 J2

εtJ2 0

))
for suitable diagonal matrices D1, D2. Moreover, if the characteristic of K is
not 2, there exists a representation with D1 = D2 = 0.
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Abstract

By an equivalence system is meant a couple A = (A, θ) where A is a
non-void set and θ is an equivalence on A. A mapping h of an equivalence
system A into B is called a class preserving mapping if h([a]θ) = [h(a)]θ′

for each a ∈ A. We will characterize class preserving mappings by means
of permutability of θ with the equivalence Φh induced by h.

Key words: Equivalence relation, equivalence system, relational
system, homomorphism, strong homomorphism, permuting equiva-
lences.

2000 Mathematics Subject Classification: 08A02, 08A35, 03E02

For the basic concepts, the reader is referred to [1],[2],[3]. Let R and S
be binary relations on a non-void set A. As usually, their relational product
will be denoted by R ◦ S, i.e. R ◦ S = {〈a, b〉 ∈ A2; ∃c ∈ A with 〈a, c〉〉 ∈ R
and 〈c, b〉 ∈ S}. We will say that R, S permute (or they are permutable) if
R ◦ S = S ◦R.

Lemma 1 Let R, S be symmetric relations on A. Then R ◦ S ⊆ S ◦ R is
equivalent to R ◦ S = S ◦R.

Proof If R ◦ S ⊆ S ◦R then, due to symmetry,

S ◦R = S−1 ◦R−1 = (R ◦ S)−1 ⊆ (S ◦R)−1 = R−1 ◦ S−1 = R ◦ S

thus S, R permute. The converse is trivial. �
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By a relational system is meant a pair A = (A, R), where A �= ∅ is a set and
R is a binary relation on A. If R is an equivalence relation, A = (A, R) will be
called an equivalence system.

We are going to introduce a quotient relational system as follows.

Definition 1 Let A = (A, R) be a relational system and Φ be an equivalence
on A. Define a binary relation R/Φ on the factor set (i.e. a partition) A/Φ as
follows: 〈[a]Φ, [b]Φ〉 ∈ R/Φ iff there exist x ∈ [a]Φ, y ∈ [b]Φ with 〈x, y〉 ∈ R.
Then A/Φ = (A/Φ, R/Φ) will be called a quotient relational system of A by Φ.

Remark 1 It is evident that if R is reflexive or symmetric then R/Φ has the
corresponding property.

Lemma 2 Let A = (A, R) be a relational system and R be transitive. Let Φ be
an equivalence on A and Φ ◦R ⊆ R ◦ Φ. Then R/Φ is transitive, too.

Proof Suppose 〈[a]Φ, [b]Φ〉 ∈ R/Φ and 〈[b]Φ, [c]Φ〉 ∈ R/Φ. Then there exist
x, y, y′, z ∈ A such that x ∈ [a]Φ, y, y′ ∈ [b]Φ, z ∈ [c]Φ and 〈x, y〉 ∈ R, 〈y′, z〉 ∈ R.
Hence 〈x, z〉 ∈ R◦Φ◦R ⊆ R◦R◦Φ ⊆ R◦Φ. Thus there is w ∈ A with 〈x, w〉 ∈ R
and 〈w, z〉 ∈ Φ, i.e. w ∈ [z]Φ = [c]Φ. By the Definition, 〈[a]Φ, [c]Φ〉 ∈ R/Φ
proving transitivity of R/Φ. �

Let A = (A, R),B = (B, S) be relational systems. A mapping h : A → B is
called a homomorphism of A into B if 〈a, b〉 ∈ R implies 〈h(a), h(b)〉 ∈ S.

A homomorphism h of A into B is called strong if for each 〈x, y〉 ∈ S there
exist a, b ∈ A such that 〈a, b〉 ∈ R and h(a) = x, h(b) = y. Let A = (A, θ),B =
(B, θ′) be equivalence systems. A mapping h : A→ B is called class preserving
if h([a]θ) = [h(a)]θ′ for each a ∈ A.

Lemma 3 Let A = (A, θ), B = (B, θ′) be equivalence systems and h : A → B
a surjective class preserving mapping. Then h is a strong homomorphism of A
onto B.

Proof It is evident that 〈a, b〉 ∈ θ implies 〈h(a), h(b)〉 ∈ θ′, i.e. it is a surjective
homomorphism of A onto B. Suppose 〈c, d〉 ∈ θ′. Then there is a ∈ A with
h(a) = c and d ∈ [c]θ′ = [h(a)]θ′ . Hence, there exists x ∈ [a]θ such that h(x) = d.
Since 〈a, x〉 ∈ θ, h is a strong homomorphism. �

Example 1 The converse of Lemma 3 does not hold in general. Consider
e.g. A = (A, θ), B = (B, θ′) where A = {x1, x2, y1, y2, z1, z2}, B = {a, b, c},
θ′ = B × B and θ is determined by the partition {x1, x2}, {y1, y2}, {z1, z2}.
Let h : A → B is defined as follows: h(x1) = h(y1) = a, h(x2) = h(z1) = b,
h(y2) = h(z2) = c. Then h is a surjective strong homomorphism of A onto B
but it is not a class preserving mapping; e.g. for x1 we have

h([x1]θ) = h({x1, x2}) = {a, b} �= {a, b, c} = [a]θ′ = [h(x1)]θ′ .
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Theorem 1 Let A = (A, θ), B = (B, θ′) be equivalence systems and h : A → B
a surjective mapping. The following are equivalent:

(a) h is a class preserving mapping;

(b) h is a homomorphism of A onto B and for each x, y ∈ A with 〈h(x), h(y)〉 ∈ θ′

there exists z ∈ A such that 〈x, z〉 ∈ θ and h(y) = h(z).

Proof (a) ⇒ (b) by Lemma 3 and its proof. Prove (b) ⇒ (a). Since h is a
homomorphism, we easily get h([a]θ) ⊆ [h(a)]θ′ . Suppose c ∈ [h(a)]θ′ . Then
c = h(w) for some w ∈ A. By (b) there exists z ∈ A such that 〈a, z〉 ∈ θ and
h(z) = h(w) = c. Since z ∈ [a]θ, we conclude h([a]θ) = [h(a)]θ′ . �

Let h : A→ B be a mapping. Denote by Φh the so-called h-induced equiva-
lence on A, i.e.

〈x, y〉 ∈ Φh if and only if h(x) = h(y).

Let Φ be an equivalence on A. Denote by hΦ the so-called natural mapping
hΦ : A → A/Φ defined by hΦ(a) = [a]Φ.

Theorem 2 Let A = (A, θ) be an equivalence system and Φ be an equivalence
on A. Suppose that θ, Φ permute. Then the natural mapping hΦ is a class pre-
serving mapping of A onto the quotient equivalence system A/Φ = (A/Φ, θ/Φ).

Proof By Lemma 2 and the previous Remark, A/Φ is clearly a quotient equiv-
alence system. Of course, hΦ is a surjective mapping. Suppose 〈a, b〉 ∈ θ.
Then 〈[a]Φ, [b]Φ〉 ∈ θ/Φ thus hΦ is a homomorphism of A onto A/Φ. Let
〈[x]Φ, [y]Φ〉 ∈ θ/Φ. Then there exist a ∈ [x]Φ, b ∈ [y]Φ such that 〈a, b〉 ∈ θ.
Hence 〈x, b〉 ∈ Φ ◦ θ = θ ◦ Φ, i.e. there exists z ∈ A such that 〈x, z〉 ∈ θ and
〈z, b〉 ∈ Φ, i.e. hΦ(z) = hΦ(b). By (b) of Theorem 1, hΦ is a class preserving
mapping. �

Theorem 3 Let A = (A, θ),B = (B, θ′) be equivalence systems and h : A → B
a surjective strong homomorphism of A onto B. Then h is a class preserving
mapping if and only if θ and the h-induced equivalence Φh permute.

Proof Let h be a class preserving mapping and suppose 〈x, z〉 ∈ Φh ◦ θ. Then
there exists y ∈ A with 〈x, y〉 ∈ Φh and 〈y, z〉 ∈ θ. Thus h(x) = h(y) and, as h
is a homomorphism, 〈h(x), h(z)〉 ∈ θ′. By (b) of Theorem 1, there exists u ∈ A
with 〈x, u〉 ∈ θ and h(u) = h(z), i.e. 〈u, z〉 ∈ Φh. Hence 〈x, z〉 ∈ θ ◦Φh showing
Φh ◦ θ ⊆ θ ◦ Φh. By Lemma 1, θ and Φh permute.

Conversely, let h be a surjective strong homomorphism and suppose θ◦Φh =
Φh ◦ θ. Since h is a homomorphism we have h([a]θ) ⊆ [h(a)]θ′ . Let x ∈ [h(a)]θ′ .
Then 〈x, h(a)〉 ∈ θ′. Since h is a strong homomorphism, there exist b, c ∈ A
such that 〈b, c〉 ∈ θ and h(b) = x, h(c) = h(a). Thus 〈c, a〉 ∈ Φh and we have
〈b, a〉 ∈ θ ◦ Φh = Φh ◦ θ. Hence, there exists z ∈ A with 〈b, z〉 ∈ Φh, 〈z, a〉 ∈ θ.
Thus z ∈ [a]θ and h(z) = h(b) = x, i.e. h is a class preserving mapping. �



64 Ivan CHAJDA

References
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Abstract

We investigate some local versions of congruence permutability, reg-
ularity, uniformity and modularity. The results are applied to several
examples including implication algebras, orthomodular lattices and rela-
tive pseudocomplemented lattices.
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Congruence permutability, regularity, uniformity and modularity are well
studied concepts in universal algebra. For the convenience of the reader we
refer to [4]. We introduce and study some local versions of these notions.

In the following let A = (A, F ) be an arbitrary but fixed algebra and a, b
arbitrary but fixed elements of A.
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Definition 1 For every positive integer n and every i ∈ {1, . . . , n} let Cni

denote the set of all n-ary functions on A which are compatible with all con-
gruences on A with respect to the i-th variable, i.e. Cni consists of all functions
f : An → A satisfying the following condition: If a1, . . . , an, āi ∈ A, θ ∈ Con(A)
and aiθāi then

f(a1, . . . , ai, . . . , an)θf(a1, . . . , āi, . . . , an).

Moreover, put Cn := Cn1 ∩ . . . ∩ Cnn the set of all compatible n-ary functions
on A for all positive integers n.

Definition 2 A is called (a, b)-permutable if for all θ, φ ∈ Con(A) the assertions
a(θ ◦ φ)b and a(φ ◦ θ)b are equivalent. A is called (a, b)-regular if for all θ, φ ∈
Con(A), [a]θ = [a]φ implies [b]θ = [b]φ. A is called (a, b)-uniform if |[a]θ| = |[b]θ|
for all θ ∈ Con(A).

Remark 1 The following properties follow directly from Defintion 2:

• A is (a, b)-permutable if and only if A is (b, a)-permutable.

• A is permutable if and only if it is (c, d)-permutable for all c, d ∈ A.

• A is regular if and only if it is (c, d)-regular for all c, d ∈ A.

• A is (a, b)-uniform if and only if A is (b, a)-uniform.

• A is uniform if and only if it is (c, d)-uniform for all c, d ∈ A.

Theorem 1 (i) If there exists an f ∈ C1 with f(b) = a and f(a) = b then A is
(a, b)-permutable.
(ii) If there exist f, g ∈ C1 with f(b) = a and g(f(x)) = x for all x ∈ A then

A is (a, b)-regular.
(iii) If there exist f, g ∈ C1 such that f(b) = a and f(g(x)) = g(f(x)) = x

for all x ∈ A then A is (a, b)-uniform.

Proof Let θ, φ ∈ Con(A).
(i) If a(θ ◦ φ)b then there exists an element c ∈ A with aθcφb and hence

a = f(b)φf(c)θf(a) = b showing a(φ ◦ θ)b, i.e. a(θ ◦ φ)b implies a(φ ◦ θ)b. The
converse implication follows by symmetry.

(ii) Assume [a]θ = [a]φ. If c ∈ [b]θ then f(c) ∈ [f(b)]θ = [a]θ = [a]φ and
hence c = g(f(c)) ∈ [g(a)]φ = [g(f(b))]φ = [b]φ showing [b]θ ⊆ [b]φ. The
converse inclusion follows by symmetry.

(iii) If c ∈ [a]θ then g(c) ∈ [g(a)]θ = [g(f(b))]θ = [b]θ. If d ∈ [b]θ then
f(d) ∈ [f(b)]θ = [a]θ. Moreover, f(g(x)) = g(f(x)) = x for all x ∈ A. Hence
g|[a]θ and f |[b]θ are mutually inverse bijections between [a]θ and [b]θ proving
|[a]θ| = |[b]θ|. �
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Example 1 An implication algebra (cf. [1]) is a groupoid (A, ·) satisfying the
identities

(xy)x = x, (xy)y = (yx)x, x(yz) = y(xz).
This implies xx = yy, i.e. xx is a constant denoted by 1 (if A �= ∅ which we
will assume). Moreover, 1x = (xx)x = x and x1 = (1x)1 = 1. With the partial
order

x ≤ y if and only if xy = 1
(A,≤) is a ∨-semilattice with x ∨ y = (xy)y in which every interval [c, 1] is a
Boolean algebra. The element xy coincides with the complement of x∨ y in the
interval [y, 1].

An implication algebra is (a, b)-permutable if and only if a and b have a com-
mon lower bound, i.e. if and only if there exists an interval [c, 1] with a, b ∈ [c, 1]:
Firstly suppose that such an element c exists. Let +c denote the symmetric dif-
ference in [c, 1]. +c can be represented as a polynomial function and thus x+c y
makes sense for all x, y ∈ A and is in C2. Consequently f(x) = x +c (a +c b) is
in C1 and obviously satisfies condition (i) of Theorem 1.

On the other hand, suppose a and b do not have a common lower bound. Let
θ and φ be the principal congruences generated by (a, 1) and (b, 1), respectively.
It can be verified easily that (x, y) ∈ θ if and only if x ∧ y exists in A and
1 +x∧y (x +x∧y y) ≥ a ∨ (x ∧ y). Similarly φ can be characterized.

Obviously (a, b) ∈ θ ◦ φ. Assume (a, b) ∈ φ ◦ θ, i.e. there is d ∈ A such
that (a, d) ∈ φ and (d, b) ∈ θ. (a, d) ∈ φ implies (a, a ∨ d) ∈ φ which means
1 +a (a +a (a ∨ d)) ≥ b ∨ a by the above characterization of φ. This implies
a∨d ≤ 1+a (a∨b) and hence (a∨b)∧(a∨d) = a. (d, b) ∈ θ implies the existence
of b ∧ d and we infer a ∨ (b ∧ d) ≤ (a ∨ b) ∧ (a ∨ d) = a, hence b ∧ d ≤ a. This
is a contradiction to the assumption that a and b do not have a common lower
bound.

One might suspect that (a, b)-regularity and (a, b)-uniformity can be charac-
terized by the same condition as (a, b)-permutability. This is not the case: We
consider the implication algebra A with A = {1, a, b, c, d} consisting of the two
Boolean subalgebras {1, a, b, c} with c ≤ a, b ≤ 1 and {1, d}.

One can check easily that θ = {a, c}2 ∪ {1, b, d}2 and φ = {a, c}2 ∪ {1, b}2 ∪
{d}2 are congruences of A. We have c = a ∧ b, [a]θ = [a]φ but [b]θ �= [b]φ,
thus A is not (a, b)-regular. Moreover, |[a]θ| = 2 and |[b]θ| = 3, hence A is not
(a, b)-uniform.

Example 2 Let A denote the algebra (A, s1, s2) with A = {a, b, c, d} and unary
operations s1, s2 defined as follows:

a b c d
s1 d c c d
s2 b a d c

A has exactly 3 non-trivial congruences, namely

θ = {a}2 ∪ {b}2 ∪ {c, d}2,
φ = {a, d}2 ∪ {b, c}2 and
ψ = {a, b}2 ∪ {c, d}2.
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It follows
θ ◦ φ = θ ∪ φ ∪ {(c, a), (d, b)},
φ ◦ θ = θ ∪ φ ∪ {(a, c), (b, d)},
θ ◦ ψ = ψ ◦ θ = ψ,
φ ◦ ψ = ψ ◦ φ = A2.

A is (c, d)-permutable: For f := s1 ◦ s2 it holds f(c) = d and f(d) = c. Since
(b, d) ∈ (φ ◦ θ) \ (θ ◦ φ), A is not (b, d)-permutable.
A is (a, b)-regular: For f = g := s2 it holds f(b) = a and g(f(x)) = x for

all x ∈ A. Since [a]θ = [a]ω (where ω denotes the least congruence on A) and
[d]θ �= [d]ω, A is not (a, d)-regular.
A is (a, b)-uniform: In fact, for f = g := s2 it holds f(b) = a and f(g(x)) =

g(f(x)) = x for all x ∈ A. Since |[a]θ| �= |[d]θ|, A is not (a, d)-uniform.

Corollary 1 (i) If there exists f ∈ C32 with f(x, x, y) = f(y, x, x) = y for all
x, y ∈ A then A is permutable.
(ii) If there exist f, g ∈ C32 with f(x, x, y) = y and g(x, f(x, y, z), z) = y for

all x, y, z ∈ A then A is regular.
(iii) If there exist f, g ∈ C32 with f(x, x, y) = y and f(x, g(x, y, z), z) =

g(x, f(x, y, z), z) = y for all x, y, z ∈ A then A is uniform.
Proof (i) Put fcd(x) := f(c, x, d) for all c, d, x ∈ A. Then fcd ∈ C1, fcd(c) = d
and fcd(d) = c for all c, d ∈ A. According to Theorem 1, A is (c, d)-permutable
for all c, d ∈ A and hence permutable.

(ii) Put fcd(x) := f(d, x, c) and gcd(x) := g(d, x, c) for all c, d, x ∈ A. Then
fcd, gcd ∈ C1, fcd(d) = c and gcd(fcd(x)) = g(d, f(d, x, c), c) = x for all c, d, x ∈
A. Hence A is (c, d)-regular for all c, d ∈ A according to Theorem 1 and therefore
regular.

(iii) With the same notation as in the proof of (ii) we now have fcd(d) = c,
fcd(gcd(x)) = f(d, g(d, x, c), c) = x and gcd(fcd(x)) = g(d, s(d, x, c), c) = x for
all c, d, x ∈ A. By Theorem 1 A is (c, d)-uniform for all c, d ∈ A and hence
uniform. �

Example 3 Let L = (L,∨,∧,′ , 0, 1) be an orthomodular lattice. For x, y ∈ L
we define

x + y := (x ∨ (y ∧ x′)) ∧ (x′ ∨ y′).

Then it can be proved with standard methods:

x + 0 = 0 + x = x, x + x = 0, (x + y) + y = x.

Let f(x, y, z) := (x+y)+z, then we have f(x, x, y) = (x+x)+y = 0+y = y and
f(y, x, x) = (y+x)+x = y. Therefore L is permutable according to Corollary 1.

Now let f(x, y, z) := (y + x) + z and g(x, y, z) := (y + z) + x. Then we have
for all x, y, z ∈ L:

f(x, x, y) = (x + x) + y = 0 + y = y,
f(x, g(x, y, z), z) = (((y + z) + x) + x) + z = (y + z) + z = y,
g(x, f(x, y, z), z) = (((y + x) + z) + z) + x = (y + x) + x = y.
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By Corollary 1 L is both regular and uniform.

In the following let 0 be a fixed element of A. Recall that A is called

• permutable at 0 (cf. [2], [4], [6]) if [0](θ◦φ) = [0](φ◦θ) for all θ, φ ∈ Con(A),

• weakly regular, (cf. [4], [5], [7]) if θ, φ ∈ Con(A) and [0]θ = [0]φ imply
θ = φ,

• locally regular (cf. [3], [4]) if a ∈ A, θ, φ ∈ Con(A) and [a]θ = [a]φ imply
[0]θ = [0]φ.

Corollary 2 (i) If there exists f ∈ C22 with f(x, 0) = x and f(x, x) = 0 for all
x ∈ A then A is permutable at 0.
(ii) If there exist f, g ∈ C22 with f(x, x) = 0 and g(x, f(x, y)) = y for all

x, y ∈ A then A is weakly regular.
(iii) If there exist f, g ∈ C22 with f(x, 0) = x and g(x, f(x, y)) = y for all

x, y ∈ A then A is locally regular.
Proof It is easy to see that A is permutable at 0 if and only if A is (c, 0)-
permutable for all c ∈ A, that A is weakly regular if and only ifA is (0, c)-regular
for all c ∈ A and that A is locally regular if and only if A is (c, 0)-regular for
all c ∈ A. Applying Theorem 1 to fc(x) := f(c, x) and gc(x) := g(c, x) the
assertions follow immediately. �

Definition 3 A is called (a, b)-semiuniform if |[a]θ| ≤ |[b]θ| for all θ ∈ Con(A).
A is called 0-semiuniform if A is (c, 0)-semiuniform for all c ∈ A.

Theorem 2 (i) If there exist f, g ∈ C1 with f(a) = b and g(f(x)) = x for all
x ∈ A then A is (a, b)-semiuniform.
(ii) If there exist f, g ∈ C22 with f(x, x) = 0 and g(x, f(x, y)) = y for all

x, y ∈ A then A is 0-semiuniform.

Proof (i) Let θ ∈ Con(A). If c ∈ [a]θ then f(c) ∈ [f(a)]θ = [b]θ. If d, e ∈ [a]θ
and f(d) = f(e) then d = g(f(d)) = g(f(e)) = e. Hence f |[a]θ is an injective
mapping from [a]θ to [b]θ proving |[a]θ| ≤ |[b]θ|.

(ii) Put fc(x) := f(c, x) and gc(x) := g(c, x) for all c, x ∈ A. Then fc, gc ∈
C1, fc(c) = 0 and gc(fc(x)) = x for all c, x ∈ A. According to (i) A is (c, 0)-
uniform for all c ∈ A, i.e. A is 0-semiuniform. �

Example 4 Every finite relatively pseudocomplemented lattice L = (L,∨,∧,
∗, 0, 1) is 1-semiuniform: Let θ ∈ Con(L). Since L is finite the class [c]θ contains
the greatest element c̄. Consider the function ϕc(x) := c̄ ∗ x. For x ∈ [c]θ we
have c̄ ∗ xθc̄ ∗ c̄ = 1, i.e. ϕc(x) ∈ [1]θ. Suppose x, y ∈ [c]θ and ϕc(x) = ϕc(y).
Then

x = c̄ ∧ (c̄ ∗ x) = c̄ ∧ ϕc(x) = c̄ ∧ ϕc(y) = c̄ ∧ (c̄ ∗ y) = y.

This shows that ϕc is an injection from [c]θ into [1]θ, i.e. L is (c, 1)-semiuniform
for all c ∈ L.
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Example 5 Every finite implication algebra A = (A, ·) is 1-semiuniform: Let
θ ∈ Con(A) and c ∈ A. Since A is finite, the class [c]θ has a greatest element c̄.
We consider ϕc(x) := c̄x. Then for x ∈ [c]θ we have

(c̄x)θc̄c̄ = 1,

hence ϕc(x) ∈ [1]θ. Suppose ϕc(x) = ϕc(y) for x, y ∈ [c]θ. We prove c̄x∧ c̄ = x:
Since x ∈ [c]θ we have x ≤ c̄ and x(c̄x) = c̄(xx) = 1 implies x ≤ c̄x. Now
suppose z ≤ c̄x and z ≤ c̄, i.e. z(c̄x) = 1 and zc̄ = 1. We have to show that
z ≤ x:

zx = (z(c̄x))(zx) = (c̄(zx))(zx) = ((zx)c̄)c̄ = ((zx)((zc̄)c̄))c̄
= ((zx)((c̄z)z))c̄ = ((c̄z)((zx)z))c̄ = ((c̄z)z)c̄ = ((zc̄)c̄)c̄ = c̄c̄ = 1.

This proves c̄x ∧ c̄ = x and analogously we obtain c̄y ∧ c̄ = y, thus we infer

x = (c̄x) ∧ c̄ = (c̄y) ∧ c̄ = y.

Consequently ϕc is an injection of [c]θ into [1]θ, whence |[c]θ| ≤ |[1]θ|. Thus A
is 1-semiuniform.

Definition 4 Let n > 1. A is called n-(a, b)-permutable if (a, b) ∈ θ ◦ φ ◦ θ ◦ . . .
(n factors) is equivalent to (a, b) ∈ φ◦θ◦φ◦ . . . (n factors) for all θ, φ ∈ Con(A).

Theorem 3 (i) If there exist functions f1 ∈ C31 ∩ C33 and f2 ∈ C32 ∩ C33

satisfying

f1(a, x, x) = a, f1(x, x, b) = f2(x, b, b), f2(x, x, b) = b,

for all x ∈ A then A is 3-(a, b)-permutable.
(ii) If there exists f ∈ C4 satisfying

f(x, x, x, a) = a, f(x, x, x, b) = b, f(x, x, b, b) = f(b, x, b, x)

for all x ∈ A then A is 3-(a, b)-permutable.

Proof (i) Let θ, φ ∈ Con(A) and (a, b) ∈ θ ◦ φ ◦ θ. Then there are elements
c, d ∈ A with aθcφdθb. We infer

a = f1(a, c, c)φf1(a, c, d)θf1(c, c, b) = f2(c, b, b)θf2(c, d, b)φf2(c, c, b) = b,

whence (a, b) ∈ φ ◦ θ ◦ φ.
(ii) Put f1(x, y, z) := f(z, y, z, x) and f2(x, y, z) := f(x, x, y, z). Then f1, f2

satisfy the conditions in (i). �

Definition 5 A is called n-modular (for n ≥ 2) if for every θ, φ, ψ ∈ Con(A)
with θ ⊆ ψ we have

(θ ◦ φ ◦ θ ◦ . . .︸ ︷︷ ︸
n factors

) ∩ ψ ⊆ θ ∨ (φ ∩ ψ).
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We remark that congruence modularity is equivalent to the condition θ ⊆ ψ
implies (θ∨φ)∩ψ ⊆ θ∨(φ∩ψ). Thus our concept of n-modularity is weaker than
congruence modularity. Obviously (n + 1)-modularity implies n-modularity.

Theorem 4 Every algebra A is 3-modular (and hence 2-modular).

Proof Suppose θ, φ, ψ ∈ Con(A) with θ ⊆ ψ and (c, d) ∈ (θ ◦ φ ◦ θ) ∩ ψ.
Then there exist e, f ∈ A with cθeφfθd and we obtain eψcψdψf and hence
cθe(φ ∩ ψ)fθd. �

Example 6 Let A = (A, s1, s2, s3) be an algebra with 3 unary operations and
A = {a, b, . . . , g} with

a b c d e f g
s1 c d e e e e d
s2 e e e f g g f
s3 d c b a a b c

Then Con(A) ∼= N5 since Con(A) consists of the trivial congruences and

θ = {a, b}2 ∪ {c, d}2 ∪ {e, f}2 ∪ {g}2,
φ = {a}2 ∪ {b, c}2 ∪ {d, e}2 ∪ {f, g}2,
ψ = {a, b, g}2 ∪ {c, d}2 ∪ {e, f}2,

with θ ⊆ ψ. Hence Con(A) is not modular.
However, Con(A) is 4-modular: The only non-trivial case to be checked

refers to the triple (θ, φ, ψ) and we have

(θ ◦ φ ◦ θ ◦ φ) ∩ ψ = θ ⊆ θ ∨ (φ ∩ ψ).

We remark that θ ◦ φ ◦ θ ◦ φ is not a congruence since (a, e) ∈ θ ◦ φ ◦ θ ◦ φ while
(e, a) /∈ θ ◦ φ ◦ θ ◦ φ.

Definition 6 A is called (a, b)-modular if for all θ, φ, ψ ∈ Con(A) with θ ⊆ ψ
we have (a, b) ∈ (θ ∨ φ) ∩ ψ implies (a, b) ∈ θ ∨ (φ ∩ ψ).

Remark 2 Of course, if for all θ, φ ∈ Con(A) it is true that

(a, b) ∈ θ ∨ φ implies (a, b) ∈ θ ◦ φ ◦ θ (1)

or

(a, b) ∈ θ ∨ φ implies (a, b) ∈ θ ◦ φ (2)

then, by Theorem 4, A is (a, b)-modular. Hence it is a natural to search for
algebras satisfying the implications (1) or (2). Obviously (2) implies (a, b)-
permutability and (1) implies 3-(a, b)-permutability. We are going to find suffi-
cient conditions for (1) or (2).
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Proposition 1 Let R be a reflexive and compatible relation on A.
(i) If there exists an R-compatible unary function f : A → A such that

f(a) = b and f(b) = a then (a, b) ∈ R implies (a, b) ∈ R−1.
(ii) If there exist a function f : A3 → A compatible with R with respect to

the first and third component such that f(a, x, x) = a and f(x, x, b) = b for all
x ∈ A then (a, b) ∈ R ◦R implies (a, b) ∈ R.

Proof (i) If (a, b) ∈ R then (b, a) = (f(a), f(b)) ∈ R due to the compatibility
of f with R.

(ii) Let (a, b) ∈ R ◦ R. Then aRcRb for some c ∈ A and thus a = f(a, c, c)
R f(c, c, b) = b. �

For a binary relation R on A put [a]R = {x ∈ A | xRa}.
Definition 7 A is n-permutable at a (n > 1) if for all θ, φ ∈ Con(A)

[a](θ ◦ φ ◦ . . .) = [a](φ ◦ θ ◦ . . .)

(with n factors on both sides).

Theorem 5 Let A be n-permutable at a. Then for all θ, φ ∈ Con(A) we have
(a, c) ∈ θ ∨ φ if and only if (a, c) ∈ θ ◦ φ ◦ . . . (n factors).

Proof Evidently, (a, c) ∈ θ◦φ◦ . . . implies (a, c) ∈ θ∨φ. Now, let (a, c) ∈ θ∨φ.
Then there exists an integer m such that (a, b) ∈ θ◦φ◦ . . . (m factors). If m ≤ n
we are done. We proof the assertion for m = n+1 and n even, the general proof
works with the same idea. There exists an element d ∈ A such that

a(θ ◦ φ ◦ . . . ◦ φ︸ ︷︷ ︸
n factors

)dθc.

Hence d ∈ [a](φ ◦ θ ◦ . . . ◦ θ) (n factors). Due to n-permutability at a we have
d ∈ [a](θ ◦ φ ◦ . . . ◦ φ) (n factors), i.e.

a(φ ◦ θ ◦ . . . ◦ θ︸ ︷︷ ︸
n factors

)dθc,

hence
a(φ ◦ θ ◦ . . . ◦ θ︸ ︷︷ ︸

n factors

)c,

and again by n-permutability at a we arrive at (a, c) ∈ θ ◦φ ◦ . . .◦φ (n factors).
�

Corollary 3 If A is 3-permutable at a then A is (a, c)-modular for all c ∈ A.

Proof Let θ, φ, ψ ∈ Con(A) with θ ⊆ ψ and (a, c) ∈ (θ ∨ φ) ∩ ψ. Then due
to 3-permutability at a by Theorem 5 we have (a, c) ∈ θ ◦ φ ◦ θ, i.e. there are
d, e ∈ A with aθdφeθc. Consequently we obtain dψaψcψe and aθd(φ ∩ ψ)eθc.
Thus (a, c) ∈ θ ∨ (φ ∩ ψ) and we are done. �
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Abstract
Dispersion of measurement results is an important parameter that en-

ables us not only to characterize not only accuracy of measurement but
enables us also to construct confidence regions and to test statistical hy-
potheses. In nonlinear regression model the estimator of dispersion is
influenced by a curvature of the manifold of the mean value of the obser-
vation vector. The aim of the paper is to find the way how to determine
a tolerable level of this curvature.

Key words: Nonlinear regression model, linearization, estimation
of dispersion.
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1 Introduction

The frequently used model in regression analysis is Y ∼ Nn(f(β), σ2V), β ∈ Rk

(k-dimesional Euclidean space), where Y is an n-dimensional normally dis-
tributed observation vector, f(β) is its mean value, β is an unknown k-dimen-
sional parameter, σ2 is an unknown scalar parameter, σ2 ∈ (0,∞), and V is a
known n× n positive semidefinite matrix.
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Sometimes the parameter β must satisfy a constraint g(β) = 0.
The following text is devoted to the problem of determining of a tolerable

level of a model curvature

Y ∼ Nn(f(β), σ2V), g(β) = 0, (1)

how this curvature can be defined and how to use this measure of nonlinearity
to a determination of a linearization region. This region will be defined as a set
of such shifts of the parameter β arround the chosen value β0 which does not
cause any essential deterioration of a quality of the estimator of σ2 in the case
that the actual value β∗ of the parameter β is equal to β0.

2 Notation and auxiliary statement

Let in the model (1) the function f(·) and g(·) can be approximed as

f(β) = f0 + Fδβ +
1
2
κ(δβ) and g(β) = Gδβ +

1
2
γ(δβ),

where

f0 = f(β0), F = ∂f(u)/∂u′|u=β0 , δβ = β − β0,

κ(δβ) =
(
κ1(δβ), . . . , κn(δβ)

)′
,

κi(δβ) = δβ′Fiδβ, i = 1, . . . , n,

Fi = ∂2fi(u)/∂u∂u′|u=β0 , i = 1, . . . , n,

G = ∂g(u)/∂u′|u=β0 ,

γ(δβ) =
(
γ1(δβ), . . . , γq(δβ)

)′
,

γi(δβ) = δβ′Giδβ, i = 1, . . . , q,

Gi = ∂2gi(u)/∂u∂u′|u=β0 , i = 1, . . . , q.

The model
Y − f0 ∼ Nn(Fδβ, σ2V), Gδβ = 0 (2)

is a linearized version of the model (1) and

Y − f0 ∼ Nn

(
Fδβ +

1
2
κ(δβ), σ2V

)
, Gδβ +

1
2
γ(δβ) = 0 (3)

is a quadratic version of the model (1).

Assumption In the following text it is assumed that it is valid

r(Fn,k) = k < n and r(Gq,k) = q < k,

respectively, for the ranks of the matrices F and G, respectively, and that the
matrix V is positive definite.
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Lemma 2.1 The best quadratic estimator σ̂2 of the parameter σ2 in the model
(2) is

σ̂2 = (Y − f0)′
(
MFMG′VMFMG′

)+

(Y − f0)/(n + q − k) (4)

and σ̂2 ∼ σ2χ2
n+q−k(0)/(n + q − k).

Here MG′ = I−G′(GG′)−G, (G′G)− is any g-inverse of the matrix GG′,
the symbol (

MFMG′VMFMG′

)+

means the Moore–Penrose g-inverse of the matrix MFMG′VMFMG′ (cf. [5])
and χ2

n+q−k(0) is the random variable with the central chi-square distribution
with n + q − k degrees of freedom.

Proof Cf. e.g. in [3].

3 Measure of nonlinearity

Lemma 3.1 The estimator (4) in the model (3) is of the property

(Y − f0)′
(
MFMG′VMFMG′

)+

(Y − f0)/(n + q − k) ∼ σ2
χ2

n+q−k(δ)
n + q − k

,

where δ = 1
4σ2 1

′(
MFMG′VMFMG′

)+

1 ,

1 = κ(δβ)− FG′(GG′)−γ(δβ).

Proof It is sufficient to prove the equality

E(Y − f0) = FMG′δβ +
1
2

[
κ(δβ)− FG′(GG′)−γ(δβ)

]
.

Since

E(Y − f0) = Fδβ +
1
2
κ(δβ) = FMG′δβ − FG′(GG′)−Gδβ +

1
2
κ(δβ) =

= FMG′δβ +
1
2

[
κ(δβ)− FG′(GG′)−γ(δβ)

]
,

the statement is proved. �

Corollary 3.2 Since E[χ2
f (δ)] = f + δ, the estimator (4) is biased and

E(σ̂2)− σ2 =
1

4(n + q − k)
1

′(
MFMG′VMFMG′

)+

1 .

Now an analogy of the intrinsic curvature of the Bates and Watts [1] can be
defined.
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Definition 3.3 The quantity

Kint
0,I (β0) = sup

⎧⎪⎪⎨⎪⎪⎩
√

1
′(

MFMG′VMFMG′

)+

1

δs′K′
GC0KGδs

: δs ∈ Rk−q

⎫⎪⎪⎬⎪⎪⎭ ,

where

1 = κ(KGδs)− FG−γ(KGδs),
M(KG) = M(MG′), KG is k × (k − q) matrix,

C0 = F′V−1F,

is intrinsic curvature at the point β0 for the model with constraints g(β) = 0.

Remark 3.4 The Bates and Watts [1] intrinsic curvature for a regular model
without constraints Y ∼ Nn(f(β),Σ), β ∈ Rk, is defined as

Kint(β0) = sup

⎧⎪⎪⎨⎪⎪⎩
√

κ′(δβ)
(
MΣ−1

F

)′
Σ−1MΣ−1

F κ(δβ)

δβF′Σ−1Fδβ
: δβ ∈ Rk

⎫⎪⎪⎬⎪⎪⎭ ,

where MΣ−1

F = I− F(F′Σ−1F)−1F′Σ−1.

The model (3) can be reparametrized in the following way.

β = β0 + KGδs− 1
2
G−γ(KGδs) + terms of the higher order,

Y − f0 ∼ Nn

(
FKGδs− 1

2
FG−γ(KGδs) +

1
2
κ(KGδs), σ2V

)
.

Now, if the scheme

κ(δβ)→ κ(KGδs)− FG−γ(KGδs), MF →MFMG′ ,(
MΣ−1

F

)′
Σ−1MΣ−1

F =
(
MF ΣMF

)+

→ (MFMG′VMFG′

)+

and the relationship

δs′K′
GF′V−1FKGδs = δs′K′

GC0KGδs,

is taken into account, the expression for Kint
0,I (β0) is obtained and its geometrical

meaning can be seen.

Remark 3.5 If the model is linear, i.e. Y ∼ Nn(Fβ, σ2V), however the con-
straints g(β) = 0 are nonlinear, then Kint

0,I (β0) is equal to

Kint
0,I (β0) = sup

⎧⎪⎪⎨⎪⎪⎩
√

γ′(KGδs)
(
MFMG′VMFMG′

)+

γ(KGδs)

δs′K′
GC0KGδs

: δs ∈ Rk−q

⎫⎪⎪⎬⎪⎪⎭ .



Estimation of dispersion in nonlinear regression models with constraints 79

The curvature of the manifold {β : g(β) = 0} at the point β0 can be charac-
terized as follows.

The parameter δβ can be expressed as

δβ = KGδs− 1
2
G−γ(KGδs) + . . .

The natural norm in the parametric space Rk can be assumed as

‖δβ‖ =
√

δβF′(σ2V)−1Fδβ,

since it is the Mahalanobis norm introduced by the estimator

β̂ = (F′V−1F)−1F′V−1(Y − f0).

Thus the quantity σCconstr
0 (β0), where

Cconstr
0 (β0) = sup

⎧⎨⎩
√

2
′
C0 2

δs′K′
GC0KGδs

: δs ∈ Rk−q

⎫⎬⎭ ,

2 = MC0
MG′G

′(GG′)−1γ(KGδs),

can be considered as the intrinsic curvature of the constraints g(β) = 0. However

(GG′)−1G
(
MC0

MG′

)′
C0MC0

MG′G
′(GG′)−1 =

= (GG′)−1G
{
I−
[
C−1

0 −C−1
0 G′(GC−1

0 G′)−1GC−1
0

]
C0

}′

×C0

{
I−
[
C−1

0 −C−1
0 G′(GC−1

0 G′)−1GC−1
0

]
C0

}
G′(GG′)−1 = (GC−1

0 G′)−1

and

(GG′)−1GF′
(
MFMG′VMFMG′

)+

FG′(GG′)−1 =

=(GG′)−1GF′
{
V−1−V−1FMG′

[
MG′F′V−1FMG′

]+
×MG′F′V−1

}
FG′(GG′)−1

= (GG′)−1G
{
C0 −C0

[
C−1

0 −C−1
0 G′(GC−1

0 G′)−1GC−1
0

]
C0

}
G′(GG′)−1

= (GC−1
0 G′)−1.

Thus under the condition κ(·) = 0,

Kint
0,I (β0) = Cconstr

0 (β0).

Remark 3.6 If the model is nonlinear, i.e. Y ∼ Nn(f(β), σ2V), however the
constraints are linear, i.e. Gδβ = 0, then Kint

0,I (β0) is equal to

Kint
0,I (β0) = sup

⎧⎪⎪⎨⎪⎪⎩
√

κ′(KGδs)
(
MV −1

FMG′

)′
V−1MV −1

FMG′ κ(KGδs)

δs′K′
GC0KGδs

: δs ∈ Rk−q

⎫⎪⎪⎬⎪⎪⎭ .
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Since (
MV −1

FMG′

)′
V−1MV −1

FMG′ =

=
(
MV −1

F

)′
V−1MV −1

F + V−1FC0G′(GC−1
0 G′)−1GC−1

0 F′V−1,

it can be written
Kint

0,I (β0) ≤ Kint
0 (β0),

in the case γ(δβ) = 0, with respect to Remark 3.4. Here Kint
0 (β0) = Kint(β0)

for σ = 1.

4 Linearization region

Definition 4.1 The ε-linearization region (at the point β0) for an estimation
of the parameter σ2 is

Lσ =
{
β0 + δβ : δβ = KGδs, E(σ̂2)− σ2 < ε2σ2

}
.

Theorem 4.2 The ε-linearization region from Definition 4.1 is

Lσ =

{
β0 + δβ : δβ = KGδs, δs′K′

GC0KGδs ≤ 2σε
√

n + q − k

Kint
0,I (β0)

}
.

Proof The relationships

E(σ̂2)− σ2 =
1

4(n + q − k)
1

′(
MFMG′VMFMG′

)+

1 ≤

≤ 1
4(n + q − k)

(
δs′K′

GC0KGδs
)2(

Kint
0,I (β0)

)2

are implied by a comparison of the bias from Corollary 3.2 and Definition 3.3.
Thus

E(σ̂2)− σ2 ≤ 1
4(n + q − k)

(
δs′K′

GC0KGδs
)2(

Kint
0,I (β0)

)2

≤ σ2ε2

⇔ δsK′
GC0KGδs ≤ 2σε

√
n + q − k

Kint
0,I (β0)

. �

Remark 4.3 The actual value β∗ of the parameter β is unknown. However
some information on β∗ is given by the estimator

ˆ̂
β = β0 +

{
I−C−1

0 G′(GC−1G′)−1G
)
β̂,

where β̂ = β0 + (F′V−1F)−1F′V−1(Y − f0) and by the confidence region

Eβ =

{
β0 + KGu : (u− δ

ˆ̂
β)′C0(u− δ

ˆ̂
β) ≤ (k − q)σ̂2Fk−q,n+q−k(1 − α)

}
.
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(The equalities

Var(ˆ̂β) = σ2[C0 −C0G′(GC−1
0 G′)−1GC−1]

and
[C0 −C0G′(GC−1

0 G′)−1GC−1]+ = C0

are utilized.)

Remark 4.4 With respect to Theorem 4.2 and the expression for the (1− α)-
confidence ellispoid, it is clear that the values of the semiaxes of the ellipsoid
depend on σ linearly, however the semiaxes of Lσ depend linearly on

√
σ. Thus

the inclusion Eβ ⊂ Lσ can be attain by a smaller σ. It can be established by a
proper design of experiment.

Remark 4.5 If Eβ is significantly smaller than Lσ and Eβ ⊂ Lσ, we can esti-
mate parameter σ2 by (4) and we can be sure that E(σ̂2)− σ2 < ε2σ2.

Let b(σ̂2) = E(σ̂2)− σ2 and b(σ̂) = E(σ̂)− σ. Then the approximation

b(σ̂) ≈ σ
b(σ̂2)

2
≤ σ

ε2

2

can be used. Thus, from the viewpoint of practice it seems to be important the
validity of the following implication

δs′K′
GC0KGδs ≤ 2σε

√
n + q − k

Kint
0,I (β0)

⇒ b(σ̂) ≤ σ
ε2

2
.

5 Numerical example

In [4] the problem of linearization of the model with constraints with respect
to the estimation of the parameter β was solved. The numerical example given
there was chosen as follows.

{f}i(β) = fi(β) =

{
l1(xi, β1) = xiβ1, xi ≤ 5,

l2(xi, β2, β3) = β1 exp(β3xi), xi ≥ 5

and
g(β1, β2, β3) = 5β1 − β2 exp(5β3).

Measurement regarding this model was calculated at the points x = 1, 2, 3, 6, 7, 8
and Var(Y) = σ2I. In [4] it is shown that for σ = 0.5 the model cannot be
linearized with respect to the estimation of β. The value of the parameter σ
must be smaller than 0.01 in order for the linearization be admissible.

Quite different situation occurs in this example in the case that the estimator
of σ2 is under consideration. With the help of [7] we obtain the following
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results. Analogously as in [4], let the functions f(·) and g(·) be those given at
the beginning of the section, x = 1, 2, 3, 6, 7, 8, Var(Y) = σ2I and

β1 = 1.473, β2 = 33, β3 = −0.29999, α = 0.05, ε = 0.1, σ = 0.5.

Then the figures 1, 2 and 3 show that the (1−α)-confidence ellipsoid is included
into Lσ and the same is valid also for σ = 1; cf. figures 4,5,6.

σ = 0.5

Figure 1 The sections of the confidence ellipsoid and the
linearization region Lσ by the axes β1 and β2.

σ = 0.5

Figure 2 The sections of the confidence ellipsoid and the
linearization region Lσ by the axes β1 and β3.



Estimation of dispersion in nonlinear regression models with constraints 83

σ = 0.5

Figure 3 The sections of the confidence ellipsoid and the
linearization region Lσ by the axes β2 and β3.

σ = 1

Figure 4 The sections of the confidence ellipsoid and the
linearization region Lσ by the axes β1 and β2.
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σ = 1

Figure 5 The sections of the confidence ellipsoid and the
linearization region Lσ by the axes β1 and β3.

σ = 1

Figure 6 The sections of the confidence ellipsoid and the
linearization region Lσ by the axes β2 and β3.
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The empirical probabilty density function is given at figure 7 for σ = 0.5

Figure 7 The empirical density function of the estimator σ̂2

(4) for σ = 0.5

The linearization is possible if the value of Kint
0,I (β) is sufficiently small with

respect to the quantile Fk−q,n+q−k(1 − α) (cf. Remark 4.3). Therefore table 1
gives the different values of the parameter β for our example and table 2 gives
the corresponding values Kint

0,I (β); the values signed by the star are too large
for the linearization of the model with respect to estimation of σ2 if σ = 0.5.

β1 β2(β3 = −1) β2(β3 = −0.5) β2(β3 = 0.5) β2(β3 = 1)
0.5 371.032 898 30.456 235 0.205 212 0.016 845
1.0 742.065 796 60.912 470 0.410 425 0.033 690
1.5 1 113.098 693 91.368 705 0.615 637 0.050 535
2.0 1 484.131 591 121.824 940 0.820 850 0.067 379
2.5 1 855.164 488 152.281 174 1.026 062 0.084 224

Table 1 The values of the parameter β for Table 2

β1 β3 = −1 β3 = −0.5 β3 = 0.5 β3 = 1
0.5 0.172199∗ 0.138345∗ 0.049 621 0.022 430
1.0 0.086 301 0.069 146 0.024 779 0.011 198
1.5 0.056 943 0.045 983 0.016 533 0.007 457
2.0 0.043 192 0.034 565 0.012 372 0.005 568
2.5 0.034 546 0.027 661 0.009 908 0.004 437

Table 2 The values of Kint
0,I (β) for β given in Table 1
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1 Notations, auxiliary statements

The following notations will be used throughout the paper:
Rn the space of all n-dimensional real vectors;
up the real column p-dimensional vector;
Am,n, Tr(A) the real m× n matrix, the trace of the matrix A;
A′, r(A) the transpose, the rank of the matrix A;
A(j) j-th column of the matrix A;
vec(A) the column vector ((A(1))′, . . . , (A(n))′)′;
A⊗B the Kronecker (tensor) product of the matrices A,B;
M (A) the range of the matrix A;
A− a generalized inverse of the matrix A

(satisfying AA−A = A);
A+ the Moore-Penrose generalized inverse of the matrix A

( satisfying AA+A = A, A+AA+ = A+, (AA+)′ = AA+,
(A+A)′ = A+A);

P A the orthogonal projector onto M (A);
MA = I − P A the orthogonal projector onto M⊥(A) = Ker(A′);
Ik the k × k identity matrix;
0m,n the m× n null matrix;
o the null element.

If M (A) ⊂ M (V ), V p.s.d., then the symbol P V
A denotes the projector on the

subspace M (A) in the V -seminorm given by the matrix V , ||x||V =
√

x′V x;
MV

A = I − P V
A = I −A(A′V A)−A′V . Let Nn,n is p.d. (p.s.d.) matrix and

Am,n an arbitrary matrix, then the symbol A−
m(N) denotes the matrix satisfy-

ing AA−
m(N)A = A and NA−

m(N)A = [NA−
m(N)A]′. (A−

m(N)y is a solution of
the consistent system Ax = y whose N-seminorm is minimal, see [4], p. 151).
A−

m(N) is called a minimum N-seminorm g-inverse of the matrix A. It holds

M(A′) ⊂ M(N) ⇒ A−
m(N)N

−A′(AN−A′)−.

Assertion 1 (see [3], Lemma 16)

(MSΣMS)+ = Σ−1 − Σ−1S(S′Σ−1S)−S′Σ−1 = Σ−1MΣ−1

S , if Σ is p.d.,

(MSΣMS)+ = Σ+−Σ+S(S′Σ−S)−S′Σ+, if Σ is p.s.d. and M (S) ⊂ M (Σ).

Assertion 2 If Σ is p.d. matrix, W p.s.d. and S such matrices, that

M (S′) = M (S′WS),

then (see [6], Lemma 1)

(MW
S )′[MW

S Σ(MW
S )′]+MW

S = (MSΣMS)+.
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2 Multivariate linear model with nuisance parameters

Let
Y n,m = Xn,kBk,lZl,m + εn,m (1)

be a multivariate linear model under consideration. Here Y is an observation
matrix, X, Z, are known nonzero matrices, ε is a random matrix and B is a
matrix of unknown parameters

B = (B1, B2),

where B1 is a k× r matrix of useful parameters which (or their functions ) has
to be estimated from the observation matrix Y and B2 is a k × s matrix of
nuisance parameters. Thus we consider the model

Y = X(B1, B2)
(

Z1

Z2

)
+ ε. (2)

Lemma 1 The model (2) can be equivalently written in the form

vec(Y ) = [Z ′
1 ⊗X, Z ′

2 ⊗X]
(

vec(B1)
vec(B2)

)
+ vec(ε). (3)

where a r ×m matrix Z1 and a s×m matrix Z2 are known nonzero matrices.

Proof is obvious by virtue of the following statement

vec(ABC) = (C ′ ⊗A)vec(B), (4)

valid for all matrices of corresponding types. �

Suppose that

1. the observation vector vec(Y ) has the mean value

E[vec(Y )] = [Z ′
1 ⊗X, Z ′

2 ⊗X]
(

vec(B1)
vec(B2)

)
,

and the covariance matrix

var[vec(Y )] = Σϑ ⊗ In,

where m×m matrix Σϑ (the covariance matrix of any column of the matrix Y )
is such a matrix that

2. Σϑ =
∑p

i=1 ϑiVi, ∀ϑ = (ϑ1, . . . , ϑp)′ ∈ ϑ ⊂ Rp, V1, . . . , Vp given symmet-
ric matrices,

3. ϑ ⊂ Rp contains an open sphere in Rp,

4. if ϑ ∈ ϑ, the matrix Σϑ is positive definite,

5. the matrix Σϑ is not a function of the matrix B = (B1, B2),
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6. suppose that

M (Z ′
1 ⊗X, Z ′

2 ⊗X) ⊂M (Σϑ ⊗ I); (5)

this condition is warranted by

M (Z1) ⊂ M (Σϑ) ∧ M (Z2) ⊂M (Σϑ); (6)

and it means that
vec(Y ) ∈ M (Σϑ ⊗ I) (a.s.).

Remark 1 A parametric function p′vec(B1), p ∈ Rkr , is said to be unbiasedly
estimable under the model (2) if there exists an estimator L′vec(Y ), L ∈ Rmn,
such that E[L′vec(Y )] = p′vec(B1), ∀vec(B1), ∀vec(B2).

The equality

E[L′vec(Y )] = L′(Z ′
1 ⊗X)vec(B1) + L′(Z ′

2 ⊗X)vec(B2) = p′vec(B1),

∀vec(B1), ∀vec(B2), is fulfiled if and only if

p = (Z1 ⊗X ′)L & (Z2 ⊗X ′)L = o,

that is equivalent to

p = (Z1 ⊗X ′)MZ′
2⊗Xu, u ∈ Rmn.

Thus the class of all unbiasedly estimable linear functions p′vec(B1) of the
useful parameters in the model (2) is given by

E1 = {p′vec(B1) : p ∈ M [(Z1 ⊗X ′)MZ′
2⊗X ] = M [Z1MZ′

2
⊗X ′]}. (7)

Obviously the class of all unbiasedly estimable linear functions q′vec(B2) of the
nuisance parameters in the model (2) is given by

E2 = {q′vec(B2) : q ∈M [(Z2 ⊗X ′)MZ′
1⊗X ] = M [Z2MZ′

1
⊗X ′].

Notation 1 Denote ̂vec(B1) and ̂vec(B2) an (Σ−1
ϑ ⊗ I)-LS estimator of the

vector parameter vec(B1) and vec(B2) respectively computed under the line-

ar model (2) (see [1], p. 161). According to the assumption (6) ̂p′vec(B1),
p ∈M [(Z1⊗X ′)MZ′

2⊗X ], and ̂q′vec(B2), q ∈M [(Z2⊗X ′)MZ′
1⊗X ], are the

BLUEs of the function p′vec(B1) and q′vec(B2) respectively (see [1], Theorem
5.3.2., p. 162).

Theorem 1 ( ̂vec(B1)̂vec(B2)

)
=

=

(
(Z1[MZ′

2
ΣϑMZ′

2
]+Z ′

1)
−Z1[MZ′

2
ΣϑMZ′

2
]+ ⊗ (X ′X)−X ′

(Z2Σ−
ϑ Z ′

2)
−Z2Σ−

ϑ M
(MZ′

2
ΣϑMZ′

2
)+

Z′
1

⊗ (X ′X)−X ′

)
vec(Y ).
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Proof According to [1], Theorem 5.3.1 we have under the model (2)( ̂vec(B1)̂vec(B2)

)
=

= [(Z ′
1⊗X, Z ′

2⊗X)′(Σϑ⊗I)−(Z ′
1⊗X, Z ′

2⊗X)]−
(

Z1 ⊗X ′

Z2 ⊗X ′

)
(Σϑ⊗I)−vec(Y )

=
[

Z1Σ−
ϑ Z ′

1 ⊗X ′X, Z1Σ−
ϑ Z ′

2 ⊗X ′X
Z2Σ−

ϑ Z ′
1 ⊗X ′X, Z2Σ−

ϑ Z ′
2 ⊗X ′X

]−(
Z1Σ−1

ϑ ⊗X ′

Z2Σ−1
ϑ ⊗X ′

)
vec(Y ). (8)

Using the following Rohde’s formula for generalized inverse of partitioned p.s.d.
matrix (see [3], Lemma 13, p.68)(

A, B
B′, C

)−
=
(

A− + A−B(C −B′A−B)−B′A−, −A−B(C −B′A−B)−

−(C −B′A−B)−B′A−, (C −B′A−B)−

)

=
(

(A−BC−B′)−, −(A−BC−B′)−BC−

−C−B′(A−BC−B′)−, C− + C−B′(A−BC−B′)−BC−

)
,

we get the blocks of the g-inverse matrix in (8):

A11 = (Z1[MZ′
2
ΣϑMZ′

2
]+Z ′

1)
− ⊗ (X ′X)−,

A12 = −[(Z1[MZ′
2
ΣϑMZ′

2
]+Z ′

1)
−Z1Σ−

ϑ Z ′
2(Z2Σ=

ϑ Z2)−

⊗(X ′X)−(X ′X)(X ′X)−,

A21 = (A12)′,

A22 = [(Z2Σ−
ϑ Z′

2)
− ⊗ (X ′X)−]

+[(Z2Σ−
ϑ Z ′

2)
−Z2Σ−

ϑ Z ′
1(Z1[MZ′

2
ΣϑMZ′

2
]+Z ′

1)
−Z1Σ−

ϑ Z ′
2(Z2Σ−

ϑ Z ′
2)

−

⊗(X ′X)−(X ′X)(X ′X)−].

After some calculations we get̂vec(B1) = [(Z1[MZ′
2
ΣϑMZ′

2
]+Z ′

1)
−Z1[MZ′

2
ΣϑMZ′

2
]+ ⊗ (X ′X)−X ′]vec(Y ).

̂vec(B2) = [(Z2Σ−
ϑ Z ′

2)
−Z2Σ−

ϑ M
[MZ′

2
ΣϑMZ′

2
]+

Z′
1

⊗ (X ′X)−X ′]vec(Y ).

The estimates obtained by substitution ̂vec(B1) into unbiasedly estimable func-
tions p′vec(B1) are given uniquely. It can be proved if we take the following
assertion (see [3], Lemma 8, p.65)

AB−C is invariant to the choice of the g-inverse B−

⇐⇒ M (A′) ⊂ M (B′) & M (C) ⊂M (B), (9)

into account. �
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Theorem 2 Let us denote Σ0 =
∑p

i=1 ϑ0,iV i.
a) In model (2) the function g′ϑ =

∑p
i=1 giϑi, ϑ ∈ ϑ, is unbiasedly, quadrati-

cally and invariantly estimable (i.e. the estimator has the form [vec(Y )]′A[vec(Y )],
where Amn,mn is symmetric matrix, the estimator is invariant with respect to
the change of the matrix B) if and only if

g ∈M
(
S(M(Z′

1
⊗X,Z′

2
⊗X)(Σ0⊗I)M(Z′

1
⊗X,Z′

2
⊗X))

+

)
,

where
{S(M(Z′

1
⊗X,Z′

2
⊗X)(Σ0⊗I)M(Z′

1
⊗X,Z′

2
⊗X))

+}i,j =

= Tr[(M (Z′
1⊗X,Z′

2⊗X)(Σ0⊗I)M (Z′
1⊗X,Z′

2⊗X))+(V i⊗I)(M (Z′
1⊗X,Z′

2⊗X)(Σ0⊗I)

×M (Z′
1⊗X,Z′

2⊗X))+(V j ⊗ I)], i, j = 1, . . . , p.

b) If the function g′ϑ satisfies the condition from a), then the ϑ0-MINQUE
of g ′ϑ is given as

ĝ′ϑ =
p∑

i=1

λi(vec(Y ))′[M (Z′
1⊗X,Z′

2⊗X)(Σ0 ⊗ I)M (Z′
1⊗X,Z′

2⊗X)]+(V i ⊗ I)

×[M (Z′
1⊗X,Z′

2⊗X)(Σ0 ⊗ I)M (Z′
1⊗X,Z′

2⊗X)]+vec(Y ),

where the vector λ = (λ1, . . . , λp)′ is a solution of the system of equations

S(M(Z′
1
⊗X,Z′

2
⊗X)(Σ0⊗I)M(Z′

1
⊗X,Z′

2
⊗X))

+λ = g.

Proof see [4], Theorem IV.1.11.

Remark 2 The matrix S(M(Z′
1
⊗X,Z′

2
⊗X)(Σ0⊗I)M(Z′

1
⊗X,Z′

2
⊗X))

+ is called the crite-

rional matrix for the estimability of the function g′ϑ.
As M (Z′

1⊗X,Z′
2⊗X) = MZ′

2⊗XMM(Z′
2⊗X)(Z

′
1⊗X) = MM(Z′

2⊗X)(Z
′
1⊗X)MZ′

2⊗X , it

holds
{S(M(Z′

1
⊗X,Z′

2
⊗X)(Σ0⊗I)M(Z′

1
⊗X,Z′

2
⊗X))

+}i,j

= Tr[(MM(Z′
2
⊗X)(Z

′
1⊗X)MZ′

2⊗X(Σ0 ⊗ I)MZ′
2⊗XMM(Z′

2
⊗X)(Z

′
1⊗X))+(V i ⊗ I)

×(MM(Z′
2
⊗X)(Z

′
1⊗X)MZ′

2⊗X(Σ0 ⊗ I)MZ′
2⊗XMM(Z′

2
⊗X)(Z

′
1⊗X))+(V j ⊗ I)]

= Tr[(MZ′
1⊗XMZ′

2⊗X(Σ0 ⊗ I)MZ′
2⊗XMZ′

1⊗X)+(V i ⊗ I)

×(MZ′
1⊗XMZ′

2⊗X(Σ0 ⊗ I)MZ′
2⊗XMZ′

1⊗X)+(V j ⊗ I)], i, j = 1, . . . p,

where the equality

[MM(Z′
2
⊗X)(Z

′
1⊗X)MZ′

2⊗X(Σ0 ⊗ I)MZ′
2⊗XMMZ′

2
⊗X(Z′

1⊗X)]+

= [MZ′
1⊗XMZ′

2⊗X(Σ0 ⊗ I)MZ′
2⊗XMZ′

1⊗X ]+,

was used.
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3 Eliminating transformations

There are situation in the practice, that the number of nuisance parameters is
much more greater than the number of useful parameters. This fact could cause
difficulties in the course of calculations.

There exist two approaches to the problem of nuisance parameters. One
of them is to eliminate the nuisance parameters by a transformation of the
observation vector provided this transformation is not allowed to cause a loss
of information of the useful parameters.

Our task is to eliminate in the model (2) the matrix Z ′
2 ⊗X , belonging to

the vector vec(B2) of nuisance parameters, i.e. we consider the following class
of eliminating matrices

T = {T : T (Z ′
2 ⊗X) = 0},

that leads us to linear models

[ Tvec(Y ), T (Z ′
1 ⊗X)vec(B1), T (Σϑ ⊗ I)T ′ ]. (10)

The general solution of the matrix equation T (Z ′
2 ⊗X) = 0 is of the form

T = A[I − (Z ′
2 ⊗X)(Z ′

2 ⊗X)−],

where A is an arbitrary matrix of the corresponding type, (Z ′
2 ⊗X)− is some

version of generalized inverse of the matrix Z ′
2 ⊗X.

If we choose (Z ′
2 ⊗X)− = [(Z ′

2 ⊗X)′W (Z ′
2 ⊗X)]−(Z ′

2 ⊗X)′W , where
W = W 1 ⊗W 2 is an arbitrary p.s.d. matrix such that

M (Z2 ⊗X ′) = M [(Z2 ⊗X ′)W (Z ′
2 ⊗X)], (11)

then T = AMW
Z′

2⊗X , where MW
Z′

2⊗X is given uniquely.

First we consider the transformation matrix T = MW
Z′

2⊗X , i.e. we consider
linear model

[MW
Z′

2⊗Xvec(Y ), MW
Z′

2⊗X(Z ′
1⊗X)vec(B1), MW

Z′
2⊗X(Σϑ⊗I)(MW

Z′
2⊗X)′], Σϑ p.d.

(12)

Remark 3 As MW1⊗W2
Z′

2⊗X vec(Y ) = (Im ⊗ In)vec(Y ) − (P W1
Z′

2
⊗ P W2

X )vec(Y ),

we can write Y transf = Y − P W2
X Y (P W1

Z′
2
)′.

Lemma 2 Let W is p.s.d. matrix such that (11) is valid. Then

M (MZ′
2⊗X) = M ([MW

Z′
2⊗X ]′).

Proof see [7], Lemma 2. �

Thus
M [(Z1 ⊗X ′)MZ′

2⊗X ] = M [(Z1 ⊗X ′)(MW
Z′

2⊗X)′],

i.e. the classes of the estimable functions p′vec(B1) in the model (2) and in the
model (12) are identical.
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Theorem 3 The ϑ-LBLUE of the estimable function p ′vec(B1), where p ∈
M [(Z1 ⊗X ′)MZ′

2⊗X ] in the model (12) is given as

̂p ′vec(B1) =
= p ′[(Z1[MZ′

2
ΣϑMZ′

2
]+Z ′

1)
−Z1[MZ′

2
ΣϑMZ′

2
]+ ⊗ (X ′X)−X ′]vec(Y ),

i.e. it is the same as in the model (2), (see Theorem 1).

Proof According to [2], Theorem 3.1.3 the ϑ-LBLUE in the model (12) is given
as ̂p ′vec(B1) =

= p ′

⎧⎨⎩
[(

MW
Z′

2⊗X(Z ′
1 ⊗X)

)′]−
m(MW

Z′
2
⊗X

(Σϑ⊗I)(MW
Z′
2
⊗X

)′)

⎫⎬⎭
′

MW
Z′

2⊗Xvec(Y )

= p ′{[MW
Z′

2⊗X(Z ′
1 ⊗X)]′[(MW

Z′
2⊗X(Σϑ ⊗ I)(MW

Z′
2⊗X)′]−MW

Z′
2⊗X(Z ′

1 ⊗X)}−

× [MW
Z′

2⊗X(Z ′
1 ⊗X)]′[MW

Z′
2⊗X(Σϑ ⊗ I)(MW

Z′
2⊗X)′]−MW

Z′
2⊗Xvec(Y )

= p ′{(Z1 ⊗X ′)(MW
Z′

2⊗X)′[MW
Z′

2⊗X(Σϑ ⊗ I)(MW
Z′

2⊗X)′]+MW
Z′

2⊗X(Z ′
1 ⊗X)}−

× (Z1 ⊗X ′)(MW
Z′

2⊗X)′[MW
Z′

2⊗X(Σϑ ⊗ I)(MW
Z′

2⊗X)′]+MW
Z′

2⊗Xvec(Y ).

Using Assertion 2 and Assertion 1 we get

̂p ′vec(B1) = p ′{(Z1 ⊗X ′)[MZ′
2⊗X(Σϑ ⊗ I)MZ′

2⊗X ]+(Z ′
1 ⊗X)}−

×(Z1 ⊗X ′)[MZ′
2⊗X(Σϑ ⊗ I)MZ′

2⊗X ]+vec(Y )

= p ′{(Z1 ⊗X ′)(Σ−1
ϑ ⊗ I)(Z ′

1 ⊗X)− (Z1 ⊗X ′)(Σ−1
ϑ ⊗ I)(Z ′

2 ⊗X)

× [(Z2 ⊗X ′)(Σ−1
ϑ ⊗ I)(Z ′

2 ⊗X)]−(Z2 ⊗X ′)(Σ−1
ϑ ⊗ I)(Z ′

1 ⊗X)}−

×{(Z1 ⊗X ′)(Σ−1
ϑ ⊗ I)− (Z1 ⊗X ′)(Σ−1

ϑ ⊗ I)(Z ′
2 ⊗X)

×[(Z2 ⊗X ′)(Σ−1
ϑ ⊗ I)(Z ′

2 ⊗X)]−(Z2 ⊗X ′)(Σ−1
ϑ ⊗ I)}vec(Y )

= p ′[(Z1[MZ′
2
ΣϑMZ′

2
]+Z ′

1)
−Z1[MZ′

2
ΣϑMZ′

2
]+ ⊗ (X ′X)−X ′]vec(Y ).

The validity of

M [MW
Z′

2⊗X(Z ′
1 ⊗X)] ⊂M [MW

Z′
2⊗X(Σϑ ⊗ I)(MW

Z′
2⊗X)′]

follows from (5) and from regularity of Σϑ. �

Lemma 3

(MW
Z′

2⊗X)′[MMW
Z′
2
⊗X

(Z′
1⊗X)M

W
Z′

2⊗X(Σ0⊗I)(MW
Z′

2⊗X)′MMW
Z′
2
⊗X

(Z′
1⊗X)]

+MW
Z′

2⊗X

= [MZ′
1⊗XMZ′

2⊗X(Σ0 ⊗ I)MZ′
2⊗XMZ′

1⊗X ]+.
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Proof Using Assertions 1,2 we have

(MW
Z′

2⊗X)′[MMW
Z′
2
⊗X

(Z′
1⊗X)M

W
Z′

2⊗X(Σ0⊗I)(MW
Z′

2⊗X)′MMW
Z′
2
⊗X

(Z′
1⊗X)]

+MW
Z′

2⊗X

= (MW
Z′

2⊗X)′[MW
Z′

2⊗X(Σ0 ⊗ I)(MW
Z′

2⊗X)′]+MW
Z′

2⊗X

−(MW
Z′

2⊗X)′
[
MW

Z′
2⊗X(Σ0 ⊗ I)(MW

Z′
2⊗X)′

]+
MW

Z′
2⊗X(Z ′

1 ⊗X)

× {(Z1 ⊗X ′)(MW
Z′

2⊗X)′
[
MW

Z′
2⊗X(Σ0 ⊗ I)(MW

Z′
2⊗X)′

]+
MW

Z′
2⊗X(Z ′

1 ⊗X)}−

× (Z1 ⊗X ′)(MW
Z′

2⊗X)′
[
MW

Z′
2⊗X(Σ0 ⊗ I)(MW

Z′
2⊗X)′

]+
MW

Z′
2⊗X

= (MZ′
2⊗X(Σ0 ⊗ I)MZ′

2⊗X)+ − (MZ′
2⊗X(Σ0 ⊗ I)MZ′

2⊗X)+

× (Z ′
1 ⊗X)[(Z1 ⊗X ′)(MZ′

2⊗X(Σ0 ⊗ I)MZ′
2⊗X)+(Z ′

1 ⊗X)]−

× (Z1 ⊗X ′)(MZ′
2⊗X(Σ0 ⊗ I)MZ′

2⊗X)+

= [MZ′
1⊗XMZ′

2⊗X(Σ0 ⊗ I)MZ′
2⊗XMZ′

1⊗X ]+.

�

Theorem 4 A linear function g ′ϑ of the vector parameter ϑ ∈ ϑ ⊂ Rp, unbias-
edly estimable in the model (2) before eliminating transformation is unbiasedly
estimable in the transformed model (12).

Proof The (i,j)-th element of the criterional matrix in the model (12) is given
by {

S(M
MW

Z′
2
⊗X

(Z′
1
⊗X)M

W
Z′
2
⊗X

(Σ0⊗I)(MW
Z′
2
⊗X

)′M
MW

Z′
2
⊗X

(Z′
1
⊗X))

+

}
i,j

= Tr

{[
MMW

Z′
2
⊗X

(Z′
1⊗X)M

W
Z′

2⊗X(Σ0 ⊗ I)(MW
Z′

2⊗X)′MMW
Z′
2
⊗X

(Z′
1⊗X)

]+
×MW

Z′
2⊗X(V i ⊗ I)(MW

Z′
2⊗X)′

×
[
MMW

Z′
2⊗X

(Z′
1⊗X)M

W
Z′

2⊗X(Σ0 ⊗ I)(MW
Z′

2⊗X)′MMW
Z′
2⊗X

(Z′
1⊗X)

]+
×MW

Z′
2⊗X(V j ⊗ I)(MW

Z′
2⊗X)′

}
= Tr

{[
MW

Z′
2⊗X)′[MMW

Z′
2
⊗X

(Z′
1⊗X)M

W
Z′

2⊗X(Σ0 ⊗ I)(MW
Z′

2⊗X)′MMW
Z′
2
⊗X

(Z′
1⊗X)

]+
×MW

Z′
2⊗X(V i ⊗ I)(MW

Z′
2⊗X)′

×
[
MMW

Z′
2
⊗X

(Z′
1⊗X)M

W
Z′

2⊗X(Σ0 ⊗ I)(MW
Z′

2⊗X)′MMW
Z′
2
⊗X

(Z′
1⊗X)

]+
MW

Z′
2⊗X(V j⊗I)

}
.
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By Lemma 3 then{
S(M

MW
Z′
2
⊗X

(Z′
1⊗X)M

W
Z′
2
⊗X

(Σ0⊗I)(MW
Z′
2
⊗X

)′M
MW

Z′
2
⊗X

(Z′
1⊗X))

+

}
i,j

=

= Tr
{[

MZ′
1⊗XMZ′

2⊗X(Σ0 ⊗ I)MZ′
2⊗XMZ′

1⊗X

]+ (V i ⊗ I)

× [MZ′
1⊗XMZ′

2⊗X(Σ0 ⊗ I)MZ′
2⊗XMZ′

1⊗X

]+ (V j ⊗ I)
}

, i, j = 1, . . . , p.

Due to the Remark 2 it is evident that the criterional matrices in the model (2)
and in the model (12) are identical. �

Theorem 5 Let g′ϑ, ϑ ∈ ϑ be an unbiasedly estimable function. Then the
ϑ0-MINQUE in the model (2) and the ϑ0-MINQUE in the model (12) after
elimination coincide.

Proof We have seen that each function g′ϑ, that is unbiasedly estimable in
the model (2) is unbiasedly estimable in the model (12).

According to Theorem 2 the ϑ0-MINQUE in the model (12) is given by

ĝ′ϑ =
p∑

i=1

λi(vec(Y ))′(MW
Z′

2⊗X)′

[
MMW

Z′
2⊗X

(Z′
1⊗X)M

W
Z′

2⊗X(Σ0 ⊗ I)(MW
Z′

2⊗X)′MMW
Z′
2⊗X

(Z′
1⊗X)

]+
×MW

Z′
2⊗X(V i ⊗ I)(MW

Z′
2⊗X)′

×
[
MMW

Z′
2
⊗X

(Z′
1⊗X)M

W
Z′

2⊗X(Σ0 ⊗ I)(MW
Z′

2⊗X)′MMW
Z′
2
⊗X

(Z′
1⊗X)

]+
×MW

Z′
2⊗Xvec(Y )

=
p∑

i=1

λi(vec(Y ))′
[
MZ′

1⊗XMZ′
2⊗X(Σ0 ⊗ I)MZ′

2⊗XMZ′
1⊗X

]+ (V i ⊗ I)

× [MZ′
1⊗XMZ′

2⊗X(Σ0 ⊗ I)MZ′
2⊗XMZ′

1⊗X

]+
vec(Y ),

i.e. this estimator is identical to the estimator in the model (2)—see Remark 2.
Lemma 3 has been taken into account. �

Lemma 4

[MZ′
1⊗X(Σϑ ⊗ I)MZ′

1⊗X ]+ = (Σ−1
ϑ ⊗ I)− (P Σ−1

ϑ

Z′
1
⊗ P X). (13)
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Proof With respect to Assertion 1

[MZ′
1⊗X(Σϑ ⊗ I)MZ′

1⊗X ]+ =

= (Σ−1
ϑ ⊗ I)− (Σ−1

ϑ Z ′
1(Z1Σ−1

ϑ Z′
1)

−Z1Σ−1
ϑ ⊗X[X ′X]−X ′)

= (Σ−1
ϑ ⊗ I)− (Σ−1

ϑ P
Σ−1

ϑ

Z′
1
⊗ P X).

�

Lemma 5

M
[MZ′

1
⊗X(Σϑ⊗I)MZ′

1
⊗X ]+

Z′
2⊗X = M

[MZ′
1
ΣϑMZ′

1
]+⊗I

Z′
2⊗X . (14)

Proof With respect to MV
A = I − P V

A = I − A(A′V A)−A′V and using
Lemma 4 we get

M
[MZ′

1
⊗X)(Σϑ⊗I)MZ′

1⊗X ]+

Z′
2⊗X

= (I ⊗ I)− (Z ′
2 ⊗X)[(Z2 ⊗X ′){(Σ−1

ϑ ⊗ I)− (Σ−1
ϑ P

Σ−1
ϑ

Z′
1
⊗ P X)}(Z ′

2 ⊗X)]−

× (Z2 ⊗X ′)[(Σ−1
ϑ ⊗ I)− (Σ−1

ϑ P
Σ−1

ϑ

Z′
1
⊗ P X)]

= (I ⊗ I)− (Z ′
2[Z2[MZ′

1
ΣϑMZ′

1
]+Z ′

2]
−Z2[MZ′

1
ΣϑMZ′

1
]+ ⊗X [X ′X]−X ′)

= (I ⊗ I)− (P
[MZ′

1
ΣϑMZ′

1
]+

Z′
2

⊗ P X) = M
[MZ′

1
ΣϑMZ′

1
]+⊗I

Z′
2⊗X . �

Lemma 6

P
[MZ′

2
⊗X(Σϑ⊗I)MZ′

2
⊗X ]+

Z′
1⊗X · P [MZ′

1
⊗X(Σϑ⊗I)MZ′

1
⊗X ]+

Z′
2⊗X =

= P
[MZ′

1
⊗X(Σϑ⊗I)MZ′

1
⊗X ]+

Z′
2⊗X · P [MZ′

2
⊗X(Σϑ⊗I)MZ′

2
⊗X ]+

Z′
1⊗X = 0.

Proof With respect to Lemma 5

P
[MZ′

1
⊗X (Σϑ⊗I)MZ′

1
⊗X ]+

Z′
2⊗X = P

[MZ′
1
ΣϑMZ′

1
]+⊗I

Z′
2⊗X = P

[MZ′
1
ΣϑMZ′

1
]+

Z′
2

⊗ P X ,

analogously P
[MZ′

2
⊗X(Σϑ⊗I)MZ′

2
⊗X ]+

Z′
1⊗X = P

[MZ′
2
ΣϑMZ′

2
]+

Z′
1

⊗ P X . Since

P
[MZ′

2
ΣϑMZ′

2
]+

Z′
1

· P [MZ′
1
ΣϑMZ′

1
]+

Z′
2

= P
[MZ′

1
ΣϑMZ′

1
]+

Z′
2

·P [MZ′
2
ΣϑMZ′

2
]+

Z′
1

= 0,

we get the statements. �
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Lemma 7

M
Σ−1

ϑ
⊗I

(Z′
1⊗X,Z′

2⊗X) = (I ⊗ I)− (P
[MZ′

2
ΣϑMZ′

2
]+

Z′
1

⊗ P X)− (P
[MZ′

1
ΣϑMZ′

1
]+

Z′
2

⊗ P X)

= (I ⊗ I)− P
[MZ′

2
⊗X (Σϑ⊗I)MZ′

2
⊗X ]+

Z′
1⊗X − P

[MZ′
1
⊗X(Σϑ⊗I)MZ′

1
⊗X ]+

Z′
2⊗X

= M
[MZ′

1
⊗X (Σϑ⊗I)MZ′

1
⊗X ]+

Z′
2⊗X ·M [MZ′

2
⊗X(Σ⊗I)MZ′

2
⊗X ]+

Z′
1⊗X .

Proof
M

Σ−1
ϑ

⊗I

(Z′
1⊗X,Z′

2⊗X) = (I ⊗ I)− (Z ′
1 ⊗X, Z ′

2 ⊗X)

×
[(

Z1 ⊗X ′

Z2 ⊗X ′

)
(Σ−1

ϑ ⊗ I)(Z ′
1 ⊗X, Z ′

2 ⊗X)
]−(

Z1Σ−1
ϑ ⊗X ′

Z2Σ−1
ϑ ⊗X ′

)
= (I ⊗ I)− (Z ′

1 ⊗X, Z ′
2 ⊗X)

×
(

Z1Σ−1
ϑ Z ′

1 ⊗X ′X, Z1Σ−1
ϑ Z ′

2 ⊗X ′X
Z2Σ−1

ϑ Z ′
1 ⊗X ′X, Z2Σ−1

ϑ Z ′
2 ⊗X ′X

)−(
Z1Σ−1

ϑ ⊗X ′

Z2Σ−1
ϑ ⊗X ′

)
= (I ⊗ I)− (Z ′

1 ⊗X, Z ′
2 ⊗X)

(
A11, A12

A21, A22

)(
Z1Σ−1

ϑ ⊗X ′

Z2Σ−1
ϑ ⊗X ′

)
,

where (using the second Rohde’s formula)

A11 = (Z1[MZ′
2
ΣϑMZ′

2
]+Z ′

1)
− ⊗ (X ′X)−,

A12 = −[(Z1[MZ′
2
ΣϑMZ′

2
]+Z ′

1)
−Z1Σ−1

ϑ Z ′
2(Z2Σ−1

ϑ Z ′
2)

−

⊗(X ′X)−(X ′X)(X ′X)−],

and (using the first Rohde’s formula)

A21 = −[(Z2[MZ′
1
ΣϑMZ′

1
]+Z ′

2)
−Z2Σ−1

ϑ Z ′
1(Z1Σ−1

ϑ Z ′
1)

−

⊗(X ′X)−(X ′X)(X ′X)−],

A22 = (Z2[MZ′
1
ΣϑMZ′

1
]+Z ′

2)
− ⊗ (X ′X)−.

Substituting these expressions we get the first assertion. The rest of the proof
is evident (with respect to Lemma 5 and Lemma 6). �

If we use in the eliminating transformation T = MW
Z′

2⊗X the following matrix

W =
[
MZ′

1⊗X(Σϑ ⊗ I)MZ′
1⊗X

]+
,

we get the transformation matrix (see (14))

T = M
[MZ′

1⊗X (Σϑ⊗I)MZ′
1⊗X ]+

Z′
2⊗X = M

[MZ′
1
ΣϑMZ′

1
]+⊗I

Z′
2⊗X ,
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that is very useful. It eliminates the nuisance parameters and does not change
the design matrix belonging to the vector of useful parameters, i.e. this trans-
formation yields the following model[

M
[MZ′

1
ΣϑMZ′

1
]+⊗I

Z′
2⊗X vec(Y ), (Z ′

1 ⊗X)vec(B1),

M
[MZ′

1
ΣϑMZ′

1
]+⊗I

Z′
2⊗X (Σϑ ⊗ I)(M

[MZ′
1
ΣϑMZ′

1
]+⊗I

Z′
2⊗X )′

]
, Σϑ p.d. (15)

Remark 4 a) The matrix W = [MZ′
1⊗X(Σϑ ⊗ I)MZ′

1⊗X ]+ satisfies the as-
sumption (11), see [2], page 189.

b) Theorem 3, Theorem 4 and Theorem 5 are true in the model (15).

Let us consider the more general model[
AM

[MZ′
1
ΣϑMZ′

1
]+⊗I

Z′
2⊗X vec(Y ), A(Z ′

1 ⊗X)vec(B1),

AM
[MZ′

1
ΣϑMZ′

1
]+⊗I

Z′
2⊗X (Σϑ ⊗ I)(M

[MZ′
1
ΣϑMZ′

1
]+⊗I

Z′
2⊗X )′A′

]
, Σϑ p.d., (16)

where A is such that

M [(Z1 ⊗X ′)A′ ] = M [(Z1 ⊗X ′)MZ′
2⊗X ], (17)

i.e. the classes of the unbiasedly estimable functions in the model (2) and in the
model (16) coincide.

It holds

E

(
AP

[MZ′
2⊗X(Σϑ⊗I)MZ′

2⊗X ]+

Z′
1⊗X vec(Y )

)
= E

(
AP

[MZ′
2
ΣϑMZ′

2
]+⊗I

Z′
1⊗X vec(Y )

)

= AP
[MZ′

2
ΣϑMZ′

2
]+⊗I

Z′
1⊗X [(Z ′

1 ⊗X)vec(B1) + (Z ′
2 ⊗X)vec(B2)]

= A(Z ′
1 ⊗X)vec(B1),

i.e. AP
[MZ′

2
ΣϑMZ′

2
]+⊗I

Z′
1⊗X vec(Y ) is an unbiased estimator of the vector function

A(Z ′
1 ⊗X)vec(B1) for each matrix A.

Lemma 8

AP
[MZ′

2
ΣϑMZ′

2
]+⊗I

Z′
1⊗X vec(Y ) = AP

[MZ′
2
⊗X(Σϑ⊗I)MZ′

2
⊗X ]+

Z′
1⊗X vec(Y )

is the best estimator of its mean value.
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Proof We use the basic lemma on the locally best estimators (see [4], p. 84).
The class of the estimators of the null parametric function in the model (2)

can be expressed in the form

U0 = {u′M (Σ−1
ϑ

⊗I)

(Z′
1⊗X,Z′

2⊗X)vec(Y ), ∀u ∈ Rmn},

as

E[L′vec(Y )] = L′(Z ′
1 ⊗X , Z′

2 ⊗X)
(

vec(B1)
vec(B2)

)
= 0,

∀vec(B1) ∈ Rkr, ∀vec(B2) ∈ Rks,

⇐⇒ L′(Z ′
1 ⊗X, Z ′

2 ⊗X) = o′

⇐⇒ L ∈ M [M (Z′
1⊗X,Z′

2⊗X)] = M [(M
Σ−1

ϑ
⊗I

(Z′
1⊗X,Z′

2⊗X))
′].

cov(AP
[MZ′

2
⊗X (Σϑ⊗I)MZ′

2
⊗X ]+

Z′
1⊗X vec(Y ), u′MΣ−1

ϑ
⊗I

(Z′
1⊗X,Z′

2⊗X)vec(Y ))

= AP
[MZ′

2
⊗X (Σϑ⊗I)MZ′

2
⊗X ]+

Z′
1⊗X (Σϑ ⊗ I)(M

Σ−1
ϑ

⊗I

(Z′
1⊗X,Z′

2⊗X))
′u

= AP
[MZ′

2⊗X(Σϑ⊗I)MZ′
2⊗X ]+

Z′
1⊗X M

Σ−1
ϑ

⊗I

(Z′
1⊗X,Z′

2⊗X)(Σϑ ⊗ I)u = o, ∀u ∈ Rmn,

for each matrix A, as according to Lemma 6, Lemma 7

P
[MZ′

2⊗X(Σϑ⊗I)MZ′
2⊗X ]+

Z′
1⊗X M

Σ−1
ϑ

⊗I

(Z′
1⊗X,Z′

2⊗X) = 0. �

Theorem 6 In the model (16) the estimators AP
[MZ′

2⊗X (Σϑ⊗I)MZ′
2⊗X ]+

Z′
1⊗X vec(Y ),

where A is an arbitrary matrix such that

M [(Z1 ⊗X ′)A′] = M [(Z1 ⊗X ′)MZ′
2⊗X ],

create the class of all optimal estimators of the vector functionA(Z ′
1⊗X)vec(B1).

Proof Let us denote B = M
[MZ′

1
ΣϑMZ′

1
]+⊗I

Z′
2⊗X . According to [2], Theorem 3.1.3,

the ϑ-LBLUE of the vector function A(Z ′
1 ⊗X)vec(B1) in the model (16) is

ÛA(Z ′
1 ⊗X)vec(B1) = A(Z ′

1⊗X)
{[

(Z1 ⊗X ′)A′]−
m(AB(Σϑ⊗I)B′A′)

}′
ABvec(Y )

= A(Z ′
1⊗X)

{
(Z1 ⊗X ′)A′ [AB(Σϑ ⊗ I)B′A′]− A(Z ′

1 ⊗X)
}−

(Z1⊗X ′)A′

× [AB(Σϑ ⊗ I)B′A′]− ABvec(Y )

= AB(Z ′
1⊗X)

{
(Z1 ⊗X ′)B′A′[AB(Σϑ ⊗ I)B′A′]−AB(Z ′

1 ⊗X)
}−

(Z1⊗X ′)

×B′A′ [AB(Σϑ ⊗ I)B′A′]− ABvec(Y ) = P
[AB(Σϑ⊗I)B′A′]−

AB(Z′
1⊗X) ABvec(Y ).
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It is the best unbiased estimator. With respect to the basic lemma on the best
estimators

cov
{
P

[AB(Σϑ⊗I)B′A′]−

AB(Z′
1⊗X) ABvec(Y ), u′MΣ−1⊗I

(Z′
1⊗X,Z′

2⊗X)vec(Y )
}

= 0, ∀u ∈ Rmn,

is valid, i.e.

P
[AB(Σϑ⊗I)B′A′]−

AB(Z′
1⊗X) AB(Σϑ ⊗ I)(M

Σ−1
ϑ

⊗I

(Z′
1⊗X,Z′

2⊗X))
′u′

= P
[AB(Σϑ⊗I)B′A′]−

AB(Z′
1⊗X) ABM

Σ−1
ϑ

⊗I

(Z′
1⊗X,Z′

2⊗X)(Σϑ ⊗ I)u′ = 0, ∀u ∈ Rmn.

Thus

P
[AB(Σϑ⊗I)B′A′]−

AB(Z′
1⊗X) ABM

[MZ′
2
ΣϑMZ′

2
]+⊗I

Z′
1⊗X = 0,

where Lemma 7 and Lemma 5 have been utilized. From this equality it follows

P
[AB(Σϑ⊗I)B′A′]−

AB(Z′
1⊗X) ABvec(Y ) = P

[AB(Σϑ⊗I)B′A′]−

AB(Z′
1⊗X) ABP

[MZ′
2
ΣϑMZ′

2
]+⊗I

Z′
1⊗X vec(Y ).

Let us denote

C = (Z1 ⊗X ′)B′A′[AB(Σϑ ⊗ I)B′A′]−AB(Z ′
1 ⊗X).

Then

A Û(Z ′
1 ⊗X)vec(B1) = P

[AB(Σϑ⊗I)B′A′]−

AB(Z′
1⊗X) ABvec(Y )

= AB(Z ′
1 ⊗X)C−C[(Z1 ⊗X ′)([MZ′

2
ΣϑMZ′

2
]+ ⊗ I)(Z ′

1 ⊗X)]−

×(Z1 ⊗X ′)[(MZ′
2
ΣϑMZ′

2
)+ ⊗ I ]vec(Y )

= A(Z ′
1 ⊗X)[(Z1 ⊗X ′)([MZ′

2
ΣϑMZ′

2
]+ ⊗ I)(Z ′

1 ⊗X)]−

×(Z1 ⊗X ′)[(MZ′
2
ΣϑMZ′

2
)+ ⊗ I ]vec(Y )

= AP
(MZ′

2
ΣϑMZ′

2
)+⊗I

Z′
1⊗X vec(Y ),

(the best estimator of its mean value A(Z ′
1⊗X)vec(B1) according to Lemma 8).

The following equivalence has been taken into account

AM
(MZ′

2
ΣϑMZ′

2
)+⊗I

Z′
2⊗X (Z ′

1⊗X)C−C =AM
(MZ′

2
ΣϑMZ′

2
)+⊗I

Z′
2⊗X (Z ′

1⊗X) =AB(Z ′
1⊗X)

⇐⇒ M

[(
AM

(MZ′
2
ΣϑMZ′

2
)+⊗I

Z′
2⊗X (Z ′

1 ⊗X)
)′ ]

⊂ M (C ′).

The g-inverse matrix in the matrix C can be chosen arbitrarily. If we chose it
positive definite, the condition on the right side of the equivalence is obvious.

�
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Example 1 Let us consider following situation (see [5]). When laying the foun-
dations for a large building it is necessary to determine the moment at which
the subsoil (after large landscaping has been done) stabilizes to the point that
it is possible to continue construction without risk of following damage.

There are n points chosen at the building site and their heights are repeat-
edly measured at the moments t1, . . . , tm. It is necessary to create a model
describing the subsidence of the subsoil at the chosen points and to estimate
the unknown parameters of this model on the basis of the results of the repeated
measurements.

The result of the measurement at the i-th point in the j-th epoch could be
described as follows:

ηi(tj) = κi − β1(1 − e−β2tj ) + εij , i = 1, . . . , n, j = 1, . . . , m, (18)

where κi is the height of the i-th point at time t0, the function β1(1 − e−β2t)
describes the movement of the earth-strata at each point. The parameters
β1 > 0, β2 > 0 are the same at the different points, i.e. we suppose that the
geological composition of the subsoil is homogenous. The aim is to estimate the
unknown parameters β1, β2 and κi, i = 1, . . . , n.

The civil engineer needs to know when it is possible to continue the con-
struction, i.e. when the subsidence of the subsoil at the points is insignificant.
It means that it is necessary to determine such τ that

β1(1− e−β2τ) ≥ Cβ1,

where 0 < C < 1 is a suitable constant which is sufficiently close to 1. It is
possible to continue the construction at the time t ≥ τ .

The model (18) is not linear in parameters; we linearize it by using the
first two members of the Taylor expansion of the function β1(1 − e−β2t) at the
suitable point (β1,0, β2,0), β1,0 > 0, β2,0 > 0.

We get the model
ηi(tj) =

= κi−[β1,0(1−e−β2,0tj )+(1−e−β2,0tj )(β1−β1,0)+β1,0tje
−β2,0tj (β2−β2,0)]+εij ,

i = 1, . . . , n, j = 1, . . . , m.

Denote

Y
(j)
i = ηi(tj)+β1,0(1− e−β2,0tj ), ϕ1(t) = −(1− e−β2,0t), ϕ2(t) = −β1,0te

−β2,0t,

δβ1 = β1 − β1,0, δβ2 = β2 − β2,0, i = 1, . . . , n, j = 1, . . . , m.

Thus

Y
(j)
i = κi + ϕ1(tj)δβ1 + ϕ2(tj)δβ2 + εij , i = 1, . . . , n, j = 1, . . . , m.

Let us consider the observation vector

Y = (Y (1), . . . , Y (m)), Y (j) = (Y (j)
1 , . . . , Y (j)

n ).
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The model described above could be rewritten in the form

Y = X(B1, B2)
(

Z1

Z2

)
+ ε,

where

X = Ik, B1 =

⎛⎜⎜⎜⎝
δβ1, δβ2

δβ1, δβ2

...
...

δβ1, δβ2

⎞⎟⎟⎟⎠ B2 =

⎛⎜⎜⎜⎝
κ1

κ2

...
κn

⎞⎟⎟⎟⎠ ,

Z1 =
(

ϕ1(t1), ϕ1(t2), ... ϕ1(tm)
ϕ2(t1), ϕ2(t2), ... ϕ2(tm)

)
Z2 = (1, 1, . . . , 1).

The n× 2 matrix B1 is a matrix of useful parameters, the n× 1 matrix B2

is a matrix of nuisance parameters.
Let us choose n = 2, m = 2, t1 = 1, t2 = 6, β1,0 = 1, β2,0 = 1,

Z1 =
(−0, 6321 −0, 9975
−0, 3679 −0, 0149

)
, Z2 = (1, 1).

B1 =
(

δβ1 δβ2

δβ1 δβ2

)
, B2 =

(
κ1

κ2

)
,

For the sake of simplicity let us choose W = I, Σ = σ2I, then we have for
X = I

MW
Z′

2⊗X = I − [Z ′
2(Z2Z

′
2)

−Z2 ⊗ I] =

⎛⎜⎜⎝
0.5 0 −0.5 0
0 0.5 0 −0.5

−0.5 0 0.5 0
0 −0.5 0 0.5

⎞⎟⎟⎠ ,

M
[MZ′

1
ΣMZ′

1
]+⊗I

Z′
2⊗X = I − [Z ′

2(Z2MZ′
1
Z ′

2)
−Z2MZ′

1
⊗ I] =

⎛⎜⎜⎝
1 0 −1 0
0 1 0 −1
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ,

P
[MZ′

2
ΣMZ′

2
]+⊗I

Z′
1

= Z ′
1(Z1MZ′

2
Z ′

1)
−Z1MZ′

2
⊗ I

=

⎛⎜⎜⎝
−0.3917 0 0.3917 0

0 −0.3917 0 0.3917
−1.3917 0 1.3917 0

0 −1.3917 0 1.3917

⎞⎟⎟⎠ .

All these matrices eliminate the nuisance parameters.

Remark 5 Papers [3], [6] deal with univariate model, in [7] there is the multi-
variate linear model (2) with var[vec(Y )] = I ⊗ Σϑ considered.



104 Pavla KUNDEROVÁ

References

[1] Kubáček, L.: Foundations of estimation theory. Elsevier, Amsterdam–Oxford–New York–
Tokyo, 1988.

[2] Kubáček, L., Kubáčková, L., Volaufová, J.: Statistical Models with Linear Structures.
Veda, Publishing House of the Slovak Academy of Sciences, Bratislava, 1995.

[3] Kubáčková, L., Kubáček, L.: Elimination Transformation of an Observation Vector
preserving Information on the First and Second Order Parameters. Technical Report,
No 11, 1990, Institute of Geodesy, University of Stuttgart, 1–71.

[4] Kubáček, L., Kubáčková, L.: Statistika a metrologie. Vydavatelství UP, Olomouc, 2000.

[5] Kunderová, P.: Locally best and uniformly best estimators in linear model with nuisance
parameters. Tatra Mt. Math. Publ. 22 (2001), 27–36.

[6] Kunderová, P.: Eliminating transformations for nuisance parameters in linear model.
Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 42 (2003), 59–68.

[7] Kunderová, P.: Eliminating transformations for nuisance parameters in multivariate
linear model. Folia Fac. Sci. Nat. Univ. Masarykianae Brunensis, Math. 12 (2004), 16 p.
(to appear).



Acta Univ. Palacki. Olomuc., Fac. rer. nat.,
Mathematica 43 (2004) 105–112

Remarks on Ideals in Lower-Bounded
Dually Residuated Lattice-Ordered

Monoids

Jan KÜHR

Department of Algebra and Geometry, Faculty of Science,
Palacký University, Tomkova 40, 779 00 Olomouc, Czech Republic

e-mail: kuhr@inf.upol.cz

(Received November 25, 2003)

Abstract

Lattice-ordered groups, as well as GMV -algebras (pseudo MV -algeb-
ras), are both particular cases of dually residuated lattice-ordered monoids
(DR�-monoids for short). In the paper we study ideals of lower-bounded
DR�-monoids including GMV -algebras. Especially, we deal with the con-
nections between ideals of a DR�-monoid A and ideals of the lattice reduct
of A.

Key words: DR-monoid, ideal, prime ideal.

2000 Mathematics Subject Classification: 06F05, 03G25

In 1965, K. L. N. Swamy [11] introduced the notion of a (commutative) dually
residuated lattice-ordered semigroup in order to capture the common features
of Abelian lattice-ordered groups and Brouwerian algebras. It turns out that
well-known MV -algebras [1], an algebraic version of the �Lukasiewicz infinite
valued propositional logic, can be considered as certain bounded commutative
DR-monoids [7, 8]. The present concept of a (non-commutative) DR-monoid
is due to T. Kovář [3]:

Definition 1 An algebra (A; +, 0,∨,∧, ⇀, ↽) of type 〈2, 0, 2, 2, 2, 2〉 is said to
be a dually residuated lattice-ordered monoid (simply, a DR-monoid) if

105
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(i) (A; +, 0,∨,∧) is an -monoid, i.e., (A; +, 0) is a monoid, (A;∨,∧) is a
lattice and the monoid operation distributes over the lattice operations;

(ii) for any a, b ∈ A, a ⇀ b is the least x ∈ A such that x + b � a, and a ↽ b
is the least y ∈ A such that b + y � a;

(iii) A fulfils the identities

((x ⇀ y) ∨ 0) + y � x ∨ y, y + ((x ↽ y) ∨ 0) � x ∨ y,

x ⇀ x � 0, x ↽ x � 0.

Recently, J. Rachůnek [10] established the notion of a GMV -algebra as a
non-commutative generalization of MV -algebras. Non-commutative structures
named pseudo MV -algebras extending MV -algebras were independently intro-
duced also by G. Georgescu and A. Iorgulescu [2]. The relationship between
GMV -algebras and DR-monoids is similar to the commutative case [10, 6]:
every GMV -algebra can be regarded as a bounded DR-monoid satisfying cer-
tain additional conditions, and conversely, any bounded DR-monoid that fulfils
those conditions is in fact a GMV -algebra. Other examples come from lattice-
ordered groups: every -group, as well as the positive cone of any -group, is a
DR-monoid. Therefore, dually residuated lattice-ordered monoids constitute
a wide generalization of -groups and GMV -algebras. We should remark that
there exist also other algebraic structures related to logic (for instance, pseudo
BL-algebras) that are equivalent to particular DR-monoids.

In this paper we deal with ideals of lower-bounded DR-monoids (by [3],
a DR-monoid A is lower-bounded iff 0 � x for all x ∈ A). We will focus
especially the connections between ideals in A and those in (A), the lattice
reduct of A. The motivation is the following:

(1) When regarded to be a DR-monoid, every GMV -algebra is a lower-
bounded DR-monoid;

(2) T. Kovář [3] proved that every DR-monoid is isomorphic to the direct
product of an -group and a DR-monoid with 0 at the bottom.

Let us recall basic properties of dually residuated -monoids [3] and necessary
facts about ideals [4].

Lemma 2 [3] In any DR-monoid we have:

(i) x ⇀ x = 0 = x ↽ x;

(ii) ((x ⇀ y) ∨ 0) + y = x ∨ y = y + ((x ↽ y) ∨ 0);

(iii) x ⇀ (y + z) = (x ⇀ z) ⇀ y, x ↽ (y + z) = (x ↽ y) ↽ z;

(iv) if x � y then x ⇀ z � y ⇀ z and x ↽ z � y ↽ z;

(v) if x � y then z ⇀ x � z ⇀ y and z ↽ x � z ↽ y;

(vi) x � y iff x ⇀ y � 0 iff x ↽ y � 0;

(vii) x ⇀ (y ∧ z) = (x ⇀ y) ∨ (x ⇀ z), x ↽ (y ∧ z) = (x ↽ y) ∨ (x ↽ z);

(viii) (x ∨ y) ⇀ z = (x ⇀ z) ∨ (y ⇀ z), (x ∨ y) ↽ z = (x ↽ z) ∨ (y ↽ z).
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Remark 3 In Definition 1, the condition (ii) can be equivalently replaced by
the following identities [3, 10]:

(x ⇀ y) + y � x, y + (x ↽ y) � x,

x ⇀ y � (x ∨ z) ⇀ y, x ↽ y � (x ∨ z) ↽ y,

(x + y) ⇀ y � x, (y + x) ↽ y � x.

Letting |x| = x ∨ (0 ⇀ x) we define the absolute value of x ∈ A. It is easily
seen that 0 � x iff x = |x|, and hence in the special case that we are dealing
with lower-bounded DR-monoids, this concept is redundant.

Let I ⊆ A. Then I is said to be an ideal in A if (i) 0 ∈ I, (ii) x + y ∈ I for
all x, y ∈ I, and (iii) |y| � |x| implies y ∈ I for all x ∈ I and y ∈ A.

We use Id(A) to denote the set of all ideals in A; it is partially ordered by
set-inclusion. Obviously, Id(A) is a complete lattice and for any X ⊆ A there
exists the smallest ideal, I(X), including X . It can be easily shown that

I(X) = {a ∈ A : |a| � |x1|+ · · ·+ |xn| for some x1, . . . , xn ∈ X, n ∈ N}.
In addition, the ideal lattice Id(A) is algebraic and distributive.

We define an ideal I to be prime if for all J, K ∈ Id(A), if J ∩K ⊆ I then
J ⊆ I or K ⊆ I. Every ideal equals the intersection of all primes exceeding it,
and I ∈ Id(A) is prime if and only if |x| ∧ |y| ∈ I entails x ∈ I or y ∈ I, for all
x, y ∈ A.

An ideal I in A is called normal if (x ⇀ y) ∨ 0 ∈ I iff (x ↽ y) ∨ 0 ∈ I for
all x, y ∈ A. Equivalently, an ideal I is normal if and only if x + I+ = I+ + x
for every x ∈ A, where I+ = {a ∈ I : 0 � a}. The normal ideals of any
DR-monoid correspond one-to-one to its congruence relations.

We shall write (A) for (A;∨,∧), the lattice reduct of A. As usual, for any
X ⊆ A, (X ] denotes the lattice ideal generated by X . It is worth adding that
by [3, Theorem 1.1.23], (A) is a distributive lattice.

From this moment on, A stands for a lower-bounded DR-monoid!

Theorem 4 For any I ⊆ A such that 0 ∈ I, the following conditions are
equivalent:

(i) I is an ideal in A;

(ii) if x ∈ I and y ⇀ x ∈ I then y ∈ I;

(iii) if x ∈ I and y ↽ x ∈ I then y ∈ I.

Proof We are going to show (i) ⇔ (ii); the proof of (i) ⇔ (iii) is parallel.
(i) ⇒ (ii): If x ∈ I and y ⇀ x ∈ I then y � x∨ y = (y ⇀ x)+x ∈ I, whence

y ∈ I.
(ii) ⇒ (i): For x, y ∈ I we have

((x + y) ⇀ y) ⇀ x = (x + y) ⇀ (x + y) = 0 ∈ I

which yields (x + y) ⇀ y ∈ I and therefore x + y ∈ I. If y � x ∈ I then
y ⇀ x = 0 ∈ I, and so y ∈ I. �
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Theorem 5 Every ideal in A is an ideal in (A). Moreover, if I is a prime
ideal in A then I is a prime ideal in (A).

Proof Let I ∈ Id(A). Then clearly I is non-empty, y � x entails y ∈ I
whenever x ∈ I, and we have also x ∨ y ∈ I for all x, y ∈ I since x ∨ y � x + y.
The latter claim is evident. �

The converse statement fails to be true in general. However, we shall prove
that if I is a lattice ideal generated by a set of additively idempotent elements
or I is a minimal prime ideal in (A), then it is an ideal in A.

Let Idem(A) = {a ∈ A : a = a + a}.

Lemma 6 For all a ∈ Idem(A) and x ∈ A we have:

(i) a + x = a ∨ x = x + a,

(ii) x ⇀ a = x ↽ a.

Proof (i) To see that a + x = a ∨ x, compute

a + x = a ∨ (a + x) = (a + a) ∨ (a + x)
= a + (a ∨ x) = a + a + (x ↽ a)
= a + (x ↽ a) = a ∨ x.

(ii) For every y ∈ A, y � x ⇀ a iff a + y = y + a � x iff y � x ↽ a, so
x ⇀ a = x ↽ a. �

Theorem 7 Let X ⊆ Idem(A). Then (X ] is a normal ideal in A.

Proof We have a ∈ (X ] iff a � x1 ∨ ... ∨ xn for some x1, ..., xn ∈ X and
a ∈ I(X) iff a � x1 + · · · + xm = x1 ∨ . . . ∨ xm for some x1, . . . , xm ∈ X , and
therefore I(X) = (X ].

If a ⇀ b ∈ I(X) then a ⇀ b � x1 + · · · + xn, where x1, . . . , xn ∈ X , which
implies a � x1 + · · ·+ xn + b = b + x1 + · · ·+ xn, and so a ↽ b � x1 + · · ·+ xn

proving a ↽ b ∈ I(X). Similarly a ↽ b ∈ I(X) entails a ⇀ b ∈ I(X), and
consequently, (X ] is a normal ideal in A. �

We turn now to minimal prime ideals.

Theorem 8 (i) Let I be a proper ideal in (A). For x ∈ A \ I, let us put

Φ(I, x) = {a ∈ A : x ⇀ a /∈ I}

and
Φ(I) =

⋂
{Φ(I, x) : x ∈ A \ I}.

Then Φ(I) is an ideal in A such that Φ(I) ⊆ I. In addition, if I is prime then
so is Φ(I).



Ideals in lower-bounded dually residuated lattice-ordered monoids 109

(ii) Let I be a proper ideal in (A). For x ∈ A \ I, let us put

Ψ(I, x) = {a ∈ A : x ↽ a /∈ I}

and
Ψ(I) =

⋂
{Ψ(I, x) : x ∈ A \ I}.

Then Ψ(I) is an ideal in A such that Ψ(I) ⊆ I. In addition, if I is prime then
so is Ψ(I).

Proof (i) Let a ∈ Φ(I). If a /∈ I then a ∈ Φ(I, a), so 0 = a ⇀ a /∈ I, a
contradiction. Thus a ∈ I and we have Φ(I) ⊆ I.

We shall now prove that Φ(I) ∈ Id(A). It is obvious that 0 ∈ Φ(I) as
x ⇀ 0 = x /∈ I for all x ∈ A \ I. Further, let a, b ∈ Φ(I) and take any x ∈ A \ I.
Then x ⇀ b /∈ I and hence x ⇀ (a+b) = (x ⇀ b) ⇀ a /∈ I since a ∈ Φ(I, x ⇀ b);
thus a + b ∈ Φ(I, x) for all x ∈ A \ I and consequently, a + b ∈ Φ(I). If now
a ∈ Φ(I) and b � a then x ⇀ a � x ⇀ b for every x ∈ A \ I, and therefore
x ⇀ b /∈ I since x ⇀ b ∈ I would imply x ⇀ a ∈ I. Thus b ∈ Φ(I, x) for any
x ∈ A \ I, i.e. b ∈ Φ(I).

For the latter statement we shall need two claims.

Claim A: If x � y then Φ(I, x) ⊆ Φ(I, y).

For every a ∈ Φ(I, x), x ⇀ a � y ⇀ a entails y ⇀ a /∈ I, so a ∈ Φ(I, y).

Claim B: If a ∧ b ∈ Φ(I, x) then a ∈ Φ(I, x) or b ∈ Φ(I, x).

We have a∧ b ∈ Φ(I, x) iff (x ⇀ a)∨ (x ⇀ b) = x ⇀ (a∧ b) /∈ I which yields
x ⇀ a /∈ I or x ⇀ b /∈ I.

Let now I be a prime ideal in (A) and assume that a∧b ∈ Φ(I) for a, b ∈ A.
If neither a nor b belongs to Φ(I) then certainly a /∈ Φ(I, x) and b /∈ Φ(I, y) for
some x, y ∈ A \ I. Since I a prime ideal in (A), it is obvious that x ∧ y /∈ I.
By Claim A we have Φ(I, x ∧ y) ⊆ Φ(I, x) ∩ Φ(I, y), and so a ∧ b ∈ Φ(I) yields
a ∧ b ∈ Φ(I, x ∧ y) ⊆ Φ(I, x) ∩ Φ(I, y). Hence by Claim B, a ∈ Φ(I, x ∧ y) ⊆
Φ(I, x) ∩ Φ(I, y) or b ∈ Φ(I, x ∧ y) ⊆ Φ(I, x) ∩ Φ(I, y), a contradiction with
a /∈ Φ(I, x) and b /∈ Φ(I, y). Thus a ∧ b ∈ Φ(I) implies a ∈ Φ(I) or b ∈ Φ(I).

By replacing “⇀” by “↽” we obtain (ii). �

Remark 9 If I ∈ Id(A) then I = Φ(I) = Ψ(I). Indeed, by Theorem 4 (ii),
a ∈ I and x /∈ I yield x ⇀ a /∈ I. Thus I ⊆ Φ(I).

Corollary 10 For every I ⊆ A, I is a minimal prime ideal in A if and only if
it is a minimal prime ideal in (A).

Proof If I is a minimal prime ideal in A, then it is a prime ideal in (A) by
Theorem 5, and by Theorem 8, I is minimal prime.

Conversely, if I is a minimal prime ideal in (A) then, again by Theorem 8,
Φ(I) is a minimal prime ideal in A and obviously I = Φ(I). �
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Remark 11 Let I be an ideal in (A). If I is a normal subset of A, that is,
x ⇀ y ∈ I iff x ↽ y ∈ I for all x, y ∈ A, then one can easily show that
Φ(I) = Ψ(I). Conversely, an ideal I in (A) satisfying Φ(I) = Ψ(I) need not be
normal.

Lemma 12 If z � x + y then z = x1 + y1 for some x1 � x and y1 � y.

Proof Let x1 = x ∧ z � x and y1 = z ↽ x1. Then

x1 + y1 = x1 + (z ↽ x1) = z ∨ x1 = z,

where y1 = z ↽ (x ∧ z) = (z ↽ x) ∨ (z ↽ z) = z ↽ x � y as desired. �

Corollary 13 If I, J are normal ideals in A then

I ∨ J = {a ∈ A : a = x + y for some x ∈ I, y ∈ J}.

Proof Since I, J are normal ideals, a ∈ I ∨J iff a � x+ y for x ∈ I and y ∈ J ,
and so by Lemma 12, a = x1 + y1 for some x1 � x, y1 � y, i.e. x1 ∈ I and
y1 ∈ J . �

Let A be a bounded DR-monoid with the greatest element 1. Let us denote
by B(A) the set of all a ∈ A having the complement a′ in (A).

Lemma 14 If x ∧ y = 0 then x + y = x ∨ y.

Proof Let x ∧ y = 0. Then

x = x ⇀ (x ∧ y) = (x ⇀ x) ∨ (x ⇀ y) = x ⇀ y

which yields x + y = (x ⇀ y) + y = x ∨ y. �

Lemma 15 B(A) ⊆ Idem(A).

Proof Let a ∈ B(A), i.e. a ∧ a′ = 0 and a∨ a′ = 1 for some a′ ∈ A. Note that
a + a′ = 1 since a ∨ a′ � a + a′. Then

a = a + (a ∧ a′) = (a + a) ∧ (a + a′) = (a + a) ∧ 1 = a + a,

so a ∈ Idem(A). �

Remark 16 Observe that if a ∈ B(A) then (a] and (a′] are normal ideals in A
such that (a] ∩ (a′] = {0} and (a] ∨ (a′] = A, and therefore we can easily see
that A is isomorphic with the direct product of (a] and (a′].

Theorem 17 B(A) is a DR-submonoid of A in which a + b = a ∨ b and
a ⇀ b = a ↽ b = a ∧ b′.
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Proof One readily sees that B(A) is a sublattice of (A) since (A) is a dis-
tributive lattice.

By Lemma 6, a ⇀ b = a ↽ b and x � a ⇀ b iff x ∨ b = x + b � a,
whence a ∧ b′ � (x ∨ b) ∧ b′ = x ∧ b′ � x. Conversely, if x � a ∧ b′ then
x + b = x ∨ b � (a ∧ b′) ∨ b = a ∨ b � a, thus x � a ⇀ b. Altogether, x � a ⇀ b
iff x � a ∧ b′ for any x ∈ A. Therefore (a ⇀ b)′ = a′ ∨ b and so a ⇀ b ∈ B(A).

�

Corollary 18 (B(A);∨,∧, ′, 0, 1) is a Boolean algebra, where a′ = 1 ⇀ a.

By [6, Theorem 2.3], A is a GMV -algebra if and only if the identities

x ∧ y = x ⇀ (x ↽ y) = x ↽ (x ⇀ y)

hold in A. Therefore, let

GMV (A) = {a ∈ A : a ∧ x = x ⇀ (x ↽ a) = x ↽ (x ⇀ a) for all x ∈ A}.
Lemma 19 The following identities hold in any DR-monoid:

(i) y � x ⇀ (x ↽ y), y � x ↽ (x ⇀ y),

(ii) x ↽ (x ⇀ (x ↽ y)) = x ↽ y, x ⇀ (x ↽ (x ⇀ y)) = x ⇀ y.

Proof (i) Obviously, y � x ⇀ (x ↽ y) iff x ∨ y = y + (x ↽ y) � x.
(ii) From y � x ⇀ (x ↽ y) we obtain

x ↽ y � x ↽ (x ⇀ (x ↽ y))

and by replacing y by x ↽ y in (i) we immediately have

x ↽ y � x ↽ (x ⇀ (x ↽ y)). �

Theorem 20 B(A) = Idem(A) ∩GMV (A).

Proof If a ∈ Idem(A) ∩GMV (A) then

(1 ⇀ a) ∨ a = (1 ⇀ a) + a = 1 ∨ a = 1

and

(1 ⇀ a) ∧ a = (1 ⇀ a) ↽ ((1 ⇀ a) ⇀ a) = (1 ⇀ a) ↽ (1 ⇀ (a + a))
= (1 ⇀ a) ↽ (1 ⇀ a) = 0,

so a ∈ B(A).
Conversely, let a ∈ B(A) ⊆ Idem(A), that is, a ∧ a′ = 0. In view of Lemma

19 (i) we have x ⇀ (x ↽ a) � x ∧ a. However,

x ⇀ (x ↽ a) = (x ⇀ (x ↽ a)) + (a ∧ a′)
= ((x ⇀ (x ↽ a)) + a) ∧ ((x ⇀ (x ↽ a)) + a′) � a ∧ x

since (x ⇀ (x ↽ a)) + a � a and a′ = 1 ↽ a � x ↽ a = x ↽ (x ⇀ (x ↽ a))
by Lemma 2 (iv) and Lemma 19 (ii), which implies (x ⇀ (x ↽ a)) + a′ � x.
Therefore, a ∈ Idem(A) ∩GMV (A). �
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Lemma 21 B(A) = {a ∈ A : a ∧ (1 ⇀ a) = 0} = {a ∈ A : a ∧ (1 ↽ a) = 0}.

Proof If a ∧ (1 ⇀ a) = 0 then

(1 ⇀ a) ∨ a = (1 ⇀ a) + a = 1 ∨ a = 1

by Lemma 14. Thus a′ = 1 ⇀ a is the complement of a in (A). �

Corollary 22 Let I be a normal ideal in A. Then A/I is a Boolean algebra if
and only if a ∧ (1 ⇀ a) ∈ I for all a ∈ A.
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Abstract
To every subset A of a complete lattice L we assign subsets J(A),M(A)

and define join-closed and meet-closed sets in L. Some properties of such
sets are proved. Join- and meet-closed sets in power-set lattices are char-
acterized. The connections about join-independent (meet-independent)
and join-closed (meet-closed) subsets are also presented in this paper.
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Let (L,≤) be a complete lattice in which
∨

A,
∧

A denote the supremum
and the infimum of any subset A ⊆ L, respectively. The least and the greatest
elements in (L,≤) are denoted by 0, 1, respectively. If A ⊆ L, A �= ∅, then we
put Ax := A \ {x} for x ∈ A and

J(A) =
{∨

Ax | x ∈ A
}
, M(A) =

{∧
Ax | x ∈ A

}
.

Instead of M(J(A)), J(M(A)) we write just MJ(A), JM(A). If we put Px =
(J(A))∨Ax

= {∨Aa | a ∈ Ax}, then MJ(A) = {∧Px | x ∈ A}. Dually,

Rx = (M(A))∧Ax
= {∧Aa | a ∈ Ax} and JM(A) = {∨Rx | x ∈ A}. It is easy

to see that x ≤ ∧Px and
∨

Rx ≤ x for all x ∈ A, thus
∨

Rx ≤
∧

Px.

*Supported by the Council of Czech Government J14/98:153100011.
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Proposition 1 If A ⊆ L, |A| > 2, then
∨

M(A) ≤ ∧ J(A).

Proof Consider x ∈ A and z ∈ Ax. By assumption, there exists an element
y ∈ Ax distinct from z. From x, z ∈ Ay we get

∧
Az ≤

∨
Ry and

∧
Py ≤

∨
Ax,

thus
∧

Az ≤
∨

Ax. We also have
∧

Ax ≤
∨

Ax and hence
∧

Az ≤
∨

Ax for all
z ∈ A. We have obtained the relation

∨
M(A) ≤ ∨Ax holding for all x ∈ A.

Thus
∨

M(A) ≤ ∧ J(A). �

Definition 1 A set A ⊆ L is said to be meet-closed iff MJ(A) = A. Similarly,
A ⊆ L is join-closed iff JM(A) = A. In brief, we call them M-closed and
J-closed, respectively.

Remark 1 A set A = {x} is M-closed (J-closed) if and only if x = 1 (x = 0).
If A = {x, y}, then J(A) = A = M(A) and A is both M-closed and J-closed.

Proposition 2 A subset A ⊆ L is M-closed if and only if x =
∧

Px for all
x ∈ A.

Proof 1. If x =
∧

Px for all x ∈ A, then MJ(A) = {x | x ∈ A} = A.
2. Assume that MJ(A) = A and consider x ∈ A. It follows from

∧
Px ∈ A

that
∧

Px = y for a certain y ∈ A and since x ≤ ∧Px we have x ≤ y. Let
us suppose that x �= y. Then

∨
Ay ∈ Px which yields y ≤ ∨

Ay. From
y ≤ ∧Py we obtain y ≤ ∧ J(A). Consequently (with respect to Px ⊆ J(A)),∧

J(A) ≤ ∧Px = y and y =
∧

J(A). There exists z ∈ A such that x =
∧

Pz .
Then y ≤ ∧Pz , i. e. y ≤ x which contradicts the assumption x < y. Thus
x =

∧
Px. �

Remark 2 The notions of M-closed and J-closed sets are dual, hence each
assertion about M-closed and J-closed sets admits its corresponding dual one.
Therefore, a set A ⊆ L is J-closed iff x =

∨
Rx for all x ∈ A. In what follows

the dual results will not be stated explicitly.

Proposition 3 If A ⊆ L, then the set M(A) is M-closed.

Proof If we put Qx = (JM(A))∨Rx
= {∨Ry | y ∈ Ax}, then MJM(A) =

{∧Qx | x ∈ A}. Consider x ∈ A. Then
∧

Qx ≤
∨

Ry ≤ y for all y ∈ Ax

which implies
∧

Qx ≤
∧

Ax. Furthermore,
∧

Ax ∈ Ry, thus
∧

Ax ≤
∨

Ry and∧
Ax ≤

∧
Qx. We have obtained

∧
Qx =

∧
Ax and MJM(A) = {∧Ax | x ∈

A} = M(A). �

Proposition 4 If a set A ⊆ L, |A| > 1, is M-closed, then
∧

J(A) =
∧

A.

Proof Let us consider x ∈ A. Then there exists y ∈ Ax such that
∧

A ≤ y ≤∨
Ax. Thus

∧
A ≤ ∧ J(A). We also have Px ⊆ J(A) and x =

∧
Px which

yields
∧

J(A) ≤ x and
∧

J(A) ≤ ∧A. �
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Remark 3 A set A ⊆ L is M-closed if and only if A ∪ {∧A} is M-closed.

Proposition 5 Every subset of an M-closed set containing at least two elements
is M-closed.

Proof Let X be a subset of an M-closed set A ⊆ L. If |X | = 2, then X is
M-closed by Remark 1. Let |X | > 2. Consider x ∈ X and denote Qx = {∨Xl |
l ∈ Xx}, y =

∧
Qx. Since x ≤ ∨Xl for all l ∈ Xx we have x ≤ y. Obviously,

Xl ⊆ Al for all l ∈ Xx, which yields y ≤ ∨Xl ≤
∨

Al. If m ∈ A \ X , then
Xl ⊆ X ⊆ Am and y ≤ ∨Xl ≤

∨
Am for any l ∈ Xx. If a ∈ Ax, then either

a ∈ Xx or a ∈ A \ X . Thus y ≤ ∨Aa and y ≤ ∧Px = x. It means that
x =

∧
Qx and the set X is M-closed. �

Proposition 6 Let A ⊆ L, |A| > 1, be an M-closed set, Xi, i ∈ J , be non-
empty subsets of A such that

⋂
i∈J Xi = ∅ and X = {∨Xi | i ∈ J}. Then∧X =

∧
A.

Proof It is easy to see that
∧

A ≤ ∧X . For each i ∈ J and x ∈ A \ Xi

we have Xi ⊆ Ax and hence
∨

Xi ≤
∨

Ax. It follows from
⋂

i∈J Xi = ∅ that⋃
i∈J(A \ Xi) = A and

∧X ≤ ∨Ay for all y ∈ A. Thus
∧X ≤ ∧ J(A) and,

according to Proposition 4,
∧X ≤ ∧A. �

Corollary 1 Let A ⊆ L, |A| > 1, be an M-closed set. Then
∧

X =
∧

A for
any X ⊆ A, |X | ≥ 2.

Definition 2 A subset A ⊆ L is said to be join-independent (meet-independent)
if and only if x �≤ ∨Ax (

∧
Ax �≤ x) for all x ∈ A.

Remark 4 The concept of independence have been studied in various types of
lattices motivated by applications in algebra and geometry (refer to [1, 2, 3, 4,
8]). Definition 2 is given in [5] and some other related results are presented in
[6, 7].

Remark 5 Join- and meet-independence are dual notions, hence each of the
following results holds also dually.

Remark 6 If a set A ⊆ L is join-independent, then J(A) is meet-independent.
(See [5, 6].)

Proposition 7 If a set A ⊆ L, |A| > 2, is meet-independent, then it is not
M-closed.

Proof Let A be a meet-independent set. Suppose that it is also M-closed. Then
x =

∧
Px for all x ∈ A. It follows from Px ⊆ J(A) that

∧
J(A) ≤ ∧Px. Since∨

M(A) ≤ ∧ J(A) (Proposition 1) we have
∧

Ax ≤
∨

M(A) ≤ ∧ J(A) ≤ x
which contradicts the meet-independence of A. �

Let A be a set. In what follows we denote the power set of A by P(A). Then
(P(A),⊆) is a complete lattice with lattice operations ∪,∩.
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Proposition 8 Let A be a set and X = {Xi | i ∈ J} ⊆ P(A) where |J | > 1.
The set X is M-closed in (P(A),⊆) if and only if Xk ∩Xl =

⋂
X for every two

distinct elements k, l of J .

Proof It is evident that J(X) = {⋃XXi | i ∈ J} = {⋃j∈J\{i} Xj | i ∈ J},
PXi = {⋃XXj | j ∈ J \ {i}} = {⋃m∈J\{j} Xm | j ∈ J \ {i}} and MJ(X) =
{⋂PXi | i ∈ J}.

1. Assume that X = MJ(X). If |J | = 2, then X = {X1, X2} and
⋂

X =
X1 ∩ X2. For |J | > 2 we have Xi =

⋂
PXi for all i ∈ J by Proposition

2. Consider any two distinct elements k, l ∈ J . Then
⋂

X ⊆ Xk ∩ Xl. Let
x ∈ Xk ∩ Xl. If i ∈ J is distinct from k, l, then for each j ∈ J \ {i} either
Xk ⊆

⋃
XXj or Xl ⊆

⋃
XXj and hence x ∈ ⋂PXi and x ∈ Xi. Since it holds

for all i ∈ J distinct from k, l we have x ∈ ⋂X which yields
⋂

X = Xk ∩Xl.
2. Assume that

⋂
X = Xk∩Xl for any k, l ∈ J , k �= l. In case of |J | = 2 this

equality always holds and X is M-closed by Remark 1. Let |J | > 2. Consider
i ∈ J and denote Xj = {Xm | m ∈ J \ {i, j}} for all j ∈ J \ {i}. Then
PXi = {Xi ∪ (

⋃
Xj) | j ∈ J \ {i}}. Let x ∈ ⋂{⋃Xj | j ∈ J \ {i}}, i. e. x ∈ Xk

for a certain k ∈ J \{i}. However, x belongs to another set Xl, l ∈ J \{i}, l �= k.
Indeed, otherwise we get x /∈ ⋃Xk which is a contradiction. Thus x ∈ Xk ∩Xl

and, by assumption, also x ∈ Xi. It follows from Xi ⊆
⋂

PXi that Xi =
⋂

PXi

and the set X is M-closed by Proposition 2. �

Let A ⊆ L be join-independent set. Consider a mapping ψ : P(A) → L
given by ψ(X) =

∨
X for all non-empty subsets X ∈ P(A) and ψ(∅) =

∧
A.

According to [5], (ψ(P(A)),≤) is a complete lattice isomorphic to (P(A),⊆)
which is also a complete join subsemilattice of (L,≤).

Proposition 9 Let a set A ⊆ L be join-independent and consider subsets X =
{Xi | i ∈ J} ⊆ P(A), X = {ψ(Xi) | i ∈ J} ⊆ L. The following statements are
equivalent:

(i) X is join-independent in (P(A),⊆).

(ii) Xi �⊆
⋃

j∈J\{i}
Xj for all i ∈ J .

(iii) X is join-independent in (L,≤).

Proof It is obvious.

Proposition 10 Let a join-independent set A ⊆ L, |A| > 2, be M-closed in
(L,≤). The following statements are equivalent:

(i) The set L1 = ψ(P(A)) is a sublattice in (L,≤).

(ii) The image of any M-closed set in (P(A),⊆) of cardinality 3 under the
mapping ψ is M-closed in (L,≤).

(iii) The image of any join-independent M-closed set in (P(A),⊆) of cardinal-
ity 3 under the mapping ψ is M-closed in (L,≤).
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Proof (i) ⇒ (ii) Let X = {X1, X2, X3} ⊆ P(A) be an M-closed set. According
to Proposition 2, for each i ∈ {1, 2, 3} we have

⋂
PXi = (Xi ∪ Xj) ∩ (Xi ∪

Xk) = Xi where j, k ∈ {1, 2, 3} and i, j, k are pairwise distinct. If ψ(X) =
{ψ(X1), ψ(X2), ψ(X3)}, then in (L,≤) there we have∧

Pψ(Xi) = (ψ(Xi) ∨ ψ(Xj)) ∧ (ψ(Xi) ∨ ψ(Xk)) = ψ(Xi ∪Xj) ∧ ψ(Xi ∪Xk)

= ψ((Xi ∪Xj) ∩ (Xi ∪Xk)) = ψ(Xi).

Thus, by Proposition 2, the set ψ(X) is M-closed in (L,≤).
(ii)⇒ (iii) Obvious.
(iii) ⇒ (i) Since ψ(P(A)) is a join subsemilattice in (L,≤) it suffices to

prove that the infimum of any two elements of L1 in (L,≤) belongs to L1.
Consider ψ(X1), ψ(X2) for X1, X2 ∈ P(A). Let us put Y = X1 ∩ X2. If for
instance Y = X1, then X1 ⊆ X2 and ψ(X1) = ψ(X1) ∧ ψ(X2). Further let
us suppose that Y �= X1, X2 which also means that X1, X2 �= ∅. If Y = ∅,
then ψ(X1) ∧ ψ(X2) =

∧
A by Proposition 6. Assume that Y �= ∅ and denote

X ′
1 = X1 \ Y , X ′

2 = X2 \ Y , X = {Y, X ′
1, X

′
2}. The set X is join-independent

in (P(A),⊆) by Proposition 9. It follows from Y ∩X ′
1 = Y ∩X ′

2 = X ′
1 ∩X ′

2 =⋂
X = ∅ that (by Proposition 8) X is M-closed in (P(A),⊆). According our

assumption, the set ψ(X) = {ψ(Y ), ψ(X ′
1), ψ(X ′

2)} is M-closed in (L,≤). Thus
ψ(X1)∧ψ(X2) = ψ(Y ∪X ′

1)∧ψ(Y ∪X ′
2) = (ψ(Y )∨ψ(X ′

1))∧ (ψ(Y )∨ψ(X ′
2)) =∧

Pψ(Y ) = ψ(Y ). �
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Abstract

This paper is a continuation of the paper [6]. It dealt with parameter
estimation in connecting two–stage measurements with constraints of type
I. Unlike the paper [6], the current paper is concerned with a model with
additional constraints of type II binding parameters of both stages.
The article is devoted primarily to the computational aspects of algo-

rithms published in [5] and its aim is to show the power of H∗-optimum
estimators.
The aim of the paper is to contribute to a numerical solution of the

estimation problem in the two stage model, where constraints of type II
occur in the second stage.

Key words: Two stage regression models, uncertainty of the type
A and B, BLUE, H–optimum estimators.

2000 Mathematics Subject Classification: 62J05

1 Introduction

In mathematical models of measurements “the connectedness syndrome” is very
often encountered. This paper is concerned with a two–stage measurement with
an additional condition of type II on parameters of both stages. The value Θ̂

*Supported by the Council of Czech Government J14/98: 153 100011.
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of the parameter may be known prior to the measurement, and may or may not
be changed as a result of measurement in the second stage.

In relation to the uncertainty in the estimator Θ̂ the notion of “the uncer-
tainty of type B” is introduced, compared to “the uncertainty of type A”, which
is linked to the uncertainty in measurement in the second stage. In case these
uncertainties are not neglected, certain difficulties arise.

During the search for statistical solutions of connecting measurement we
define Uβ of unbiased estimators β̃ of the parameters β in the regular model,

where we respect errors in connecting points; and class Ũβ of unbiased estima-

tors β̃ of parameter β satisfying the constraints between parameters of the first
and the second stage.

The estimators from the class Uβ need not fulfil the constraints between
parameters of the first and the second stages. There does not exist any jointly
efficient estimator in the class Uβ. Therefore we study estimators from the

class Ũβ which minimize a linear functional of the covariance matrix of the

estimator β̃.

2 Estimation in model of connecting measurements with
constraints of type II

Definition 1 The two stage model of the second stage measurement is(
Θ̂

Y −DΘ̂

)
∼n

((
Θ
Xβ

)
,

(
Σ1,1, −Σ1,1D′

−DΣ1,1, Σ2,2 + DΣ1,1D′

))
,

The parametric space of the two stage model with constraints of the type II is

Θ = {(Θ′, β′) : B∗β + C∗Θ + Gγ + a = 0}

where B∗,C∗,G are given matrices with dimensions q× k2, q× k1, q× k3 and a
is given q-dimensional vector, such thatM(C∗) ⊂M(B∗), and r(B∗) = q < k2.

The vector Θ is the parametr of the first stage (connecting stage).
The vector β is the parametr of the second stage (connected stage).
The estimator Θ̂ of the parameter Θ is given from the first stage.
D is the incidence matrix, which identify parameters of connecting network,

that were used in the course of measurement in the second stage,
X is known matrix of the connecting network,
Θ and β are effective values of the parameter from the first and second

stage,
Σ1,1 is the covariance matrix of the estimator Θ̂, Σ2,2 is the covariance

matrix of the observation vector Y.
The notation ξ ∼n (µ,Σ2,2) means, that the n-dimensional vector parameter

ξ has the mean value equal to µ and its covariance is Σ2,2.
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From the first stage the unbiased estimator Θ̂ and its covariance matrix Σ1,1

are at our disposal only.

The aim is to determine an estimator of the parameter β on the basis of
random vector Y−DΘ̂, where Y is the observation vector of the second stage
and on the basis of the estimator Θ̂.

Lemma 1 If Θ in the model from Definition 1 is known, then the BLUE of
the parameter (β′, γ ′)′ is

ˆ̂
β =

(
I−
(
X′Σ−1

2,2X
)−1

(B∗)′
{[

B∗
(
X′Σ−1

2,2X
)−1

(B∗)′ + GG′
]−1

−
[
B∗
(
X′Σ−1

2,2X
)−1

(B∗)′ + GG′
]−1

G
{
G′
[
B∗
(
X′Σ−1

2,2X
)−1

× (B∗)′ + GG′
]−1

G
}−1

G′
[
B∗
(
X′Σ−1

2,2X
)−1

(B∗)′ + GG′
]−1
}
B∗
)

×
(
X′Σ−1

2,2X
)−1

X′Σ−1
2,2(Y −DΘ)

−
(
X′Σ−1

2,2X
)−1

(B∗)′
{[

B∗
(
X′Σ−1

2,2X
)−1

(B∗)′ + GG′
]−1

−
[
B∗
(
X′Σ−1

2,2X
)−1

(B∗)′ + GG′
]−1

G
{
G′
[
B∗
(
X′Σ−1

2,2X
)−1

(B∗)′

+ GG′
]−1

G
}−1

G′
[
B∗
(
X′Σ−1

2,2X
)−1

(B∗)′ + GG′
]−1
}

(a∗ + C∗Θ),

and

ˆ̂γ = −
{
G′[B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′]−1
G
}−1

G′

× [B∗(X′Σ−1
2,2X)−1(B∗)′ + GG′]−1[

B∗(X′Σ−1
2,2X)−1X′Σ−1

2,2Y + a∗ + C∗Θ
]
.

Their covariance matrices and cross covariance matrix are

Var(ˆ̂β) = (X′Σ−1
2,2X)−1 − (X′Σ−1

2,2X)−1(B∗)′
[
B∗(X′Σ−1

2,2X)−1

× (B∗)′ + GG′]−1
B∗(X′Σ−1

2,2X)−1 + (X′Σ−1
2,2X)−1

× (B∗)′
[
B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′]−1

×G
{
G′[B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′]−1
G
}−1

G′

× [B∗(X′Σ−1
2,2X)−1(B∗)′ + GG′]−1

B∗(X′Σ−1
2,2X)−1,

cov(ˆ̂β, ˆ̂γ) = −(X′Σ−1
2,2X)−1(B∗)′

[
B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′]−1

×G
{
G′[B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′]−1
G
}−1

,

Var(ˆ̂γ) =
{
G′[B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′]−1
G
}−1

− I .

Proof [5], section 3.
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Definition 2 The estimator from Lemma 1 obtained under the condition Σ1,1 =
0 (⇒ Var(Θ) = 0) is called the standard estimator if in this estimator the vector
Θ is substituted by Θ̂.

Remark 1 If Θ in Lemma 1 is substituted by Θ̂, the standard estimator is
obtained. Its covariance matrix is given by the following relationships.

Var(β̂) = Var[N1(Y −DΘ̂)] + Var[N2(C∗Θ̂ + a)]

+ cov[N1(Y −DΘ̂),N2(C∗Θ̂ + a)] + cov[N2(C∗Θ̂ + a),N1(Y −DΘ̂)]

= N1(Σ2,2 + DΣ1,1D′)N′
1 + N2C∗Σ1,1(C∗)′N′

2

−N1DΣ1,1(C∗)′N′
2 −N2C∗Σ1,1D′N′

1,

where

N1 =
(
I− (X′Σ−1

2,2X)−1(B∗)′
{[

B∗(X′Σ−1
2,2X)−1(B∗)′ + GG′

]−1

−
[
B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′
]−1

GG′
[
B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′
]−1

G′

×
[
B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′
]−1

(B∗)′(X′Σ−1
2,2X)−1X′Σ−1

2,2 ,

N2 = −(X′S−1X)−1(B∗)′
{[

B∗(X′Σ−1
2,2X)−1(B∗)′ + GG′

]−1

−
[
B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′
]−1

G

× {G′
[
B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′
]−1

G}−1G′

×
[
B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′
]−1}

.

Theorem 1 In the model

Y −DΘ̂ ∼n (Xβ,Σ2,2 + DΣ1,1D′), a∗ + C∗Θ + B∗β + Gγ = 0,

the class of all unbiased linear estimators of
(
β
γ

)
based on the vectors Θ̂ and

Y −DΘ̂ is

Uβ,γ =

{(
β̃
γ̃

)
=
(

k1

k2

)
+
(

K1, K2

K3, K4

)(
Θ̂

Y −DΘ̂

)}
,

where (
k1

k2

)
=
(

0
−G−

)
a∗ +

(
Z1

Z3

)
(I−GG−)a∗,
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(
K1, K2

K3, K4

)
=
(

0, X−

−G−C∗, −G−B∗X−

)
+
(

Z1, Z2

Z3, Z4

)(
(I−GG−)C∗, (I−GG−)B∗X−

0, I−XX−

)
,

where Z1,Z2,Z3,Z4 are arbitrary matrices with suitable dimensions.

The covariance matrix of the estimator
(
β̃
γ̃

) ∈ Uβ,γ is

Var

(
β̃
γ̃

)
=
(

K1, K2

K3, K4

)(
Σ1,1, −Σ1,1D′

−DΣ1,1, Σ2,2 + DΣ1,1D′

)(
K1, K2

K3, K4

)′
.

Proof [5], section 3.

Lemma 2 Let in Lemma 1 Θ be substituted by Θ̂. Then such estimator (it is
usually used in practice ) belong to the class Uβ,γ .

Proof [5], section 3.

Theorem 2 The class ˜Uβ,γ of all linear unbiased estimators which in addition
satisfy the constraints

a∗ + C∗Θ̂ + B∗β̃ + Gγ̃ = 0,

is given by such a choice of the matrices Z1, . . . ,Z4, in Theorem 1, which satisfy
the following equation(

Z1, Z2

Z3, Z4

)
= (B∗,G)−[−(I−GG−),0]

(
I−GG−, 0

0, I−XX−

)
+
(

W1, W2

W3, W4

)
− (B∗,G)−(B∗,G)

(
W1, W2

W3, W4

)(
I−GG−, 0

0, I−XX−

)
,

where the matrices W1, . . . ,W4 are arbitrary.

Proof [5], section 3.

3 H∗-optimum estimator for constraints II

Definition 3 Let H∗ be a given (k + l)× (k + l) positive semidefinite matrix.

The estimator
(
β̃
γ̃

)
from Ũβ,γ is said to be H∗-optimum if it minimizes the value

Tr

[
H∗ Var

(
β̃
γ̃

)]
,

(
β̃
γ̃

)
∈ Ũβ,γ .

Theorem 3 An estimator
(

β̃
γ̃

)
is H∗-optimum if the matrices W1,W2,

W3,W4 (Theorem 2) are solution of the equation{
I− (B∗,G)′

[
(B∗,G)−

]′}
H∗
[
I− (B∗,G)−(B∗,G)

]
WSTS′ =

= −
{
I− (B∗,G)′

[
(B∗,G)−

]′}
H∗(RTS′ + ASTS′),
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where

A = (B∗,G)−
[− (I−GG−,0

]( I−GG−, 0
0, I−XX−

)
,

W =
(

W1, W2

W3, W4

)
, R =

(
0, X−

−G−C∗, −G−B∗X−

)
,

S =
(

(I−GG−)C∗, (I−GG−)B∗X−

0, I−XX−

)
,

T = Var

(
Θ̂

Y −DΘ̂

)
=
(

Σ1,1, −Σ1,1D′

−DΣ1,1, Σ2,2 + DΣ1,1D′

)
.

Proof [5], section 4.

Remark 2 Since the matrices W1,W2,W3,W4 of the H∗-optimum estimator
are functions of the matrix H∗, the joint efficient estimator does not exist in the
class ˜Uβ,γ .

4 Numerical studies—constraints type II

In this part we will concentrate on a numerical calculation of the estimator of
parameters. In all following examples we need to construct a condition express-
ing a relation between parameters of the first and the second stages. From this
condition we can always construct a vector function g of parameter β and Θ
where g(β, Θ, γ) = 0. We apply the Taylor expansion at point (β0, Θ0) to this
function. So for estimators of parameters we get the condition

g(β,Θ, γ) = g(β0, Θ0, γ0) + Cδθ + Bδβ + Gδγ = 0.

Example 1 Let us consider the point A1 from the first stage with the plane
coordinates (Θ1, Θ2), that were measured as (Θ̂1, Θ̂2) = (59999.91, 41339.81).
The accuracy of measurement was given by the dispersion ω2

1 = 0.042.
In the second stage we will assume the same dispersion ω2

1 = 0.042 for
the measured coordinates (y1, y2), . . . , (y7, y8) = (54999.95, 40000.04, 49999.94,
41339.70, 54999.89, 60000.01, 65000.05, 49999.88) of the points Pi = (β2i−1, β2i)
for i = 1, 2, 3, 4.

The aim is to make the estimator of the coordinates of the points P1, P2,
P3 and P4 more accurate under the constraint that all these points together
with the point A1 are located on a circle, with a radius γ3 and a center [γ1, γ2]
unknown.

Our constraints are

(θ1 − γ1)2 + (θ2 − γ2)2 − γ2
3 = 0 ,

(β1 − γ1)2 + (β2 − γ2)2 − γ2
3 = 0 ,

(β3 − γ1)2 + (β4 − γ2)2 − γ2
3 = 0 ,

(β5 − γ1)2 + (β6 − γ2)2 − γ2
3 = 0 ,

(β7 − γ1)2 + (β8 − γ2)2 − γ2
3 = 0 .
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Figure 1: Situation (in S-JTSK)

In our linearized model we will determine numerically the estimator and the
covariance matrix according to Lemma 1:

β̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

54999.95
40000.14
50000.00
41339.80
54999.89
60000.11
64999.83
49999.88

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and γ̂ =

⎛⎝ 54999.84
50000.01
9999.98

⎞⎠ .

After that we will numerically determine H∗–optimum estimator from The-
orem 2 and 3 for the matrix

H1
∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
are β̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

54999.95
40000.04
49999.91
41339.65
54999.89
60000.08
64999.69
49999.88

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and γ̃ =

⎛⎝ 54999.67
50000.06
10000.02

⎞⎠.
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By chosen matrix H1
∗ minimizing data errors in the process estimation of

the vector β̃ we got better estimator of the parameter β in comparison with the
standard estimator β̂. It follows from the fact that for the chosen matrix H∗ is
Tr(H∗ Var(β̃)) = 2.17 · 10−3 < 2.66 · 10−3 = Tr(H∗ Var(β̂)).

Let us study the proportion accuracy of the standard estimator β̂ and the
Hi

∗-optimum estimator β̃ for i = 2, 3, 4. We will not determine the esti-
mators from now, but we will only study the trace of the covariance matrix
Tr(H Var(β̃)) for comparing it with the above mentioned Tr(H Var(β̂)).

We get Tr(H2
∗ Var(β̃)) = 2.59 · 10−3 < Tr(H2

∗ Var(β̂)) = 2.66 · 10−3 for
matrix

H2
∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

we get Tr(H3
∗ Var(β̃)) = 3.09 · 10−3 < Tr(H3

∗ Var(β̂)) = 3.21 · 10−3 for matrix

H3
∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and we get Tr(H4
∗ Var(β̃)) = 2.72 · 10−3 < Tr(H4

∗ Var(β̂)) = 3.49 · 10−3 for
matrix

H4
∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is evident that Tr(Hi
∗ Var(β̃)) < Tr(Hi

∗ Var(β̂)) for i = 1, . . . 4.
Now let us study the proportion of this values for different covariance ma-

trices Σ1,1 and Σ2,2. In other numerical calculations we choose the matrix Σ1,1

as the fixed one and we change the matrix Σ2,2 by the multiplication by the
number k.

The proportions in dependence on k are shown in the following table and
graph.
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The proportion Tr(Hi
∗Var(β̃)) and Tr(Hi

∗Var(β̂))

k i = 1, H1
∗ i = 2,H2

∗ i = 3, H3
∗ i = 4,H4

∗

100 99.99 % 100.00 % 100.00 % 99.99%
64 99.98 % 100.00 % 100.00 % 99.98%
50 99.97 % 100.00 % 100.00 % 99.97%
25 99.90 % 99.99 % 99.98 % 99.87%
16 99.77 % 99.97 % 99.96 % 99.70%
9 99.33 % 99.92 % 99.89 % 99.12%
5 98.14 % 99.78 % 99.67 % 97.57%
4 97.30 % 99.67 % 99.52 % 96.50%
3 95.74 % 99.47 % 99.22 % 94.54%
2 92.29 % 98.99 % 98.52 % 90.27%
1 81.73 % 97.24 % 96.00 % 77.81%
1/2 65.01 % 93.41 % 90.64 % 59.52%
1/4 45.48 % 86.18 % 81.00 % 39.92%
1/10 23.72 % 69.58 % 61.02 % 19.92%
1/16 16.02 % 58.29 % 48.90 % 13.26%
1/25 10.77 % 46.87 % 37.66 % 8.83%
1/50 5.64 % 30.34 % 22.98 % 4.58%
1/64 4.45 % 25.34 % 18.86 % 3.60%
1/100 2.89 % 17.79 % 12.91 % 2.33%
1/400 0.74 % 5.11 % 3.55 % 0.59%
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Figure 2: The proportion Tr(Hi
∗ Var(β̃)) and Tr(Hi

∗ Var(β̂))
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Example 2 We have at our disposal the coordinates of the points A1, A2, A3,
A4, A5 that are given from the first stage – from the connecting measurement.

All the angles  y1 = (A2A1P1),  y2 = (A1P1P2),  y3 = (P1P2P3),  y4 =
(P2P3P4),  y5 = (P3P4A5),  y6 = (P4A5A4),  y7 = (P1A3P2) and distances
y8 = A1P1, y9 = P1P2, y10 = P2P3, y11 = P3P4, y12 = P4A5 were measured in
the second stage—in the connecting stage.

The aim is to find an estimator for the plane coordinates (β1, β2), . . . , (β7, β8)
of the points P1, P2, P3 and P4 from the second stage, in such a way so as the
distance between the points P1 and P3 would be determined as accurately as
possible.

Values of plane-coordinates and distances will be given in meters, values of
angles will be given in radians.

The accuracy of measurement is given by the dispersion or covariance ma-
trices. We suppose that the points from the first stage are determined with the
dispersion 0.062 m. Measurement of angles in the second stage was performed
with the standard deviation ωa = 10/206265. Measurement of distances in the
second stage was performed with the standard deviation ωd = 0.005 m.

A5A4

P4

P3

P2

A3

P1A1

A2

Figure 3: The aerial photograph of the Tovární Street, Olomouc

We carry out numerical studies in this example for the plane coordinates of
points Ai

Y X
A1 543330,15 1121488,64 corner of the assembly hall
A2 544347,49 1121390,53 corner of the assembly hall
A3 544246,27 1121374,30 corner of the assembly hall
A4 544187,59 1121350,71 corner of the assembly hall
A5 544101,01 1121357,58 plastic point

and for measured values from the second stage

y1 = 1.6091000, y2 = 2.7466880, y3 = 3.2469781, y4 = 3.2134906,
y5 = 2.5395759, y6 = 1.1120582, y7 = 4.4991793,
y8 = 56.515, y9 = 50.889, y10 = 43.064, y11 = 80.486, y12 = 41.524.
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Figure 4: Situation (S-JTSK)

Now we make nonlinear model of our example Y = f(Θ, β) + ε.

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(Θ, β)
f2(Θ, β)
f3(Θ, β)
f4(Θ, β)
f5(Θ, β)
f6(Θ, β)
f7(Θ, β)
f8(Θ, β)
f9(Θ, β)
f10(Θ, β)
f11(Θ, β)
f12(Θ, β)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

arctan( β2−θ2
β1−Θ1

)− arctan(Θ4−Θ2
Θ3−Θ1

)

π − arctan(β4−β2
β3−β1

)− arctan(Θ2−β2
Θ1−β1

)

π − arctan(β6−β4
β5−β3

) + arctan(β2−β4
β1−β3

)

π − arctan(β8−β6
β7−β5

) + arctan(β4−β6
β3−β5

)

π − arctan(Θ10−β8
Θ9−β7

) + arctan(β6−β8
β5−β7

)

− arctan(Θ8−θ10
Θ7−Θ9

) + arctan(β8−Θ10
β7−Θ9

)

π − arctan(β2−Θ6
β1−Θ5

) + arctan(β4−Θ6
β3−Θ5

)√
β1

2 − 2 β1 Θ1 + Θ1
2 + β2

2 − 2 β2 Θ2 + Θ2
2√

β3
2 − 2 β3 β1 + β1

2 + β4
2 − 2 β4 β2 + β2

2√
β5

2 − 2 β5 β3 + β3
2 + β6

2 − 2 β6 β4 + β4
2√

β7
2 − 2 β7 β5 + β5

2 + β8
2 − 2 β8 β6 + β6

2√
β7

2 − 2 β7 Θ9 + Θ9
2 + β8

2 − 2 β8 Θ10 + Θ10
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Points from the second stage are situated on a circle—additional constraints

are
g1(Θ, β, β) = (β1 − γ1)2 + (β2 − γ2)2 − γ2

3 = 0 ,
g2(Θ, β, β) = (β3 − γ1)2 + (β4 − γ2)2 − γ2

3 = 0 ,
g3(Θ, β, β) = (β5 − γ1)2 + (β6 − γ2)2 − γ2

3 = 0 ,
g4(Θ, β, β) = (β7 − γ1)2 + (β8 − γ2)2 − γ2

3 = 0 .
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Now we need to use the Taylor expansion Y = f0 +Bδβ +DδΘ +Gδγ = 0,

where the matrices B = ∂fi(Θ
0,β0)

∂β′ , D = ∂fi(Θ
0,β0)

∂Θ′ , G = ∂gj(Θ
0,β0,γ0)
∂γ′ and

f0 = Y(Θ0, β0).
In the linearized model, we calculate the estimator β̂ and the distance esti-

mator ŷ10.

β̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

544274.921
1121476.680
544233.140

1121447.619
544195.417

1121426.860
544122.290

1121393.236

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ŷ10 = 43.0569.

Next by the same procedure as in the preceding example we calculate, by
Lemma 2.2 , the H∗-optimum estimator β̃. The matrix H∗ of the type

H∗ = pp′, p′ =
∂
√

(β5 − β3)2 + (β6 − β4)2

∂β′

is chosen in such a way, so that the resulting estimator would be optimal for
determining the distance between the points P2 and P3. We arrive at the esti-
mator

β̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

544274.916
1121476.678
544233.150

1121447.604
544195.416

1121426.854
544122.286

1121393.239

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ỹ10 = 43.0637.

Let us conclude with the comparison of the resulting estimators of distance
between P2 and P3. The mesurement distance y10 was 43.064 m, the distance de-
termined by the standard estimator ŷ10 was 43.0569 m and by the H∗-optimum
estimator ỹ10 = 43.0637 m (the difference between estimators is 6.8 mm).
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Abstract

It is well known that a function f from a space X into a space Y is
continuous if and only if, for every set K in X the image of the closure of
K under f is a subset of the closure of the image of it.
In this paper we characterize almost continuity and weak continuity

by proving similar relations for the subsets K of X.

Key words: Almost continuous function, weakly continuous func-
tion.

2000 Mathematics Subject Classification: 54C10

1 Introduction and notations

The term almost continuous function is defined in different ways by several
authors [3, 4, 5, 7]. In this paper we adopt the following definition due to Singal
and Singal [7].

Definition 1 A function f : X → Y is said to be almost continuous if for each
point x ∈ X and each open set V in Y containing f(x), there exists an open
set U in X containing x, such that f(U) ⊂ V

0
.

The following definition of weak continuity is due to N. Levine [2].

133
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Definition 2 A mapping f : X → Y is said to be weakly continuous if for each
point x ∈ X and each open set V in Y containing f(x), there exists an open
set U in X containing x such that f(U) ⊂ V .

It is well known the following:

Proposition 1 A function f : X → Y is continuous iff for every set K in X
we have

f(K) ⊂ f(K). (1)

Comparing definitions 1, 2 and this proposition, it is natural to look for similar
to (1) relations for the other two kinds of continuity.

The aim of this paper is to prove two theorems which give such relations.
We will use the following definitions:
A set A is said to be regularly open if A = A

0
. Since A

0
0

= A
0
, we have

that for every set A, the set A
0

is regularly open.
For a set B ⊂ X we denote by B

reg
, the regular closure of B, that is the set

of points of X for which, every regularly open set which contains x, intersects B.

2 Almost continuous functions

From definitions 1, 2 we have that continuity implies almost continuity implies
weak continuity, see also [1, 6].

If Y is a regular space then all these kinds of continuity coincide.
The analogous relation to (1) for the almost continuity is given by the fol-

lowing:

Theorem 1 A function f : X → Y is almost continuous iff for every K ⊂ X
we have

f(K) ⊂ f(K)
reg

.

Proof (⇐) Suppose, in contrary, that f is not almost continuous. Then there
exists an open set V containing f(x) such that for every open set U containing
x we have

f(U) �⊂ V
0
.

Therefore in every such U , there exists a point yU such that f(yU ) /∈ V
0
. These

points yU define a net, which converges to x, and such that f(yU ) /∈ V
0
, for

every U .
Let K = {yU : U is a neighborhood of x, f(yU ) /∈ V

0}. Since x ∈ K, it
follows that f(x) ∈ f(K). Now there exists a regularly open set containing

f(x), namely the set V
0
, which does not intersect f(K), i.e.

f(x) /∈ f(K)
reg

.

So it follows that,
f(K) �⊂ f(K)

reg
,
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a contradiction.
(⇒) Suppose, in contrary, that there exists a subset K of X with f(K) �⊂

f(K)
reg

.
Then we can find a point x ∈ K such that f(x) �∈ f(K)

reg
. It follows that

there is a regularly open set V = V
0

containing f(x) with

V ∩ f(K) = ∅. (2)

Let U be an open neighborhood of x. Since x ∈ K it follows that U ∩K �= ∅,
which gives that

f(U) ∩ f(K) �= ∅. (3)

By (2) f(K) ⊂ V c, so (3) imply that

f(U) ∩ V c �= ∅

i.e.
f(U) �⊂ V = V

0
.

Therefore f is not almost continuous, a contradiction. �

3 Weak continuity

The corresponding to (1) characterization of weakly continuous functions is
given by the following:

Theorem 2 A function f : X → Y is weakly continuous if and only if for
every subset K of X we will have

f(K) ⊂ ∩{U(f(K)) : U(f(K)) is an open subset of Y containing f(K)}. (4)

Proof (⇐) Suppose that f is not weakly continuous. Then there exists an x
and an open subset V of Y containing f(x), such that for every open subset U
of X containing x we have

f(U) �⊂ V .

Choose a yU in every member U of an open base at x, such that

f(yU ) /∈ V . (5)

In this way we take a net yU of X converging to x. If K is the set all of these
yU , then x ∈ K and so f(x) ∈ f(K).

We will show that there is an open set W containing f(K) such that f(x) /∈
W , which contradicts (4).

Actually (5) implies that

f(K) ⊂ V
c ⊂ V c. (6)
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Put W = V
c
. Then W = V

c ⊂ V c because of V c is a closed set. Now since
f(x) ∈ V it follows that

f(x) /∈ W.

(⇒) Suppose that (4) does not hold. Then there exists a set K ⊂ X and an
open set U containing f(K), with

f(K) �⊂ U.

So for some point x in K we have f(x) /∈ U , i.e.

f(x) ∈ U
c
.

Put
V = U

c
.

We assert that for the open set V , which contains f(x), there does not exist a
W containing x with

f(W ) ⊂ V (7)

which contradicts the weak continuity of f .
Suppose, in contrary, that such a W exists.
Since x ∈ K we have W ∩K �= ∅, so f(W ) ∩ f(K) �= ∅.
By (7) this implies that

f(K) ∩ V �= ∅. (8)

But V = U
c ⊂ U c and the last set is closed, so V ⊂ U c. Since U contains f(K),

it follows that V ∩ f(K) = ∅ which contradicts (8). Thus such a W does not
exist, and this proves our assertion, which completes the proof. �
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Abstract

Positive solutions of the singular (p, n−p) conjugate BVP are studied.
The set of all zeros of their derivatives up to order n − 1 is described.
By means of this, estimates from below of the solutions and the absolute
values of their derivatives up to order n−1 on the considered interval are
reached. Such estimates are necessary for the application of the general
existence principle to the BVP under consideration.

Key words: Singular conjugate BVP, positive solutions, zeros of
derivatives, estimates from below.
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1 Introduction

Let n, p ∈ N, n > 2, p ≤ n− 1, and T be a positive number. In [3] (for p = 1)
and [6], the authors have considered the singular (p, n− p) conjugate boundary
value problem (BVP)

(−1)px(n)(t) = f(t, x(t), . . . , x(n−1)(t)), (1.1)

*Supported by Grant No. 201/04/1077 of the Grant Agency of the Czech Republic and by
the Council of Czech Government J14/98 153100011
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x(i)(0) = 0, x(j)(T ) = 0 0 ≤ i ≤ n− p− 1, 0 ≤ j ≤ p− 1, (1.2)

where f satisfies the local Carathéodory conditions on the set D = [0, T ] ×
((0,∞) × R

n−1
0 ) with R0 = R \ {0} and f is singular at the value 0 of each

its phase variable. They have given conditions on f guaranteeing the existence
of a positive (on (0, T )) solution to BVP (1.1), (1.2). The singularities of the
function f in (1.1) ‘appear’ in any positive solution of BVP (1.1), (1.2) and
some its derivatives at the fixed points t = 0, t = T , and all its derivatives up to
order n− 1 ‘pass through’ singularities of f also at inner points of the interval
(0, T ) which are not fixed. Therefore for proving the solvability of BVP (1.1),
(1.2) in the class of positive functions on (0, T ) it is very important to give a
localization analysis of zeros of derivatives up to order n−1 of positive solutions
to BVP (1.1), (1.2). This analysis have been presented for p = 1 in [3] and for
p = 2 in [6] under the assumption that f ≥ c on D with a positive constant c.
The aim of this paper is to complete this analysis for all values of p. We note
that the singular differential equation

(−1)px(n)(t) = φ(t)g(t, x(t)) (1.3)

together with the boundary conditions (1.2) have been discussed for φ(t)g(t, x) :
(0, 1) × (0,∞) → (0,∞) continuous in [1], [2], [4] and [5] (in [4] and [5] with
φ = 1). But for BVP (1.3), (1.2) singularities of g ‘appear’ in its positive
solutions only at the fixed points t = 0 and t = 1.

2 Localization analysis of zeros to solutions of BVP (1.1),
(1.2)

Let c be a positive constant and let f in (1.1) satisfy f ≥ c on D. Then the
localization analysis of zeros to solutions of BVP (1.1), (1.2) and their derivatives
up to order n−1 can be studied by the localization analysis of zeros to solutions
of the differential inequality

(−1)px(n)(t) ≥ c (2.1)

satisfying the boundary conditions (1.2). By a solution of problem (2.1), (1.2)
we understand a function x ∈ ACn−1([0, T ]) (functions having absolutely con-
tinuous (n − 1)st derivative on [0, T ]) satisfying (2.1) for a.e. t ∈ [0, T ] and
fulfilling (1.2).

Having a solution x of problem (2.1), (1.2) we are interested in zeros of x(k),
0 ≤ k ≤ n− 1, belonging to (0, T ). Without loss of generality we can suppose

p− 1 ≤ n− p− 1 (2.2)

that is p ≤ n/2, because by replacing t by T − t we can transform the case
n/2 < p to (2.2).

For p = 1, 2 we have already studied zeros of x(k) and we have proved the
following results:



Zeros of derivatives of solutions to singular (p, n− p) conjugate BVPs 139

Lemma 2.1 Let x be a solution of problem (2.1), (1.2) for p = 1. Then x > 0
on (0, T ) and x(k) has just one zero in (0, T ), 1 ≤ k ≤ n− 1.

Proof Lemma follows from [3], Lemmas 2.7 and 2.9. �

Lemma 2.2 Let x be a solution of problem (2.1), (1.2) for p = 2. Then

(i) x > 0 on (0, T ),

(ii) x(k) has just one zero in (0, T ) for k = 1 and k = n− 1,

(iii) x(k) has just two zeros in (0, T ) for 2 ≤ k ≤ n− 2.

Proof See [6], Lemmas 2.2. �

Decomposition analysis of zeros to solutions of BVP (2.1), (1.2) with p ≥ 3
is described in the next theorem.

Theorem 2.3 Let x be a solution of problem (2.1), (1.2) for p ≥ 3 and let
(2.2) hold. Then

(i) x > 0 on (0, T ),

(ii) x(k) has just j zeros in (0, T ) for k = j and k = n−j where j = 1, 2, . . . , p− 1,

(iii) x(k) has just p zeros in (0, T ) for p ≤ k ≤ n− p.

Proof The proof is divided into three parts.
I. Lower bounds for zeros. By (1.2) we see that x′ has at least one zero

t11 ∈ (0, T ). Hence x′(0) = x′(t11) = x′(T ) = 0, which implies that x′′ has
at least two zeros t21, t

2
2 ∈ (0, T ). So, we have x′′(0) = x′′(t21) = x′′(t22) =

x′′(T ) = 0. By induction we conclude that x(j), j = 3, . . . , p − 1, has at least
j zeros tj1, . . . , t

j
j ∈ (0, T ) and, due to (1.2) and (2.2) x(j)(0) = x(j)(tj1) = . . . =

x(j)(tjj) = x(j)(T ) = 0, j = 3, . . . , p − 1. Therefore x(p) hat at least p zeros in
(0, T ). Now we will distinguish two cases: p < n/2 and p = n/2.

1. Let p < n/2. Then p ≤ n− p− 1 and, by (1.2),

x(j)(0) = 0, j = p, . . . , n− p− 1.

Thus x(k) has at least p zeros in (0, T ) for k = p + 1, . . . , n− p.
2. Let p = n/2 (clearly n is even in this case). Then p = n− p and x(n−p)

has at least p zeros in (0, T ).
Hence we have shown that x(n−p) has at least p zeros in (0, T ) in the both

cases. Since for x(n−j), 1 ≤ j ≤ p − 1, we cannot already use (1.2), we deduce
that x(n−j) has at least j zeros in (0, T ) for j = 1, . . . , p−1. Particularly x(n−1)

has at least one zero in (0, T ).
II. Exact number of zeros. By (2.1), x(n−1) is strictly monotonous and hence

it has just one zero in (0, T ). Therefore, by I, we deduce that x(n−k) has just
k zeros in (0, T ) for 2 ≤ k ≤ p − 1 and x(k) has just p zeros in (0, T ) for
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p ≤ k ≤ n− p. Similarly, x(k) has just k zeros in (0, T ) for 1 ≤ k ≤ p− 1 and x
has no zero in (0, T ).

III. Positivity of x. Denote by tk1 the first zero of x(k) in (0, T ), 1 ≤ k ≤ n−1.
Inequality (2.1) implies that (−1)px(n−1) < 0 on [0, tn−1

1 ) and (−1)px(n−2) > 0
on [0, tn−2

1 ). Therefore (−1)p+jx(n−j) > 0 on (0, tn−j
1 ) for j = 3, . . . , p. Partic-

ularly we have x(n−p) > 0 on (0, tp1), wherefrom, by virtue of (1.2), we obtain
x(k) > 0 on (0, tk1), 1 ≤ k ≤ n− p− 1, and consequently x > 0 on (0, T ). �

Our next theorem provides estimates from below of solutions to problem
(2.1), (1.2) and of the absolute value of their derivatives up to order n − 1
on the interval [0, T ]. These estimations are necessary to apply the general
existence principle of [6] to problem (1.1), (1.2) with f in (1.1) satisfying the
inequality f ≥ c on D.

Theorem 2.4 Let x be a solution of problem (2.1), (1.2). Then for any i ∈
{1, . . . , n − 1} there are pi + 1 disjoint intervals (ak, ak+1), 0 ≤ k ≤ pi, pi <
(n− 1)p, such that

pi⋃
k=0

[ak, ak+1] = [0, T ] (2.3)

and for each k ∈ {0, . . . , pi} one of the inequalities

|x(n−i)(t)| ≥ c

i!
(t− ak)i for t ∈ [ak, ak+1] (2.4)

or
|x(n−i)(t)| ≥ c

i!
(ak+1 − t)i for t ∈ [ak, ak+1] (2.5)

is satisfied.

Proof Let x be a solution of problem (2.1), (1.2) and let tji ∈ (0, T ) be zeros
of x(j) described in Lemmas 2.1, 2.2 and Theorem 2.3. Integrating (2.1) we get

(−1)p+1x(n−1)(t) ≥ c(tn−1
1 − t) for t ∈ [0, tn−1

1 ]

(−1)px(n−1)(t) ≥ c(t− tn−1
1 ) for t ∈ [tn−1

1 , T ].
(2.6)

Now, integrate the first inequality in (2.6) from t ∈ [0, tn−2
1 ) to tn−2

1 , we have

(−1)pxn−2(t) ≥ c

2

(
− (tn−1

1 − tn−2
1 )2 + (tn−1

1 − t)2
)
≥ c

2!
(tn−2

1 − t)2.

Hence, we get in such a way

(−1)px(n−2)(t) ≥ c
2! (t

n−2
1 − t)2 for t ∈ [0, tn−2

1 ]

(−1)p+1x(n−2)(t) ≥ c
2! (t− tn−1

1 )2 for t ∈ [tn−2
1 , tn−1

1 ]

(−1)p+1x(n−2)(t) ≥ c
2! (t

n−2
2 − t)2 for t ∈ [tn−1

1 , tn−2
2 ]

(−1)px(n−2)(t) ≥ c
2! (t− tn−2

2 )2 for t ∈ [tn−2
2 , T ].

(2.7)
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Choose i ∈ {1, . . . , n − 1} and take all different zeros of functions x(n−1), . . .,
x(n−i), which are in (0, T ). By Lemmas 2.1, 2.2 and Theorem 2.3, there is a
finite number pi < (n− 1)p of these zeros. Let us put them in order and denote
by a1, . . . , api . Set a0 = 0, api+1 = T . In this way we get pi +1 disjoint intervals
(ak, ak+1), 0 ≤ k ≤ pi, satisfying (2.3).

If i = 1, then for a1 = tn−1
1 , a2 = T , we get by (2.6) that |x(n−1)(t)| ≥

c(a1 − t) for t ∈ [a0, a1] and |x(n−1)(t)| ≥ c(t− a1) for t ∈ [a1, a2].
If i = 2, we put tn−1

1 = a1, tn−2
1 = a2, tn−2

2 = a3, T = a4, and then (2.7)
gives (2.4) or (2.5).

If i > 2 and we integrate the inequalities in (2.7) (i− 2)-times, we get that
on each [ak, ak+1], k ∈ {0, . . . , pi} either (2.4) or (2.5) has to be fulfilled. �
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Abstract

Recently, we have shown that a semiring S is completely regular if and
only if S is a union of skew-rings. In this paper we show that a semiring
S satisfying a2 = na can be embedded in a completely regular semiring if
and only if S is additive separative.

Key words: Completely regular semiring, skew-ring, b-lattice, archi-
medean semiring, additive separative semiring.
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1 Introduction

Recall that a semiring (S, +, ·) is a type (2,2) algebra whose semigroup reducts
(S, +) and (S, ·) are connected by ring like distributivity, that is,

a(b + c) = ab + ac and (b + c)a = ba + ca

for all a, b, c ∈ S. A semiring (S, +, ·) is called a Boolean semiring if a2 = a
for all a ∈ S. A semiring S is called additive cancellative if the additive reduct
(S, +) is a cancellative semigroup, i.e., for a, b, c ∈ S, a+b = a+c implies b = c.

1The research is supported by CSIR, India.
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In this paper, we call an element a of a semiring (S, +, ·) completely regular
if there exists an element x ∈ S satisfying the following conditions:

(i) a = a + x + a

(ii) a + x = x + a

(iii) a(a + x) = a + x

Naturally, a semiring (S, +, ·) is a completely regular semiring if every ele-
ment a of S is completely regular. There are plenty of examples of completely
regular semirings, for example, every ring is a completely regular semiring and
every distributive lattice is also a completely regular semiring. By definition,
if (S, +, ·) is a completely regular semiring then its additive reduct (S, +) is a
completely regular semigroup but the converse may not be true. For example,
if we let (S, +, ·) be a semiring whose additive reduct (S, +) is an idempotent
semigroup and the multiplicative reduct (S, ·) is not a band, then we can imme-
diately see that (S, +) is completely regular but the semiring (S, +, ·) itself is
not completely regular. Throughout this paper, we denote the set of all inverse
elements of a in the regular semigroup (S, +) by V +(a). As usual, we denote
the Green’s H-relations on (S, +) by H+

The following useful concept is due to M. P. Grillet [2].

Definition 1.1 A semiring (S, +, ·) is called a skew-ring if its additive reduct
(S, +) is a group, not necessarily an abelian group.

We have obtained the following result in [4].

Theorem 1.2 The following statements on a semiring S are equivalent.
(I) S is completely regular.
(II) Every H+-class is a skew-ring.
(II) S is union (disjoint) of skew-rings.

Corollary 1.3 An additive commutative semiring S is completely regular if
and only if S is union of rings.

2 b-lattice decomposition

We consider the additive commutative semiring (S, +, ·) such that for each a ∈ S
there exists a positive integer n such that

a2 = na. (A)

Clearly, every Boolean semiring is a semiring which satisfies condition (A). Also
the semiring of all natural numbers is a semiring of this kind which is not
Boolean.

We now consider the following examples:
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Example 2.1 Let S = N×{1, 2, 3}. On S we define addition and multiplication
by

(a, i) + (b, j) = (a + b, max{i, j})
and

(a, i) · (b, j) = (ab, min{i, j}).
Then (S, +, ·) is a semiring satisfying condition (A).

Example 2.2 Let S = {0, a, b} be a semiring with the following Cayley tables:

+ 0 a b
0 0 a b
a a 0 b
b b b b

· 0 a b
0 0 0 0
a 0 0 0
b 0 0 b

Then (S, +, ·) is a semiring which satisfies condition (A) but not Boolean.

Definition 2.3 A semiring (S, +, ·) is called a b-lattice if (S, +) is a semilattice
and (S, ·) is a band. Moreover, a congruence ρ on a semiring S is called a
b-lattice congruence if S/ρ is a b-lattice. A semiring S is called a b-lattice Y
of semirings Sα (α ∈ Y ) if S admits a b-lattice congruence ρ on S such that
Y = S/ρ and each Sα is a ρ-class.

Definition 2.4 Let (S, +, ·) be a semiring. We define a relation η on S by a η b
if and only if there exist x, y ∈ S0 and positive integers m, n such that a+x = mb
and b + y = na. Also, we define a relation σ on S by a σ b if and only if there
exists a positive integer n such that a + nb = (n + 1)b and b + na = (n + 1)a.

It should be noted that if there exist positive integers m, n such that a+mb =
(m + 1)b and b + na = (n + 1)a then a σ b. For if, say m < n, then we can add
a + mb = (m + 1)b by (n−m)b and obtain a + nb = (n + 1)b.

Definition 2.5 A semiring S is called archimedean if (S, +) is an archimedean
semigroup i.e., for any a, b ∈ S there exist x, y ∈ S and positive integers m, n
such that a + x = mb and b + y = na.

Lemma 2.6 Let S be a semiring satisfying (A). Then
(i) η is a congruence on S and S/η is the maximal b-lattice homomorphic

image of S.
(ii) S is uniquely expressible as a b-lattice T of archimedean semirings

S
α
(α ∈ T ). The b-lattice T is isomorphic with the maximal b-lattice homo-

morphic image S/η of S and S
α
(α ∈ T ) are equivalent classes of η in S.

Proof (i) From Theorem 4.12 in [1], it follows that η is a semilattice congruence
on (S, +). Let a η b and c ∈ S. Then there exist x, y ∈ S0 and positive integers
m, n such that a + x = mb and b + y = na. This leads to ac + xc = m(bc) and
bc + yc = n(ac). Thus ac η bc. Similarly, we can show that ca η cb. Hence η is a
congruence on the semiring S.
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Since S satisfies a2 = na so a2 η na. Again since η is a semilattice congru-
ence on (S, +), it follows that na η a. Thus, a2 η a and hence η is a b-lattice
congruence on the semiring S.

S/η is the maximal homomorphic image of S follows from Theorem 4.12 in
[1].

(ii) By (i) of this Lemma, η is a b-lattice congruence on S. By Theorem
4.13 in [1], each η-class S

α
(α ∈ S/η) is archimedean semigroup under addition.

We show that each S
α

is a semiring. For this let b, c ∈ η(a), where η(a) is the
η-class of a ∈ S. Then b η a and c η a. This leads to bc η a2 η a. So bc ∈ η(a)
and hence (Sα , +, ·) is an archimedean semiring. Thus, S is a b-lattice T of
archimedean semirings. Unique expression of S as a b-lattice of archimedean
semirings follows from Theorem 4.13 in [1].

The last part of the theorem follows from the Theorem 4.13 in [1].

Definition 2.7 A congruence ρ on a semiring S is said to be additive separative
(AS-congruence) if S/ρ is an additive separative semiring (AS-semiring) i.e.,
(a + b) ρ (a + a) ρ (b + b) implies a ρ b.

Lemma 2.8 The relation σ defined in Definition 2.4 is a congruence on a
semiring S and S/σ is the maximal additive separative homomorphic image of
S.

Proof By Theorem 4.14 in [1], σ is a congruence on (S, +). Let a σ b and
c ∈ S. Then there exist positive integers m, n such that a + nb = (n + 1)b and
b+ma = (m+1)a. This leads to ac+n(bc) = (n+1)bc and bc+m(ac) = (m+1)ac.
Hence ac σ bc. Similarly, one can show that ca σ cb. Thus, σ is a congruence on
S.

Last part follows from Theorem 4.14 in [1].

Corollary 2.9 Let S be an additive separative semiring. If a, b are elements of
S such that a + mb = (m + 1)b and b +na = (n + 1)a for some positive integers
m and n, then a = b.

Theorem 2.10 A semiring S satisfying the condition (A) can be embedded in
a completely regular semiring if and only if S is additive separative.

Proof First suppose that S can be embedded in a completely regular semiring.
Then the additive reduct (S, +) of the semiring S can be embedded in a com-
pletely regular semigroup. Then by Theorem 4.19 in [1], we have the semigroup
reduct (S, +) is separative, i.e., S is additive separative semiring.

Conversely, assume that S is additive separative. Since the semiring S sat-
isfies the condition a2 = na so S can be expressed as a b-lattice of archimedean
semirings. Let S =

⋃
α∈T Sα be the expression of S as a b-lattice T of its

archimedean components S
α
(α ∈ T ). Since S is additive separative, by Theo-

rem 4.16 in [1] we have S
α

is additive cancellative. So by Theorem 5.11 in [3] S
α

can be embedded in a ring Rα . Since Sα are mutually disjoint, we can assume
that R

α
are mutually disjoint. Now every element of R

α
can be expressed in
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the form a1 − a2 with a1 , a2 ∈ S
α

and that a1 − a2 = c1 − c2 if and only if
a1 + c2 = a2 + c1 .

Let S′ =
⋃

α∈T Rα. On S′ we define ⊕ and  as follows:

a⊕ b = (a1 + b1)− (a2 + b2)

and
a b = (a1b1 + a2b2)− (a1b2 + b2a1),

where a = a1 − a2 and b = b1 − b2 .
We first show that the operations are well defined. For this let a = a1−a2 =

c1 − c2 and b = b1 − b2 = d1 − d2 . So a1 + c2 = a2 + c1 and b1 + d2 = b2 + d1 .
Now,

(a1+b1)+(c2+d2) = (a1+c2)+(b1+d2) = (a2+c1)+(b2+d1) = (a2+b2)+(c1+d1)

This leads to,

(a1 + b1)− (a2 + b2) = (c1 + d1)− (c2 + d2),
(a1 − a2)⊕ (b1 − b2) = (c1 − c2)⊕ (d1 − d2).

So ⊕ is well defined.
Again,

a1b1 + c2b1 + a2b2 + c1b2 = a2b1 + c1b1 + a1b2 + c2b2 ,

(a1b1 + a2b2) + (c2b1 + c1b2) = (c1b1 + c2b2) + (a2b1 + a1b2),
(a1b1 + a2b2)− (a2b1 + a1b2) = (c1b1 + c2b2)− (c2b1 + c1b2),

(a1 − a2) (b1 − b2) = (c1 − c2) (b1 − b2).

Similarly, we can show that

(c1 − c2)
⊙

(b1 − b2) = (c1 − c2)
⊙

(d1 − d2).

Thus,
(a1 − a2)

⊙
(b1 − b2) = (c1 − c2)

⊙
(d1 − d2).

Hence
⊙

is well defined.
Clearly, if a ∈ Rα and b ∈ R

β
(α, β ∈ T ) then a⊕b ∈ R

α+β
and a

⊙
b ∈ R

αβ
.

The associativity under ⊕ and
⊙

is easily verified. Also, we can show the
distributivity. Hence S′ is indeed a semiring which contains S. Since S′ is union
of rings so by Corollary 1.3, S′ is a completely regular semiring.

We now show that if a and b are elements of S then a ⊕ b and a
⊙

b are
respectively the same as the original operation a + b and a.b respectively in S.
Let a ∈ R

α
and b ∈ R

β
(α, β ∈ T ). Then a = 2a − a and b = 2b − b so that

a⊕ b = (2a− a)⊕ (2b− b) = (2a + 2b)− (a + b) = 2(a + b)− (a + b) = a + b and
a
⊙

b = (2a− a)
⊙

(2b− b) =
(
(2a)(2b) + ab

)− (2ab + 2ab) = 5ab− 4ab = a · b,
as desired.

Acknowledgements The authors express their sincere thanks to the learned
referee for his valuable suggestions.
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Abstract

We show in an additive inverse regular semiring (S, +, ·) with E•(S)
as the set of all multiplicative idempotents and E+(S) as the set of all
additive idempotents, the following conditions are equivalent:
(i) For all e, f ∈ E•(S), ef ∈ E+(S) implies fe ∈ E+(S).
(ii) (S, ·) is orthodox.
(iii) (S, ·) is a semilattice of groups.

This result generalizes the corresponding result of regular ring.

Key words: Additive inverse semirings, regular semirings, orthodox
semirings.
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1 Introduction

A semiring (S, +, ·) is a nonempty set S on which operations of addition, +,
and multiplication, ·, have been defined such that the following conditions are
satisfied:

(1) (S, +) is a semigroup.

(2) (S, ·) is a semigroup.

(3) Multiplication distributes over addition from either side.
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A semiring (S, +, ·) is called an additive inverse semiring if (S, +) is an inverse
semigroup, that is for each a ∈ S there exists a unique element a′ ∈ S such that
a+ a′ + a = a and a′ + a+ a′ = a′. Additive inverse semirings were first studied
by Karvellas [4] in 1974. Karvellas [4] proved the following: (Karvellas (1974),
Theorem 3(ii) and Theorem 7) Take any additive inverse semiring (S, +, ·).

(i) For all x, y ∈ S, (x · y)′ = x′ · y = x · y′ and x′ · y′ = x · y
(ii) If a ∈ aS ∩ Sa for all a ∈ S then S is additively commutative.

A semiring (S, +, ·) is called regular if for each a ∈ S there exists x ∈ S such
that axa = a. In a regular semiring S, for any element a ∈ S, V •(a) = {x ∈
S : axa = a and xax = x}. A regular semiring S contains element e such that
e · e = e. We denote the set of such elements by E•(S). If in a regular semiring
S, E•(S) is a subsemigroup of the semigroup of (S, ·), then the semiring S is
called an orthodox semiring.

Chaptal [1] proved the following result in 1966.

Result 1.1 For a ring (R, +, ·) the following conditions are equivalent.

(i) (R, ·) is a union of groups.

(ii) (R, ·) is an inverse semigroup.

(iii) (R, ·) is a semilattice of groups.

Latter J. Zeleznekow [5] proved the following result.

Result 1.2 In a regular ring (R, +, ·) the following conditions are equivalent.

(i) (R, ·) is orthodox.

(ii) (R, ·) is a union of groups.

(iii) (R, ·) is an inverse semigroup.

(iv) (R, ·) is a semilattice of groups.

These results do not hold in arbitrary semiring [see Example 2.1.]. The aim
of this paper is to generalize these results in an additive inverse semiring with
some conditions. For notations and terminologies not given in this note, the
reader is referred to the monograph of Golan [2] and Howie [3].

2 Orthodox additive inverse semiring

An additive inverse semiring S is called orthodox if (S, ·) is an orthodox semi-
group.

Example 2.1 [5] Let S be the set of all binary relations on a two element set.
Under the operations of union and composition of binary relations, S becomes
a semiring in which (S, ·) is regular but neither orthodox nor a union of groups.
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Example 2.2 Let (S, +) be a semilattice with more than one element. On S,
define the multiplication, ·, by a · b = a for all a, b ∈ S. Then (S, +, ·) is a
semiring such that (S, +) is an inverse semigroup, (S, ·) is orthodox. Hence this
semiring is an orthodox additive inverse semiring. In this semiring we find that
(S, ·) is not an inverse semigroup.

¿From the above example we find that J. Zeleznekow’s result is not true in
an orthodox additive inverse semiring. Let S be an additive inverse semiring.
We say that S satisfies conditions (A) and (B) if for all a, b ∈ S

(A) a(b + b′) = (b + b′)a.

(B) a + a(b + b′) = a.

Clearly rings, distributive lattices and direct products of distributive lattice
and ring are natural examples of such additive inverse semiring. We consider
the following example.

Example 2.3 Let S = {0, a, b}. Define addition and multiplication on S by
the following Cayley tables:

+ 0 a b
0 0 a b
a a 0 b
b b b b

· 0 a b
0 0 0 0
a 0 0 0
b 0 0 b

It is easy to see that (S, +, ·) is a semiring such that (S, +) is an additive inverse
semiring with conditions (A) and (B).

In the remaining part of this section we assume that S denotes an additive
commutative and additive inverse semiring satisfying conditions (A) and (B).
Also we assume that E+(S) = {a ∈ S : a+a = a}. Note that E+(S) is an ideal
of S.

We now prove the following Lemma.

Lemma 2.4 Let a, b ∈ S be such that a+ b′ ∈ E+(S) and a+a′ = b+ b′. Then
a = b.

Proof Since a + b′ ∈ E+(S) so we have

a + b′ = (a + b′) + (a + b′)′ = a + b′ + b + a′ = a + a′ + b + b′ = b + b′.

This leads to, a + b′ + b = b + b′ + b, i.e., a + a′ + a = b. Hence a = b. �

Nest we prove the following important lemma.

Lemma 2.5 If the semiring S is multiplicatively regular then the following con-
ditions are equivalent.

(i) For all e, f ∈ E•(S), ef ∈ E+(S) implies fe ∈ E+(S).
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(ii) For all e ∈ E•(S), for all x ∈ S, ex ∈ E+(S) implies xe ∈ E+(S).

(iii) For all n ∈ N, for all x ∈ S, xn ∈ E+(S) implies x ∈ E+(S).

(iv) For all x ∈ S, x2 ∈ E+(S) implies x ∈ E+(S).

(v) For all x, y ∈ S, xy ∈ E+(S) implies yx ∈ E+(S).

Furthermore, each is implied by

(vi) (S, ·) is orthodox.

Proof (i) ⇒ (ii): Let e ∈ E•(S) and x ∈ S be such that ex ∈ E+(S). Then
ex = ex + (ex)′ = ex + ex′. Now,

(e + xe′)2 = e(e + xe′) + xe′(e + xe′)
= e2 + exe′ + xe′e + xe′xe′

= e2 + exe′ + xe′e + xe′x′e
= e2 + exe′ + xe′e + x(e′)′xe
= e2 + exe′ + xe′e + xexe
= e + (ex + ex′)e′ + xe′ + x(ex + ex′)e
= e + (exe′ + ex′e′) + xe′ + x(e′x′ + e′x)e
= e + e(xe′ + xe) + xe′ + xe′(x′e + xe)
= e + xe′ (by condition (B)).

Thus e + xe′ ∈ E•(S). Let x∗ ∈ V •(x). Now,

(e + xe′)(xx∗) = exx∗ + xe′xx∗

= exx∗ + (xexx∗)′

= exx∗ + x′(ex)x∗ ∈ E+(S) (as E+(S) is an ideal of S).

But e + xe′, xx∗ ∈ E•(S). So by (i), xx∗(e + xe′) ∈ E+(S) and thus xx∗e +
xx∗xe′ = xx∗e + xe′ ∈ E+(S). Also,

xx∗e + xx∗e′ = xx∗e′ + xx∗e
= xx∗e′ + xx∗e + xx∗e(x + x′) (by condition (B))
= xx∗(e′ + e) + xx∗(x + x′)e (by condition (A))
= x(e′ + e)x∗ + xx∗x(e + e′) (by condition (A))
= x(e′x∗ + ex∗) + xe + xe′

= xe(x∗′ + x∗) + xe + xe′

= xe + xe′ (by condition (B))

Hence by Lemma 2.4., we have xx∗e = xe. Now, exx∗ ∈ E+(S) [ as ex ∈ E+(S)]
and hence xe = xx∗e ∈ E+(S).

(ii) ⇒ (iii): Take any x ∈ S with xn ∈ E+(S) for some n > 1. Let x∗ ∈
V •(x). Then x∗xn ∈ E+(S) and so (x∗x)xn−1 ∈ E+(S). But x∗x ∈ E•(S) and
thus xn−1x∗x ∈ E+(S). This leads to xn−2xx∗x = xn−1 ∈ E+(S). Continuing
this process, we have x ∈ E+(S).

(iii) ⇒ (iv): This is obvious.
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(iv) ⇒ (v): Let x, y ∈ S be such that xy ∈ E+(S). Now (yx)2 = y(xy)x ∈
E+(S). Hence by given condition we have yx ∈ E+(S).

(v) ⇒ (i): This is obvious.
Thus (i), (ii), (iii), (iv) and (v) are equivalent.
(vi) ⇒ (i): Let e, f ∈ E•(S) be such that ef ∈ E+(S). Because (S, ·) is

orthodox we have fe ∈ E•(S). Then fe = (fe)2 = f(ef)e ∈ E+(S). Thus the
proof is completed.

We now generalize Chaptal’s Theorem in S.
Theorem 2.6 In a semiring S the following conditions are equivalent.

(i) (S, ·) is a union of groups.

(ii) (S, ·) is an inverse semigroup.

(iii) (S, ·) is a semilattice of groups.

Proof (i) ⇒ (ii): Let (S, ·) be a union of groups (Gα, ·)(α ∈ I) where I is an
index set. Let e ∈ E•(S) and y ∈ S. Then,

(ye + ey′e)2 = ye(ye + ey′e) + ey′e(ye + ey′e)
= yeye + yey′e + ey′eye + ey′ey′e ∈ E+(S).

Let (ye + ey′e)2 be in the group Gα for some α ∈ I and let z be the inverse
of (ye+ ey′e) in Gα. Then ye+ ey′e = (ye+ ey′e)(ye+ ey′e)z = (ye+ ey′e)2z ∈
E+(S), because E+(S) is an ideal of S. Also, eye + ey′e = e(ye + y′e) =
(ye + y′e)e (by condition (A)) = ye + y′e. Thus, by Lemma 2.4., we at once
have ye = eye. Similarly, we have ey = eye. Hence ey = ye. Thus idempotents
in (S, ·) are central. Hence, (S, ·) is an inverse semigroup.

(ii) ⇒ (iii): Let (S, ·) be an inverse semigroup. Let e ∈ E•(S) and y ∈ S.
Now,

(ye + ey′e)2 = ye(ye + ey′e) + ey′e(ye + ey′e)
= yeye + yey′e + ey′eye + ey′ey′e ∈ E+(S).

So by (iv) of Lemma 2.5., we have ye + ey′e ∈ E+(S). Also, eye + ey′e =
e(ye + y′e) = (ye + y′e)e = ye + y′e. Hence by Lemma 2.4., we at once have
ye = eye. Similarly, ey = eye. Hence ey = ye. Thus idempotents in (S, ·)
are central. Thus (S, ·) is a Clifford semigroup. Hence (S, ·) is a semilattice of
groups.

(iii) ⇒ (i):This is obvious. �

We now prove the following theorem.
Theorem 2.7 If the semiring S is multiplicatively regular then the following

conditions are equivalent.

(i) (S, ·) is orthodox.

(ii) (S, ·) is an inverse semigroup.

Proof (i) ⇒ (ii): Let (S, ·) be orthodox. Let e, f ∈ E•(S). Then e(f + e′f) =
ef + ee′f = ef + eef ′ = ef + ef ′ ∈ E+(S). So by (ii) of Lemma 2.5., we have
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(f + e′f)e ∈ E+(S), i.e., fe + e′fe ∈ E+(S). Also, efe + e′fe = efe + ef ′e =
e(fe + f ′e) = (fe + f ′e)e (by condition (A)) = fe + f ′e. Thus, by Lemma 2.4.,
we have efe = fe. Similarly, we can show that efe = ef . Thus, ef = fe. So
idempotents in (S, ·) commutes. Hence, (S, ·) is an inverse semigroup.

(ii) ⇒ (i): This is obvious. �

We now generalize Zeleznekow’s Theorem in a semiring S.
Theorem 2.8 If the semiring S is multiplicatively regular then the following

conditions are equivalent.

(i) (S, ·) is orthodox.

(ii) (S, ·) is a union of groups.

(iii) (S, ·) is an inverse semigroup.

(iv) (S, ·) is a semilattice of groups.

Proof Follows from Theorem 2.6. and Theorem 2.7. �
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Abstract

We formulate nonuniform nonresonance criteria for certain third order
differential systems of the form X

′′′
+ AX

′′
+ G(t, X

′
) + CX = P (t),

which further improves upon our recent results in [12], given under sharp
nonresonance considerations. The work also provides extensions and gen-
eralisations to the results of Ezeilo and Omari [5], and Minhós [9] from
the scalar to the vector situations.

Key words: Nonlinear dissipation, sharp and nonuniform nonreso-
nance.
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1 Introduction

An investigation of the solvability circumstances for the nonlinear differential
system

X
′′′

+ AX
′′

+ G(t, X
′
) + CX = P (t) (1.1)

subject to the T -periodic boundary conditions

X(0)−X(T ) = X
′
(0)−X

′
(T ) = X

′′
(0)−X

′′
(T ) = 0 (1.2)

*Research supported by Obafemi Awolowo University Research Grant Code 1425TK.
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on [0, T ] with T > 0, was initiated in our recent paper [12]. Our basic mo-
tivation has been to provide vector analogues to some existing results in the
literature for several scalar prototypes such as those contained in [1], [2], [4] and
[5]. For instance, Ezeilo and Omari [5] studied firstly the 2π-periodic solutions
associated with the scalar version of (1.1), with g = g(x

′
), satisfying the sharp

nonresonance conditions

(g1) k2 + α−(|y|) <
g(y)
y

< (k + 1)2 − α+(|y|), k ∈ N,

where α± : (0, +∞)→ R are two nonincreasing functions such that

lim
|y|→+∞

|y|α±(|y|) = +∞,

This result has been improved by Minhós [9] by weakening the condition on
the oscillation of g, with the condition (g1) replaced by the two conditions

(g2) k2 ≤ lim inf
|y|→±∞

g(y)
y

≤ lim sup
|y|→±∞

g(y)
y

≤ (k + 1)2

and

(G) k2 < lim sup
y→+∞

2G(y)
y2

, lim inf
y→+∞

2G(y)
y2

< (k + 1)2)

where G denotes the primitive of the nonlinear function g, that is,

G(y) =
∫ y

0

g(τ) dτ

Here, the ratio g(y)
y may interact with the spectrum {k2, k ∈ N}, although

(G) imposes some ‘density’ control given by the asymptotic behaviour of the
primitive of g.

Moreover, when g = g(t, x
′
), nonuniform assumptions

(g3) k2 ≤ γ−(t) ≤ lim inf
|y|→∞

g(t, y)
y

≤ lim sup
|y|→∞

g(t, y)
y

≤ γ+(t) ≤ (k + 1)2

uniformly in y ∈ R for a.e. t ∈ [0, 2π], where γ± ∈ L1(0, 2π) such that strict
inequalities hold on subsets of [0, 2π] of positive measure; were also established
in [5] for the existence of 2π-periodic solutions, with accompanying uniqueness
results given by appropriate modification of these conditions.

Our earlier objective, in [12], to generalise some of these results has been
partially addressed with the generation of the sharp nonresonance hypotheses

(G1) k2ω2 + α−(‖Y ‖) ≤ 〈G(t, Y ), Y 〉
‖Y ‖2 ≤ (k + 1)2ω2 − α+(‖Y ‖) ,
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uniformly in Y ∈ R
n with ‖Y ‖ ≥ r > 0, and a.e. t ∈ [0, T ], where k ∈ N,

ω = 2π
T , and α± : R

n
+ → R are two functions which are such that

(G2) lim
‖Y ‖→+∞

‖Y ‖α±(‖Y ‖) = +∞

for the existence of T -periodic solutions to (1.1)–(1.2). These relations clearly
generalise the sharp nonresonance conditions prescribed in [5].

There are however, certain equations of type (1.1) with G not satisfying
(G1)–(G2), for which, nevertheless, T -periodic solvability results appear to be
provable, subject to some other generalisations on G. An example is the system

X
′′′

+ AX
′′

+
1
2
(
(k + 1)2ω2 + k2ω2 + (2k + 1)ω2 cos t

)
X

′
+ CX = P (t) (1.3)

with the ratio

〈G(t, Y ), Y 〉
‖Y ‖2 =

1
2
(
(k + 1)2ω2 + k2ω2 + (2k + 1)ω2 cos t

)
lying in the open interval

(
k2ω2, (k + 1)2ω2

)
for a.e. t ∈ [0, T ], but for which

there do not exist functions α± satisfying (G2) for which (G1) holds (since the
ratio touches both (possible) eigenvalues as (k+1)2−k2 = 2k+1). This justifies
a further treatment of (1.1) incorporating g2 and g3 along the lines of [3], [7], [8]
and [10], which clearly specifies the growth pattern and asymptotic conditions
on G, unlike the rather arbitrary assumptions employed in [11]. This article
proposes some generalisations in this direction.

Note also that condition (G2) cannot be dropped as shown by the nonlinear
system

X
′′′

+ AX
′′

+ k2ω2X
′
+ tan−1(X

′
) + CX = P (t) (1.4)

Here, the ratio

〈G(t, Y ), Y 〉
‖Y ‖2 = k2ω2 + ‖Y ‖−1 tan−1(Y ) ,

with
α−(‖Y ‖) = ‖Y ‖−1 tan−1(Y ) and α+(‖Y ‖) = 2kω2

but
lim

‖Y ‖→∞
‖Y ‖α−(‖Y ‖) =

π

2
�= +∞,

so that (G2) is not fulfilled by α− and therefore, the system has no T -periodic
solution.

Accordingly, X ∈ R
n, A and C are constant real n×n nonsingular matrices,

and G : [0, T ]×R
n → R

n and P : [0, T ]→ R
n are n-vectors, which are T -periodic

in t. We shall assume further that G satisfies the Carathéodory conditions, that
is, G(·, X ′

) is measurable for every X
′ ∈ R

n; G(t, ·) is continuous for a.e. t ∈
[0, T ], and for each r > 0, there exists an integrable function γr ∈ L1([0, T ], R)
such that ||G(t, X

′
)|| ≤ γr(t), for ||X ′ || ≤ r and a.e. t ∈ [0, T ].
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Let X be a point of the Euclidean space R
n equipped with the usual norm

‖X‖. For any pair X, Y ∈ R
n, we shall write 〈X, Y 〉 for the usual scalar product

of X and Y so that in particular, 〈X, X〉 = ‖X‖2.
It is standard result that if D is a real n×n symmetric matrix, then for any

X ∈ R
n,

δd||X ||2 ≤ 〈DX, X〉 ≤ ∆d||X ||2, (1.6)

where δd and ∆d are respectively the least and greatest eigenvalues of D. In
general, λi(D) shall denote the eigenvalues of any matrix D, and ‖D‖2 its
spectral norm.

The following Banach spaces will also be frequently refered to:

(i) the classical spaces of k times continuously differentiable functions
Ck([0, T ], Rn), k ≥ 0 an integer, where C0 = C and C∞ = ∩k≥0C

k with
norms ‖X‖Ck and ‖X‖∞ respectively;

(ii) the space of T -periodic functions Ck
T ([0, T ], Rn) defined by

Ck
T = {X : [0, T ]→ R

n : X ∈ Ck and X is T -periodic}

with the norm on Ck ;

(iii) Lp([0, T ], Rn), 1 ≤ p < +∞, the usual Lebesgue spaces with the norms
‖X‖Lp and ‖X‖∞ for p = +∞;

(iv) the Sobolev space W k,p
T ([0, T ], Rn), of T -periodic functions of order k,

defined by

W k,p
T = {X : [0, T ]→ R

n : X, X
′
, . . . , X(k−1) are absolutely continuous

on [0, T ], X(k) ∈ Lp (0, T ) and X(i)(0)−X(i)(T ) = 0,

i = 0, 1, 2, . . . , k − 1, k ∈ N}

with corresponding norm ‖X‖W k,p
T

;

(v) The Hilbert space H1([0, T ], Rn) defined by

H1(0, T ) = {X : [0, T ]→ R
n : X, is absolutely continuous on [0, T ],

X
′ ∈ L2(0, T ) and X(i)(0)−X(i)(T ) = 0, i = 0, 1}

with norm

‖X‖H1 =
{ n∑

i=1

[(
1
T

∫ T

0

xi(t) dt

)2

+
1
T

∫ T

0

(
xi(t)

)2
dt+

1
T

∫ T

0

(
x

′
i(t)
)2

dt

]} 1
2

.

Let

H̃1(0, T ) =
{

X ∈ H1(0, T )
∣∣∣ 1
T

∫ T

0

X(t) dt = 0
}
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2 Previous investigations and some preliminary results

Consider the eigenvalue problem

X
′′′

+ AX
′′

+ CX = −λX
′

(2.1)

together with (1.2), with A, C nonsingular, and λ a real parameter. It has been
shown in [5] that

(i) any λ �= k2ω2, for each k = 1, 2, . . ., is not an eigenvalue; and

(ii) λ = k2ω2, for some k = 1, 2, . . ., is an eigenvalue if and only if C = k2ω2A.

Let Ek be the eigenspace corresponding to the unique eigenvalue k2ω2, when
it exists. Then we deduce from [9] the following result:

For every X ∈W 3,2
T (0, 2π), we have∫ T

0

〈X ′′′
+AX

′′
+k2ω2X

′
+CX, X

′′′
+AX

′′
+(k+1)2ω2X

′
+CX〉 dt ≥ 0, (2.2)

and the equality holds if and only if X = 0 or either k2ω2 or (k + 1)2ω2 is an
eigenvalue of (2.1) and X ∈ Ek or X ∈ Ek+1, respectively.

Each of the statements (i) or (ii) has an important bearing on the solvability
of the PBVP for the non-autonomous system

X
′′′

+ AX
′′

+ λX
′
+ CX = P (t) (2.3)

with P ∈ L1.
It is clear for instance, from (i) and the Fredholm alternative, that a solution

for (1.1)–(1.2) can be expected if the ratio 〈G(t, X
′
), X

′〉/‖X ′‖2 is such that

k2ω2 <
〈G(t, X

′
), X

′〉
‖X ′‖2 < (k + 1)2ω2,

for ‖X ′‖ sufficiently large, and a.e. t ∈ [0, T ], provided that some control is
put on the closeness of the ratio to k2ω2 and (k + 1)2ω2. This expectation has
resulted in the evolution of conditions (G1)− (G2).

The main role of statement (ii) is to provide an adequate background against
which the sharpness of our conditions on G can be tested. Observe that α±

considered in (G1) can be infinitesimal as ‖Y ‖ → +∞, but by (G2) their order
must be less than one. This implies that the ratio can approach the (possible)
eigenvalues k2ω2 and (k + 1)2ω2, provided that the approach is not too fast.
For instance, conditions (G1)− (G2) admit functions G such as

G(Y ) = k2Y − ‖Y ‖α sgn(Y ), m ∈ N, 0 < α < 1,

satisfying

lim
‖Y ‖→+∞

〈G(Y ), Y 〉
‖Y ‖2 = k2,
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and yet by the statement (ii), (2.3)–(1.2) with λ = k2, does not have a solution
in general, that is, for unrestricted A and C nonsingular. Thus for (1.1), we
seek conditions on G(t, Y ) allowing lim‖Y ‖→+∞

〈G(t,Y ),Y 〉
‖Y ‖2 (if it exists) to touch

k2, k ∈ N, for many values of t.
In the sequel, we shall require some preliminary lemmas.

Lemma 2.1 Consider the linear homogeneous system

X
′′′

(t) + AX
′′
(t) + B(t)X

′
(t) + CX(t) = 0 (2.4)

where A is an arbitrary matrix, C is a nonsingular matrix and B(t) ≡ (bij(t))
is such that bij ∈ L1(0, T ) and

(B1) k2ω2 ≤ λi(B(t)) ≤ (k + 1)2ω2

for a.e. t ∈ [0, T ], i = 1, . . . , n, k ∈ N, with the strict inequality holding on
subsets of [0, T ] of positive measure.
Then, (2.4)–(1.2) has no non-trivial solution.

Proof Let the solution X(t) = X(t) + X̃(t) have the Fourier expansion

X(t) ∼
n∑

i=1

(
c0,i +

∞∑
k=1

(ck,i cos kωt + dk,i sinkωt)
)

,

such that

X =
n∑

i=1

(
c0,i +

N∑
k=1

(ck,i cos kωt + dk,i sin kωt)
)

and

X̃ =
n∑

i=1

∞∑
k=N+1

(ck,i cos kωt + dk,i sin kωt ) ,

for some integer N > 0 with N2ω2 < λ < (N + 1)2ω2, where ω = 2π
T .

Then, multiplying (2.4) by X
′
(t)− X̃

′
(t) and integrating over [0.T ] gives,∫ T

0

((
X̃

′′
(t)
)2 − 〈B(t)X̃

′
(t), X̃

′
(t)
〉)

dt

−
∫ T

0

((
X

′′
(t)
)2 − 〈B(t)X

′
(t), X

′
(t)
〉)

dt = 0. (2.5)

Let δ be a constant defined by

δ =
1
2

(minλi (B(t)) + maxλi (B(t))) (2.6)

for a.e. t ∈ [0, T ]. Then in fact,

k2ω2 ≤ δ ≤ (k + 1)2ω2, for a.e. t ∈ [0, T ], and
k2ω2 < δ < (k + 1)2ω2, on subsets of [0, T ] of positive measure.

(2.7)
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Thus, combining (B1), (2.6) and (2.7), (2.5) becomes

0 ≥
∫ T

0

[(
X̃

′′
(t)
)2

− δ
(
X̃

′
(t)
)2
]

dt−
∫ T

0

[(
X

′′
(t)
)2

− δ
(
X

′
(t)
)2
]

dt = 0.

(2.8)
By Parseval’s identity given by∫ T

0

‖X‖2 dt =
n∑

i=1

(
c2
0,iT +

T

2

∞∑
k=1

(c2
k,i + d2

k,i)
)

,

(2.8) becomes

T

2

n∑
i=1

[ ∞∑
k=N+1

k2ω2(k2ω2− δ)(c2
k,i + d2

k,i) +
N∑

k=1

k2ω2(δ− k2ω2)(c2
k,i + d2

k,i)
]

= 0.

(2.9)
It follows from (2.7) that ck,i = 0 (k = 0, 1, 2, . . .) and dk,i = 0 (k = 1, 2, . . .),
for all i = 1, . . . , n. Thus, X ≡ 0, and the lemma follows. �

Lemma 2.2 Let C be nonsingular, and assume that M, N ∈ L1([0, T ], Rn2
) are

nonsingular matrices which satisfy the following conditions

k2ω2‖Y ‖2 ≤ 〈M(t)Y, Y 〉 ≤ 〈N(t)Y, Y 〉 ≤ (k + 1)2ω2‖Y ‖2 (2.10)

uniformly in Y ∈ R
n, for a.e. t ∈ [0, T ], k ∈ N, ω = 2π

T , and

k2ω2‖Y ‖2 < 〈M(t)Y, Y 〉, 〈N(t)Y, Y 〉 < (k + 1)2ω2‖Y ‖2 (2.11)

on subsets of [0, T ] of positive measure.
Then, there exists constants ε = ε(M, N, C) > 0 and δ0 = δ0(M, N, C) > 0

uniformly a.e. on [0, T ], such that for all B(t) ≡ (bij(t)) with bij ∈ L1([0, T ], R)
satisfying

(B2) 〈M(t)Y, Y 〉 − ε‖Y ‖2 ≤ 〈B(t)Y, Y 〉 ≤ 〈N(t)Y, Y 〉+ ε‖Y ‖2

uniformly in Y ∈ R
n, a.e. on [0, T ], and all X ∈W 3,1

T ([0, T ], Rn), one has

‖X ′′′
+ AX

′′
+ B(·)X ′

+ CX‖L1 ≥ δ0‖X‖W 3,1
T

(2.12)

Proof Let us assume that the conclusion of the Lemma does not hold, that is, ε
and δ0 do not exist. Then, there exists a sequence (Xn) ∈W 3,1([0, T ], Rn) with

‖Xn‖W 3,1 = 1, and a sequence (Bn) ∈ L1([0, T ], Rn2
) of nonsingular matrices

with

〈M(t)Y, Y 〉 − 1
n
‖Y ‖2 ≤ 〈Bn(t)Y, Y 〉 ≤ 〈N(t)Y, Y 〉+

1
n
‖Y ‖2, n ∈ N, (2.13)

uniformly in Y ∈ R
n, for a.e. t ∈ [0, T ], such that for all X ∈W 3,1, one has∫ T

0

‖X ′′′
n (t) + AX

′′
n (t) + Bn(t)X

′
n(t) + CXn‖ dt <

1
n

. (2.14)
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Let ‖Bn‖ denote the norm of Bn. Then, by (2.13), there exists some β ∈
L1([0, T ], R) such that

‖Bn(t)‖ ≤ β(t), n = 1, 2, . . . (2.15)

for a.e. t ∈ [0, T ], n ∈ N. For example, one can take

β(t) ≡ 1
‖Y ‖2 [‖〈M(t)Y, Y 〉 − 〈Y, Y 〉‖ + ‖〈N(t)Y, Y 〉+ 〈Y, Y 〉‖] .

Now, by the compact embedding of W 3,1([0, T ], Rn) into W 2,1([0, T ], Rn) and
the continuous embedding of W 2,1([0, T ], Rn) into C1([0, T ], Rn) imply that by
going to subsequences if neccessary, we can assume that

Xn → X in C1([0, T ], Rn), X
′′
n → X

′′
in L∞([0, T ], Rn) ⊂ L1([0, T ], Rn).

(2.16)
Moreover, by (2.15), we deduce that

Bn ⇀ B in L1([0, T ], Rn2
) (2.17)

so that by (2.13),

〈M(t)Y, Y 〉 ≤ 〈B(t)Y, Y 〉 ≤ 〈N(t)Y, Y 〉 (2.18)

for a.e. t ∈ [0, T ].
On the other hand, for every Φ ∈ L∞([0, T ], Rn), we have by Schwarz in-

equality ∥∥∥∫ T

0

〈
Bn(t)X

′
n(t)−B(t)X

′
(t), Φ(t)

〉
dt
∥∥∥

≤
∥∥∥∫ T

0

〈
Bn(t)

(
X

′
n(t)−X

′
(t)
)
, Φ(t)

〉
dt
∥∥∥+
∥∥∥∫ T

0

〈(
Bn(t)−B(t)

)
X

′
(t), Φ(t)

〉
dt
∥∥∥

≤ ‖Φ‖∞‖β‖L1‖X ′
n −X

′‖∞ +
∥∥∥∫ T

0

〈(
Bn(t)−B(t)

)
X

′
(t), Φ(t)

〉
dt
∥∥∥. (2.19)

The right hand side of (2.19) tends to zero by (2.16) and (2.17), and we deduce
that

BnX
′
n ⇀ BX

′
in L1([0, T ], Rn). (2.20)

By (2.14), (2.16) and (2.20), it follows that

X
′′′
n = −AX

′′
n −Bn(·)X ′

n − CXn ⇀ −AX
′′ −B(·)X ′ − CX in L1([0, T ], Rn).

(2.21)
Since the operator

d3

dt3
: W 3,1([0, T ], Rn) ⊂ L1([0, T ], Rn)→ L1([0, T ], Rn)
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is weakly closed, this implies (by (2.16) and (2.21)) that X ∈ W 3,1
T ([0, T ], Rn),

and X
′′′

= −AX
′′ −B(·)X ′ − CX , that is,

X
′′′

(t) + AX
′′
(t) + B(t)X

′
(t) + CX(t) = 0, (2.22)

for a.e. t ∈ [0, T ] and X ∈ W 3,1([0, T ], Rn).
It follows from (2.9), (2.10), (2.18), (2.22) and Lemma 2.1 that X ≡ 0, that

is, Xn → 0 in W 3,1([0, T ], Rn) as n →∞. But this clearly contradicts the initial
assumption that ‖Xn‖W 3,1 = 1 for all n, and the proof is complete. �

Lemma 2.3 Let D ∈ L1
(
[0, T ], Rn2)

be a nonsingular matrix such that 0 ≤
λi(D(t)) ≤ ω2 a.e. on [0, T ], with the strict inequality holding on a subset of
[0, T ] of positive measure. Then, there exists a constant η = η(D) > 0 such that
for all X̃ ∈ H̃1([0, T ], Rn), we have

1
T

∫ T

0

[(
X̃

′
(t)
)2

− 〈D(t)X̃(t), X̃(t)〉
]

dt ≥ η‖X̃‖2H1 (2.23)

Proof This is clearly the same as in the proof of Lemma 1 of [8] by setting
λi(D(t)) ≡ Γi(t), i = 1, 2, . . . , n, where Γi ∈ L1([0, T ], R) satisfies Γi(t) ≤ ω2

a.e. on [0, T ], with the strict inequality holding on a subset of [0, T ] of positive
measure, and replacing the period 2π by T . �

3 The main results

We now present our main results:

Theorem 3.1 Let C be a nonsingular matrix. Suppose that G is L1-Carathéodory
and satisfies

(G3) k2ω2 ≤ 〈M(t)Y, Y 〉
‖Y ‖2 ≤ lim inf

‖Y ‖→∞
〈G(t, Y ), Y 〉
‖Y ‖2 ≤ lim sup

‖Y ‖→∞

〈G(t, Y ), Y 〉
‖Y ‖2

≤ 〈N(t)Y, Y 〉
‖Y ‖2 ≤ (k + 1)2ω2

uniformly in Y ∈ R
n for a.e. t ∈ [0, T ], k ∈ N and M, N ∈ L1([0, T ], Rn2

) are
such that k2ω2‖Y ‖2 < 〈M(t)Y, Y 〉, 〈N(t)Y, Y 〉 < (k + 1)2ω2‖Y ‖2 on subsets
of [0, T ] of positive measure. Then, for any arbitrary matrix A, the system
(1.1)–(1.2) has at least one solution for every P ∈ L1([0, T ], Rn).

Proof Let ε > 0 be as in Lemma 2.2. Then, by (G3), we can fix a constant
vector ρ = ρ(ε) with each ρi > 0 such that

〈M(t)Y, Y 〉 − ε‖Y ‖2 ≤ 〈G(t, Y ), Y 〉 ≤ 〈N(t)Y, Y 〉+ ε‖Y ‖2 (3.1)

for a.e. t ∈ [0, T ] and all Y ∈ R
n with |yi| ≥ ρi.
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Now define ν(t, Y ) ≡ (νi(t, Y ))1≤i≤n : [0, T ]× R
n → R

n by

νi(t, Y ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y−1
i gi(t, Y ), if |yi| ≥ ρi;

yiρ
−2
i gi(t, y1, . . . , yi−1, ρi, yi+1, . . . , yn) + (1 − yi

ρi
)β(t),

if 0 ≤ yi < ρi;

yiρ
−2
i gi(t, y1, . . . , yi−1,−ρi, yi+1, . . . , yn) + (1 + yi

ρi
)β(t),

if − ρi ≤ yi < 0.

for a.e. t ∈ [0, T ], where β is given by

β(t) ≡ 1
‖Y ‖2

[ ‖〈M(t)Y, Y 〉 − 〈Y, Y 〉‖+ ‖〈N(t)Y, Y 〉+ 〈Y, Y 〉‖ ], (3.2)

so that by construction and (3.1), we deduce that

〈M(t)Y, Y 〉 − ε‖Y ‖2 ≤ 〈ν(t, Y ), Y 〉 ≤ 〈N(t)Y, Y 〉+ ε‖Y ‖2 (3.3)

for a.e. t ∈ [0, T ] and Y ∈ R
n.

The function G̃ ≡ (g̃i(t, Y ))1≤i≤n[0, T ] × R
n → R

n defined by g̃i(t, Y ) =
νi(t, Y )yi satisfies the Carathéodory conditions, by construction. Hence, setting
Ψ(t, Y ) = G(t, Y )− G̃(t, Y ), then Ψ(t, Y ) is also L1-Carathéodory with

‖Ψ(t, Y )‖ ≤ sup
|yi|≤ρi

‖G(t, Y )− G̃(t, Y )‖ ≤ ϕ(t) (3.4)

for a.e. t ∈ [0, T ] and Y ∈ R
n, for some ϕ ∈ L1([0, T ], R) depending only on

M, N and γr mentioned at the beginning in association with G. Then, the
problem (1.1) is equivalent to

X
′′′

(t) + AX
′′
(t) + G̃(t, X

′
(t)) + Ψ(t, X

′
(t)) + CX(t) = P (t) (3.5)

By the Leray–Schauder technique (see Mawhin [6]), the proof of the Theorem
now follows by showing that there is a constant K > 0, independent of λ ∈ (0, 1),
such that ‖X‖C2 < K, for all possible solutions X of the homotopy

X
′′′

+ AX
′′

+ (1− λ)N(t)X
′
+ λG̃(t, X

′
) + λΨ(t, X

′
) + CX = λP (t) (3.6)

We observe from (3.3) that

〈M(t)Y, Y 〉−ε‖Y ‖2 ≤ 〈 (1−λ)N(t)Y +λG̃(t, Y ), Y 〉 ≤ 〈N(t)Y, Y 〉+ε‖Y ‖2 (3.7)

for a.e. t ∈ [0, T ], Y ∈ R
n and λ ∈ [0, 1].

Thus, we may set (1 − λ)N(t)X
′
+ λG̃(t, X

′
) ≡ B(t)X

′
, for a.e. t ∈ [0, T ],

X
′ ∈ R

n and λ ∈ [0, 1], where, by (3.7), B(t) is such that

〈M(t)X
′
, X

′〉 − ε‖X ′‖2 ≤ 〈B(t)X
′
, X

′〉 ≤ 〈N(t)X
′
, X

′〉+ ε‖X ′‖2 (3.8)

for a.e. t ∈ [0, T ], X
′ ∈ R

n and λ ∈ [0, 1].
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Thus (3.6) becomes

0 ≥ ‖X ′′′
+ AX

′′
+ B(·)X ′

+ CX‖L1 − ‖Ψ(·, X ′
)‖L1 − ‖P (·)‖L1 (3.9)

Using Lemma 2.2 and (3.4) finally gives

0 ≥ δ0‖X‖W 3,1 − ‖δ‖L1 − ‖P‖L1 (3.10)

which yields a constant K0 > 0 such that ‖X‖W 3,1 ≤ K0. Hence, we obtain the
required constant K > 0 such that ‖X‖C2 < K, following a standard procedure
just as in [2], and the conclusion follows. �

Remark 3.1 The result of Theorem 3.1 can be extended to nonlinear systems
of the form

X
′′′

+
d

dt
grad f(X

′
) + G(t, X

′
) + H(X) = P (t), (3.11)

under suitable assumptions on G satisfying some requirements in respect of the
first (possible) eigenvalue λ = ω2 of (2.1)–(1.2).

Here, f : R
n → R is a C2-function, H : R

n → R
n is continuous and satisfies

a sign condition, while G and P are as specified earlier.

Theorem 3.2 Assume that G satisfies

(G4) lim
‖Y ‖→+∞

〈G(t, Y ), Y 〉
‖Y ‖2 ≤ 〈N(t)Y, Y 〉

‖Y ‖2 ≤ ω2

uniformly in Y ∈ R
n for a.e. t ∈ [0, T ], where N ∈ L1([0, T ], Rn2

) is such that
〈N(t)Y , Y 〉 < ω2‖Y ‖2 on subsets of [0, T ] of positive measure.
Moreover, suppose that H satisfies

(H) lim
‖X‖→+∞

sgn(X)H(X) = +∞.

Then, (3.11)–(1.2) has at least one solution for every P ∈ L1([0, T ], Rn).

Proof As in the preceding proof, for each ε > 0, there exists ρ = ρ(ε) > 0 such
that

〈G(t, Y ), Y 〉 ≤ 〈N(t)Y, Y 〉+ ε‖Y ‖2

for a.e. t ∈ [0, T ] and all Y ∈ R
n with |yi| ≥ ρi.

Then, define G̃(t, Y ) and Ψ(t, Y ) as before, so that the relations

〈(1− λ)N(t)Y + λG̃(t, Y ), Y 〉 ≤ 〈N(t)Y, Y 〉+ ε‖Y ‖2, λ ∈ [0, 1]

and
‖Ψ(t, Y )‖ ≤ ϕ(t)

hold, for a.e. t ∈ [0, T ] and every Y ∈ R
n.
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It suffices to establish the neccessary (or appropriate) a-priori bounds for
the λ-dependent family of systems

X
′′′

+ λ
d

dt
gradf(X

′
) + (1− λ)N(t)X

′
+ λG̃(t, X

′
) + λΨ(t, X

′
)

+ (1− λ)CX + λH(X) = λP (t), (3.12)

for λ ∈ [0, 1], where C is a fixed nonsingular and positive definite matrix.
Let X be a solution of (3.12)–(1.2). Taking the scalar product of (3.12) with

X
′
(t) and integrating over [0, T ] using (1.2) gives∫ T

0

‖X ′′‖2 dt =
∫ T

0

〈(1− λ)N(t)X
′
+ λG̃(t, X

′
), X

′〉 dt + 〈Ψ(·, X ′
)−P (·), X ′〉L2

(3.13)
That is, from above

‖X ′′‖2L2 ≤
∫ T

0

〈N(t)X
′
(t), X

′
(t) 〉 dt + ε‖X ′‖2L2 + (‖ϕ‖L1 + ‖P‖L1)‖X ′‖∞

(3.14)
Noting that by Lemma 2.3,

‖X ′′‖2L2 −
∫ T

0

〈N(t)X
′
(t), X

′
(t)〉 dt =

=
∫ T

0

((X
′′
(t))2 − 〈N(t)X

′
(t), X

′
(t)〉) dt ≥ η‖X ′‖2H1 =

η

T
‖X ′′‖2L2,

for some constant η = η(Γ) > 0, we obtain from (3.14)

η‖X ′′‖2L2 ≤ εT

ω2
‖X ′′‖2L2 + (‖ϕ‖L1 + ‖P‖L1)T

3
2 ‖X ′′‖L2 (3.15)

by the Wirtinger and other standard inequalities. Hence, taking 0 < εT < ω2η,
we deduce that

‖X ′′‖L2 ≤ c1 , (3.16)

for some c1 > 0. Thus, we have

‖X ′‖∞ ≤
√

T‖X ′′‖L2 ≤
√

Tc1 (3.17)

This implies that
‖X −X(t0)‖ ≤ T ‖X ′‖∞ ≤ T

3
2 c1 (3.18)

where t0 ∈ [0, T ] is arbitrarily fixed.
Now observe that∫ T

0

(1− λ)N(t)X
′
+ λG̃(t, X

′
) dt ≤

∫ T

0

(N(t)X
′
+ εX

′
) dt = 0 (3.19)
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Then, taking the average of (3.12) on [0, T ], we obtain by the Mean Value
Theorem, ∥∥(1− λ)X(t�) + λC−1H(X(t�))

∥∥ =

=
∥∥∥(1− λ)

( 1
T

∫ T

0

X(t) dt
)

+ λ
( 1

T

∫ T

0

C−1H(X(t)) dt
)∥∥∥

≤ ‖C−1‖
(

1
T
‖δ‖L1 +

1
T
‖P‖L1

)
:= c2 (3.20)

for some t� ∈ [0, T ].
Now by hypothesis (H), it follows that for any k > 0, there exists a q =

q(k) > 0 such that

‖C−1H(X)‖ = ‖H̃(X)‖ = sgn(X)H̃(X) > k, (3.21)

for every ‖X‖ > max{k, q}, and all positive definite C. Hence, for any λ ∈ (0, 1],
we have∥∥(1− λ)X + λC−1H(X)

∥∥ = sgn(X)
(
(1−λ)X+λC−1H(X)

) ≥ (1−λ)k+λk = k
(3.22)

for every ‖X‖ > max{k, q}. Thus, choosing k > c2, it follows that

‖X(t�)‖ ≤ max{k, q} := c3 (3.23)

Combining (3.18) and (3.23) with t0 = t�, we obtain

‖X‖∞ ≤ T
3
2 c1 + c3 := c4 (3.24)

Lastly, integrating (3.12) and using the continuity of H and (3.24), we deduce
the existence of a constant c5 > 0, such that

‖X ′′′‖L1 ≤ c5, (3.25)

so that
‖X ′′‖∞ ≤ T ‖X ′′′‖L1 = Tc5 (3.26)

Therefore, by (3.17), (3.24) and (3.26),

‖X‖C2 = ‖X‖∞ + ‖X ′‖∞ + ‖X ′′‖∞ ≤ c6, (3.27)

for some c6 > 0, and we are done. �

As pointed out earlier, Theorem 3.2 admits solutions for periodic systems
associated with

X
′′′

+
d

dt
gradf(X

′
) +

ω2

2
(1 + sin t)X

′
+ H(X) = P (t). (3.28)

Finally, we conclude this study with a uniqueness criterion for the system
(1.1)–(1.2). The following result holds:
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Theorem 3.3 Let C be nonsingular and suppose that G satisfies, for some
k ∈ N,

(G5) k2ω2 ≤ 〈M(t)(Y1 − Y2), Y1 − Y2〉
‖Y1 − Y2‖2 ≤ 〈G(t, Y1)−G(t, Y2), Y1 − Y2〉

‖Y1 − Y2‖2

≤ 〈N(t)(Y1 − Y2), Y1 − Y2〉
‖Y1 − Y2‖2 ≤ (k + 1)2ω2,

or

(G6)
〈G(t, Y1)−G(t, Y2), Y1 − Y2〉

‖Y1 − Y2‖2
< ω2,

uniformly for a.e. t ∈ [0, T ] and Y1, Y2 ∈ R
n with Y1 �= Y2.

Then, (1.1)–(1.2) has at most one solution.

Proof Case (i) G subject to (G5): The PBVP satisfied by V = Y1 − Y2, for
any two solutions Y1, Y2 of (1.1)–(1.2) is of the form

V
′′′

(t) + AV
′′
(t) + B�(t, V

′
)V

′
(t) + CV (t) = 0, (3.28)

with
V (0)− V (T ) = V

′
(0)− V

′
(T ) = V

′′
(0)− V

′′
(T ) (3.29)

where the matrix B� ∈ L1(0, T ) is defined by

B�(t, V (t))V (t) =
{

G(t, V + Y2)−G(t, Y2), if V �= 0
M(t), if V = 0

and by (G5) satisfies

λi(M(t)) ≤ λi (B�(t, V (t))) ≤ λi(N(t))

uniformly in V ∈ R
n for a.e. t ∈ [0, T ].

Hence, using the arguments of Lemma 2.1, we see that V ≡ 0, and the
uniqueness, subject to (G5), is thus proved.

Case (ii) G subject to (G6): We consider the PBVP (3.28)-(3.29) as before
except that this time B� is defined by

B�(t, V (t))V (t) =
{

G(t, V + Y2)−G(t, Y2), if V �= 0
0, if V = 0

so that by (G6), λi (B�(t, V (t))) < ω2 uniformly in V ∈ R
n for t ∈ [0, T ].

Multiply now (3.28) scalarly by V
′
(t) and integrate over [0, T ] using (3.29)

and we get∫ T

0

‖V ′′
(t)‖2 dt =

∫ T

0

〈B�(t, V (t))V
′
(t), V

′
(t)〉 dt ≤

∫ T

0

〈B̃(t)V
′
(t), V

′
(t)〉 dt,

(3.30)
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where we set λi(B̃(t)) = max{0, λi(B�(t, V (t)))} uniformly in V for a.e. t ∈
[0, T ].

Clearly then, B̃(t) ∈ L1(0, T ) is such that 0 ≤ λi(B̃(t)) < ω2 for a.e. t ∈
[0, T ]. Thus using Lemma 2.3 setting X̃ = V

′
, (3.30) becomes

0 ≥
∫ T

0

‖V ′′
(t)‖2 dt−

∫ T

0

〈 B̃(t)V
′
(t), V

′
(t)〉 dt ≥ η‖V ′‖2H1 (3.31)

from which we deduce that V
′ ≡ 0, leading to V ≡ 0, and the proof is complete.

�
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